1
|
Peng J, Zhang X, Hu Y, He T, Huang J, Zhao M, Meng J. Deep learning to estimate response of concurrent chemoradiotherapy in non-small-cell lung carcinoma. J Transl Med 2024; 22:896. [PMID: 39367461 PMCID: PMC11451157 DOI: 10.1186/s12967-024-05708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Concurrent chemoradiotherapy (CCRT) is a crucial treatment for non-small cell lung carcinoma (NSCLC). However, the use of deep learning (DL) models for predicting the response to CCRT in NSCLC remains unexplored. Therefore, we constructed a DL model for estimating the response to CCRT in NSCLC and explored the associated biological signaling pathways. METHODS Overall, 229 patients with NSCLC were recruited from six hospitals. Based on contrast-enhanced computed tomography (CT) images, a three-dimensional ResNet50 algorithm was used to develop a model and validate the performance in predicting response and prognosis. An associated analysis was conducted on CT image visualization, RNA sequencing, and single-cell sequencing. RESULTS The DL model exhibited favorable predictive performance, with an area under the curve of 0.86 (95% confidence interval [CI] 0.79-0·92) in the training cohort and 0.84 (95% CI 0.75-0.94) in the validation cohort. The DL model (low score vs. high score) was an independent predictive factor; it was significantly associated with progression-free survival and overall survival in both the training (hazard ratio [HR] = 0.54 [0.36-0.80], P = 0.002; 0.44 [0.28-0.68], P < 0.001) and validation cohorts (HR = 0.46 [0.24-0.88], P = 0.008; 0.30 [0.14-0.60], P < 0.001). The DL model was also positively related to the cell adhesion molecules, the P53 signaling pathway, and natural killer cell-mediated cytotoxicity. Single-cell analysis revealed that differentially expressed genes were enriched in different immune cells. CONCLUSION The DL model demonstrated a strong predictive ability for determining the response in patients with NSCLC undergoing CCRT. Our findings contribute to understanding the potential biological mechanisms underlying treatment responses in these patients.
Collapse
Affiliation(s)
- Jie Peng
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China.
| | - Xudong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Hu
- Department of Oncology, Guiyang Public Health Clinical Center, Guiyang, China
| | - Tianchu He
- Department of Oncology, Qiandongnan Prefecture People's Hospital, Kaili, China
| | - Jun Huang
- Department of Oncology, Qiannan Prefecture Hospital of Traditional Chinese Medicine, Duyun, China
| | - Mingdan Zhao
- Department of Oncology, Qiannan Prefecture Hospital of Traditional Chinese Medicine, Duyun, China
| | - Jimei Meng
- Department of Oncology, Qiannan Prefecture People's Hospital, Duyun, China
| |
Collapse
|
2
|
Sobhani N, D'Angelo A, Pittacolo M, Mondani G, Generali D. Future AI Will Most Likely Predict Antibody-Drug Conjugate Response in Oncology: A Review and Expert Opinion. Cancers (Basel) 2024; 16:3089. [PMID: 39272947 PMCID: PMC11394064 DOI: 10.3390/cancers16173089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The medical research field has been tremendously galvanized to improve the prediction of therapy efficacy by the revolution in artificial intelligence (AI). An earnest desire to find better ways to predict the effectiveness of therapy with the use of AI has propelled the evolution of new models in which it can become more applicable in clinical settings such as breast cancer detection. However, in some instances, the U.S. Food and Drug Administration was obliged to back some previously approved inaccurate models for AI-based prognostic models because they eventually produce inaccurate prognoses for specific patients who might be at risk of heart failure. In light of instances in which the medical research community has often evolved some unrealistic expectations regarding the advances in AI and its potential use for medical purposes, implementing standard procedures for AI-based cancer models is critical. Specifically, models would have to meet some general parameters for standardization, transparency of their logistic modules, and avoidance of algorithm biases. In this review, we summarize the current knowledge about AI-based prognostic methods and describe how they may be used in the future for predicting antibody-drug conjugate efficacy in cancer patients. We also summarize the findings of recent late-phase clinical trials using these conjugates for cancer therapy.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alberto D'Angelo
- Department of Medicine, Northern General Hospital, Sheffield S5 7AT, UK
| | - Matteo Pittacolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giuseppina Mondani
- Royal Infirmary Hospital, Foresterhill Health Campus, Aberdeen AB25 2ZN, UK
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| |
Collapse
|
3
|
Chen Y, Wu J, You J, Gao M, Lu S, Sun C, Shu Y, Wang X. Integrating IASLC grading and radiomics for predicting postoperative outcomes in stage IA invasive lung adenocarcinoma. Med Phys 2024; 51:6513-6524. [PMID: 38781536 DOI: 10.1002/mp.17177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The International Association for the Study of Lung Cancer (IASLC) Pathology Committee introduced a histologic grading system for invasive lung adenocarcinoma (LUAD) in 2020. The IASLC grading system, hinging on the evaluation of predominant and high-grade histologic patterns, has proven to be practical and prognostic for invasive LUAD. However, there are still limitations in evaluating the prognosis of stage IA LUAD. Radiomics may serve as a valuable complement. PURPOSE To establish a model that integrates IASLC grading and radiomics, aimed at predicting the prognosis of stage IA LUAD. METHODS We conducted a retrospective analysis of 628 patients diagnosed with stage IA LUAD who underwent surgical resection between January 2015 and December 2018 at our institution. The patients were randomly divided into the training set (n = 439) and testing set (n = 189) at a ratio of 7:3. Overall survival (OS) and disease-free survival (DFS) were taken as the end points. Radiomics features were obtained by PyRadiomics. Feature selection was performed using the least absolute shrinkage and selection operator (LASSO). The prediction models for OS and DFS were developed using multivariate Cox regression analysis, and the models were visualized through nomogram plots. The model's performance was evaluated using area under the curves (AUC), concordance index (C-index), calibration curves, and survival decision curve analysis (DCA). RESULTS In total, nine radiomics features were selected for the OS prediction model, and 15 radiomics features were selected for the DFS prediction model. Patients with high radiomics scores were associated with a worse prognosis (p < 0.001). We built separate prediction models using radiomics or IASLC alone, as well as a combined prediction model. In the prediction of OS, we observed that the combined model (C-index: 0.812 ± 0.024, 3 years AUC: 0.692, 5 years AUC: 0.792) achieved superior predictive performance than the radiomics (C-index: 0.743 ± 0.038, 3 years AUC: 0.633, 5 years AUC: 0.768) and IASLC grading (C-index: 0.765 ± 0.042, 3 years AUC: 0.658, 5 years AUC: 0.743) models alone. Similar results were obtained in the models for DFS. CONCLUSION The combination of radiomics and IASLC pathological grading proves to be an effective approach for predicting the prognosis of stage IA LUAD. This has substantial clinical relevance in guiding treatment decisions for early-stage LUAD.
Collapse
Affiliation(s)
- Yong Chen
- First College of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Jun Wu
- Medical College, Yangzhou University, Yangzhou, China
| | - Jie You
- First College of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Mingjun Gao
- First College of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Shichun Lu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Chao Sun
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Heo S, Park HJ, Lee SS. Prognostication of Hepatocellular Carcinoma Using Artificial Intelligence. Korean J Radiol 2024; 25:550-558. [PMID: 38807336 PMCID: PMC11136947 DOI: 10.3348/kjr.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 05/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a biologically heterogeneous tumor characterized by varying degrees of aggressiveness. The current treatment strategy for HCC is predominantly determined by the overall tumor burden, and does not address the diverse prognoses of patients with HCC owing to its heterogeneity. Therefore, the prognostication of HCC using imaging data is crucial for optimizing patient management. Although some radiologic features have been demonstrated to be indicative of the biologic behavior of HCC, traditional radiologic methods for HCC prognostication are based on visually-assessed prognostic findings, and are limited by subjectivity and inter-observer variability. Consequently, artificial intelligence has emerged as a promising method for image-based prognostication of HCC. Unlike traditional radiologic image analysis, artificial intelligence based on radiomics or deep learning utilizes numerous image-derived quantitative features, potentially offering an objective, detailed, and comprehensive analysis of the tumor phenotypes. Artificial intelligence, particularly radiomics has displayed potential in a variety of applications, including the prediction of microvascular invasion, recurrence risk after locoregional treatment, and response to systemic therapy. This review highlights the potential value of artificial intelligence in the prognostication of HCC as well as its limitations and future prospects.
Collapse
Affiliation(s)
- Subin Heo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Pathour T, Ma L, Strand DW, Gahan J, Johnson BA, Sirsi SR, Fei B. Feature Extraction of Ultrasound Radiofrequency Data for the Classification of the Peripheral Zone of Human Prostate. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12932:129321F. [PMID: 38707197 PMCID: PMC11069342 DOI: 10.1117/12.3008643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Prostate cancer ranks among the most prevalent types of cancer in males, prompting a demand for early detection and noninvasive diagnostic techniques. This paper explores the potential of ultrasound radiofrequency (RF) data to study different anatomic zones of the prostate. The study leverages RF data's capacity to capture nuanced acoustic information from clinical transducers. The research focuses on the peripheral zone due to its high susceptibility to cancer. The feasibility of utilizing RF data for classification is evaluated using ex-vivo whole prostate specimens from human patients. Ultrasound data, acquired using a phased array transducer, is processed, and correlated with B-mode images. A range filter is applied to highlight the peripheral zone's distinct features, observed in both RF data and 3D plots. Radiomic features were extracted from RF data to enhance tissue characterization and segmentation. The study demonstrated RF data's ability to differentiate tissue structures and emphasizes its potential for prostate tissue classification, addressing the current limitations of ultrasound imaging for prostate management. These findings advocate for the integration of RF data into ultrasound diagnostics, potentially transforming prostate cancer diagnosis and management in the future.
Collapse
Affiliation(s)
- Teja Pathour
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX
- Department of Bioengineering, The University of Texas at Dallas, TX
| | - Ling Ma
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX
- Department of Bioengineering, The University of Texas at Dallas, TX
| | - Douglas W. Strand
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey Gahan
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Brett A. Johnson
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Shashank R. Sirsi
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX
- Department of Bioengineering, The University of Texas at Dallas, TX
| | - Baowei Fei
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX
- Department of Bioengineering, The University of Texas at Dallas, TX
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
6
|
Hsieh C, Laguna A, Ikeda I, Maxwell AWP, Chapiro J, Nadolski G, Jiao Z, Bai HX. Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma. Radiology 2023; 309:e222891. [PMID: 37934098 DOI: 10.1148/radiol.222891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Interventional oncology is a rapidly growing field with advances in minimally invasive image-guided local-regional treatments for hepatocellular carcinoma (HCC), including transarterial chemoembolization, transarterial radioembolization, and thermal ablation. However, current standardized clinical staging systems for HCC are limited in their ability to optimize patient selection for treatment as they rely primarily on serum markers and radiologist-defined imaging features. Given the variation in treatment responses, an updated scoring system that includes multidimensional aspects of the disease, including quantitative imaging features, serum markers, and functional biomarkers, is needed to optimally triage patients. With the vast amounts of numerical medical record data and imaging features, researchers have turned to image-based methods, such as radiomics and artificial intelligence (AI), to automatically extract and process multidimensional data from images. The synthesis of these data can provide clinically relevant results to guide personalized treatment plans and optimize resource utilization. Machine learning (ML) is a branch of AI in which a model learns from training data and makes effective predictions by teaching itself. This review article outlines the basics of ML and provides a comprehensive overview of its potential value in the prediction of treatment response in patients with HCC after minimally invasive image-guided therapy.
Collapse
Affiliation(s)
- Celina Hsieh
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Amanda Laguna
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Ian Ikeda
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Aaron W P Maxwell
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Julius Chapiro
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Gregory Nadolski
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Zhicheng Jiao
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Harrison X Bai
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| |
Collapse
|