1
|
Dix-Peek T, Dickens C, Valcárcel J, Duarte RAB. Lower FGFR2 mRNA Expression and Higher Levels of FGFR2 IIIc in HER2-Positive Breast Cancer. BIOLOGY 2024; 13:920. [PMID: 39596875 PMCID: PMC11591975 DOI: 10.3390/biology13110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) has been associated with breast cancer. We performed in silico analyses to investigate the FGFR2 mRNA expression and splice variants associated with breast cancer subtypes. Online databases, including cBioPortal and TCGA SpliceSeq, were used to examine the association between the FGFR2 expression and splice variants with breast cancer subtypes. A higher FGFR2 mRNA was significantly associated with luminal, oestrogen receptor (ER)-positive breast cancers, and invasive lobular carcinomas, whereas a lower FGFR2 was associated with human epidermal growth factor receptor 2 (HER2)-positive breast cancer and invasive ductal carcinomas. The epithelial alternatively spliced FGFR2 IIIb isoform was significantly enriched in ER+ breast cancer, while the mesenchymal FGFR2 IIIc isoform was significantly prevalent in HER2+ cancer. Increased levels of FGFR2 and IIIb splice isoforms are associated with less aggressive breast cancer phenotypes, while decreased levels of FGFR2 and increased IIIc splice isoform are associated with more aggressive phenotypes.
Collapse
Affiliation(s)
- Thérèse Dix-Peek
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 07 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Caroline Dickens
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 07 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Juan Valcárcel
- ICREA and Center for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Raquel A. B. Duarte
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 07 York Road, Parktown, Johannesburg 2193, South Africa;
| |
Collapse
|
2
|
Li Y, He D, Lu ZJ, Gu XF, Liu XY, Chen M, Tu YX, Zhou Y, Owen G, Zhang X, Jiang D. Clinicopathological characteristics and prognosis of combined hepatocellular cholangiocarcinoma. BMC Cancer 2024; 24:1232. [PMID: 39375615 PMCID: PMC11457400 DOI: 10.1186/s12885-024-12970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
There is limited research on the clinicopathological characteristics of combined hepatocellular-cholangiocarcinoma (cHCC-CCA) currently. The aim of this study is to summerize the clinicopathological factors and prognosis of cHCC-CCA, which could help us understand this disease. 72 cases of cHCC-CCA from West China Hospital of Sichuan University were collected. Tissue components were reviewed by pathologists. Immunohistochemistry was used to detect the status of mismatch repair (MMR) and human epidermal growth factor receptor 2 (HER2) in cHCC-CCA, as well as the quantity and distribution of CD3+ T cells and CD8+ T cells. Fluorescence in situ hybridization was used to detect fibroblast growth factor receptor 2 (FGFR2) gene alteration. COX univariate and multivariate analyses were used to evaluate risk factors, and survival curves were plotted. 49 cases were classified as classic type cHCC-CCA and 23 cases as intermediate cell carcinoma. The cut-off value for diagnosing classic type was determined to be ≥ 30% for the cholangiocarcinoma component based on prognostic calculations. All tumors were MMR proficient. The rate of strong HER2 protein expression (3+) was 8.3%, and the frequency of FGFR2 gene alteration was 26.4%. CD3+ T cells and CD8+ T cells were mainly distributed at the tumor margin, and were protective factors for patients with cHCC-CCA. The overall survival of the 72 patients was 18.9 months, with a median survival of 12 months. Tumor size, TNM stage, and serum AFP level were prognostic factors for cHCC-CCA. The proportion of cholangiocarcinoma component reaching the threshold of 30%, may provide a reference for future pathology diagnosis. FGFR2 gene alteration was 26.4%, providing a clue for anti-FGFR2 therapy. However, more data is needed for further verification.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Du He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Jian Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia-Fei Gu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Yu Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yin-Xia Tu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, Chengdu Shangjin Nanfu Hospital, Chengdu, 611700, China
| | - Yu Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gemma Owen
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Xian Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Pathology, Chengdu Shangjin Nanfu Hospital, Chengdu, 611700, China.
| |
Collapse
|
3
|
Choi JH, Kim JY, Lee KR, Lee GY, Hong M, Hwang HW, Lee MY, Kim MK, Hong SA. Prognostic Significance of CD11b-, CD8-, and CD163-Positive Tumor-Infiltrating Immune Cells in Distal Bile Duct Cancer. J Pers Med 2024; 14:1033. [PMID: 39452540 PMCID: PMC11508419 DOI: 10.3390/jpm14101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Distal bile duct cancer is an aggressive malignancy. Tumor-infiltrating immune cells (TIICs) in the tumor microenvironment are crucial for predicting prognosis in various cancers. In this study, we analyzed TIICs based on CD11b, CD163, and CD8 expression, and evaluated their association with clinicopathologic factors and prognosis in distal bile duct cancer. Methods: A total of 90 patients who underwent curative resection for distal bile duct cancer were enrolled. We analyzed CD11b+ tumor-infiltrating myeloid cells (TIMs), CD163+ tumor-infiltrating macrophages (TAMs), and CD8+ tumor-infiltrating lymphocytes (TILs) using immunohistochemistry and tissue microarrays. The correlation between TIICs and clinicopathologic characteristics was assessed. Results: Low levels of CD11b+ TIMs (p < 0.001) and high levels of CD8+ TILs (p = 0.003) were significantly associated with improved overall survival (OS). A combined low level of CD11b+ TIMs and high level of CD8+ TILs was identified as an independent favorable prognostic factor (hazard ratio, 0.159; confidence interval, 0.061-0.410; p < 0.001). Conclusions: CD11b+ TIMs play a crucial role in the tumor microenvironment and the prognosis of distal bile duct cancer. The combined analysis of CD11b+ TIMs and CD8+ TILs can predict survival in patients with distal bile duct cancer.
Collapse
Affiliation(s)
- Jae Hyung Choi
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Joo Young Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; (J.Y.K.); (K.R.L.); (G.Y.L.); (M.H.); (H.W.H.); (M.K.K.)
| | - Ki Rim Lee
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; (J.Y.K.); (K.R.L.); (G.Y.L.); (M.H.); (H.W.H.); (M.K.K.)
| | - Gyeong Yun Lee
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; (J.Y.K.); (K.R.L.); (G.Y.L.); (M.H.); (H.W.H.); (M.K.K.)
| | - Mineui Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; (J.Y.K.); (K.R.L.); (G.Y.L.); (M.H.); (H.W.H.); (M.K.K.)
| | - Hye Won Hwang
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; (J.Y.K.); (K.R.L.); (G.Y.L.); (M.H.); (H.W.H.); (M.K.K.)
| | - Moo Yeol Lee
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Mi Kyung Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; (J.Y.K.); (K.R.L.); (G.Y.L.); (M.H.); (H.W.H.); (M.K.K.)
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; (J.Y.K.); (K.R.L.); (G.Y.L.); (M.H.); (H.W.H.); (M.K.K.)
| |
Collapse
|
4
|
Tamatam R, Mohammed A. Small molecule anticancer drugs approved during 2021-2022: Synthesis and clinical applications. Eur J Med Chem 2024; 272:116441. [PMID: 38759455 DOI: 10.1016/j.ejmech.2024.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Drugs have structural homology across similar biological targets. Small molecule drugs have the efficacy to target specific molecular targets within the cancer cells with enhanced cell membrane permeability, oral administration, selectivity, and specific affinity. The objective of this review is to highlight the clinical importance and synthetic routes of new small molecule oncology drugs approved by the FDA during the period 2021-2022. These marketed drugs are listed based on the month and year of approval in chronological order. We believed that an in-depth insight into the synthetic approaches for the construction of these chemical entities would enhance the ability to develop new drugs more efficiently.
Collapse
Affiliation(s)
- Rekha Tamatam
- Department of Agriculture Science, Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia.
| |
Collapse
|
5
|
Pavlidis ET, Galanis IN, Pavlidis TE. New trends in diagnosis and management of gallbladder carcinoma. World J Gastrointest Oncol 2024; 16:13-29. [PMID: 38292841 PMCID: PMC10824116 DOI: 10.4251/wjgo.v16.i1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Gallbladder (GB) carcinoma, although relatively rare, is the most common biliary tree cholangiocarcinoma with aggressiveness and poor prognosis. It is closely associated with cholelithiasis and long-standing large (> 3 cm) gallstones in up to 90% of cases. The other main predisposing factors for GB carcinoma include molecular factors such as mutated genes, GB wall calcification (porcelain) or mainly mucosal microcalcifications, and GB polyps ≥ 1 cm in size. Diagnosis is made by ultrasound, computed tomography (CT), and, more precisely, magnetic resonance imaging (MRI). Preoperative staging is of great importance in decision-making regarding therapeutic management. Preoperative staging is based on MRI findings, the leading technique for liver metastasis imaging, enhanced three-phase CT angiography, or magnetic resonance angiography for major vessel assessment. It is also necessary to use positron emission tomography (PET)-CT or 18F-FDG PET-MRI to more accurately detect metastases and any other occult deposits with active metabolic uptake. Staging laparoscopy may detect dissemination not otherwise found in 20%-28.6% of cases. Multimodality treatment is needed, including surgical resection, targeted therapy by biological agents according to molecular testing gene mapping, chemotherapy, radiation therapy, and immunotherapy. It is of great importance to understand the updated guidelines and current treatment options. The extent of surgical intervention depends on the disease stage, ranging from simple cholecystectomy (T1a) to extended resections and including extended cholecystectomy (T1b), with wide lymph node resection in every case or IV-V segmentectomy (T2), hepatic trisegmentectomy or major hepatectomy accompanied by hepaticojejunostomy Roux-Y, and adjacent organ resection if necessary (T3). Laparoscopic or robotic surgery shows fewer postoperative complications and equivalent oncological outcomes when compared to open surgery, but much attention must be paid to avoiding injuries. In addition to surgery, novel targeted treatment along with immunotherapy and recent improvements in radiotherapy and chemotherapy (neoadjuvant-adjuvant capecitabine, cisplatin, gemcitabine) have yielded promising results even in inoperable cases calling for palliation (T4). Thus, individualized treatment must be applied.
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Ioannis N Galanis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Theodoros E Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
6
|
Chu Z, Zhang B, Zhou X, Yuan H, Gao C, Liu L, Xiao Y, Zhang J, Hong J, Liang J, Chen D, Yao N. A DNA/RNA heteroduplex oligonucleotide coupling asparagine depletion restricts FGFR2 fusion-driven intrahepatic cholangiocarcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102047. [PMID: 37869260 PMCID: PMC10589379 DOI: 10.1016/j.omtn.2023.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
Pemigatinib, a pan-FGFR inhibitor, is approved to treat intrahepatic cholangiocarcinoma (ICC) harboring FGFR2 fusion mutations. Improving its targeting of FGFR2 fusions remains an unmet clinical need due to its pan selectivity and resistance. Here, we report a cholesterol-conjugated DNA/RNA heteroduplex oligonucleotide targeting the chimeric site in FGFR2-AHCYL1 (F-A Cho-HDO) that accumulates in ICC through endocytosis of low-density lipoprotein receptor (LDLR), which is highly expressed in both human and murine ICC. F-A Cho-HDO was determined to be a highly specific, sustainable, and well-tolerated agent for inhibiting ICC progression through posttranscriptional suppression of F-A in ICC patient-derived xenograft mouse models. Moreover, we identified an EGFR-orchestrated bypass signaling axis that partially offset the efficacy of F-A Cho-HDO. Mechanistically, EGFR-induced STAT1 upregulation promoted asparagine (Asn) synthesis through direct transcriptional upregulation of asparagine synthetase (ASNS) and dictated cell survival by preventing p53-dependent cell cycle arrest. Asn restriction with ASNase or ASNS inhibitors reduced the intracellular Asn, thereby reactivating p53 and sensitizing ICC to F-A Cho-HDO. Our findings highlight the application of genetic engineering therapies in ICC harboring FGFR2 fusions and reveal an axis of adaptation to FGFR2 inhibition that presents a rationale for the clinical evaluation of a strategy combining FGFR2 inhibitors with Asn depletion.
Collapse
Affiliation(s)
- Zhenzhen Chu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Baohuan Zhang
- Morphology Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xuxuan Zhou
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516001, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lihao Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Xiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jichun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Nan Yao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
7
|
Kaur A, Mandal D. Computational identification and exploration of novel FGFR tyrosine kinase inhibitors for the treatment of cholangiocarcinoma. J Biomol Struct Dyn 2023; 42:13153-13164. [PMID: 37897189 DOI: 10.1080/07391102.2023.2274975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Tyrosine kinase inhibitors are a specific drug class revolutionizing cancer treatment. FGFR (Fibroblast Growth Factor Receptor) is a member of the receptor tyrosine kinase family that has been involved in various alterations which have been increasingly recognized as critical molecular drivers in cholangiocarcinoma, a malignant tumor originating from bile duct epithelial cells. The paper focuses on stepwise computational investigations for the discovery of novel inhibitors of FGFR using pharmacophore modeling, virtual screening, docking, ADMET analysis, molecular dynamics, and knowledge-based structure-activity relationship. To begin with, we have considered a library of 120314868 compounds from the ZINC 15 database through pharmacophore modeling, which was narrowed down to 110 having binding affinity >-8.0 kcal mol-1. The 110 compounds were analyzed using virtual screening and compared with the FDA-approved drug pemigatinib, which provided the 34 hits with binding affinities >-6.5 kcal mol-1. Finally, the top 4 hits were considered for docking, and ADMET property analysis for drug-likeness. MD and MM-GBSA analysis were performed to predict the binding free energy of these chemicals and determine their stability. To gain insight into the structure and binding interactions of these compounds, knowledge-based SAR analyses were performed using their electrostatic potential maps computed with DFT. Several techniques were employed to build improved inhibitors based on these SAR, and they were then analyzed utilizing ADMET, MD studies, and MM-GBSA analyses. Finally, the results suggested that the identified four compounds and developed inhibitors from this current work can be employed effectively as prospective FGFR inhibitors for treating Cholangiocarcinoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amanpreet Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
8
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
9
|
Amadeo E, Rossari F, Vitiello F, Burgio V, Persano M, Cascinu S, Casadei-Gardini A, Rimini M. Past, present, and future of FGFR inhibitors in cholangiocarcinoma: from biological mechanisms to clinical applications. Expert Rev Clin Pharmacol 2023; 16:631-642. [PMID: 37387533 DOI: 10.1080/17512433.2023.2232302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Biliary tract carcinoma (BTC) is a heterogenous group of aggressive hepatic malignancies, second to hepatocellular carcinoma per prevalence. Despite clinical research advancement, the overall 5-year survival rate is just above 2%. With the identification of somatic core mutations in half of cholangiocarcinomas. In the intrahepatic subtype (iCCA), it is possible to target mutational pathways of pharmacological interest. AREAS COVERED Major attention has been drawn to fibroblast growth factor receptor (FGFR), especially the type 2 (FGFR2), found mutated in 10-15% of iCCAs. FGFR2 fusions became the target of novel tyrosine-kinase inhibitors investigated in clinical studies, showing promising results so as to gain regulatory approval by American and European committees in recent years. Such drugs demonstrated a better impact on the quality of life compared to standard chemotherapy; however, side effects including hyperphosphatemia, gastrointestinal, eye, and nail disorders are common although mostly manageable. EXPERT OPINION As FGFR inhibitors may soon become the new alternative to standard chemotherapy in FGFR-mutated cholangiocarcinoma, accurate molecular testing and monitoring of acquired resistance mechanisms will be essential. The possible application of FGFR inhibitors in first-line treatment, as well as in combination with current standard treatments, remains the next step to be taken.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Valentina Burgio
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Stefano Cascinu
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
10
|
Uson Junior PLS, Araujo RLC. Immunotherapy in biliary tract cancers: Current evidence and future perspectives. World J Gastrointest Oncol 2022; 14:1446-1455. [PMID: 36160750 PMCID: PMC9412936 DOI: 10.4251/wjgo.v14.i8.1446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/30/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Bile duct tumors are comprised of tumors that originate from both intrahepatic and extrahepatic bile ducts and gallbladder tumors. These are aggressive tumors and chemotherapy is still the main treatment for advanced-stage disease and most of these cases have a poor overall survival. Strategies are aimed at treatments with better outcomes and less toxicity which makes immunotherapy an area of significant importance. Recent Food and Drug Administration approvals of immune checkpoint inhibitors (ICI) for agnostic tumors based on biomarkers such as microsatellite instability-high and tumor mutation burden-high are important steps in the treatment of patients with advanced bile duct tumors. Despite limited responses with isolated checkpoint inhibitors in later lines of systemic treatment in advanced disease, drug combination strategies have been demonstrating encouraging results to enhance ICI efficacy.
Collapse
Affiliation(s)
| | - Raphael LC Araujo
- Department of Surgery, Universidade Federal de São Paulo, São Paulo 04039-002, Brazil
- Department of Oncology, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| |
Collapse
|