1
|
Li M, Xu T, Yang R, Wang X, Zhang J, Wu S. Exploring MPC1 as a potential ferroptosis-linked biomarker in the cervical cancer tumor microenvironment: a comprehensive analysis. BMC Cancer 2024; 24:1258. [PMID: 39390460 PMCID: PMC11465577 DOI: 10.1186/s12885-024-12622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The increasing problems of drug and radiotherapy resistance in cervical cancer underscores the need for novel methods for its management. Reports indicate that the expression of MPC1 may be associated with the tumor microenvironment and the occurrence of ferroptosis in cervical cancer. The objective of this study was to visually illustrate the prognostic significance and immunological characterization of MPC1 in cervical cancer. METHODS The expression profile and prognostic significance of MPC1 were analyzed using various databases, including UALCAN, TIMER2, GEPIA2, and Kaplan-Meier Plotter. TISIDB, TIMER2, and immunohistochemical analysis were used to investigate the correlation between MPC1 expression and immune infiltration. GO enrichment analysis, KEGG analysis, Reactome analysis, ConsensusPathDB, and GeneMANIA were used to visualize the functional enrichment of MPC1 and signaling pathways related to MPC1. The correlation analysis was carried out to examine the relationship between MPC1 and Ferroptosis gene in TIMER 2.0, ncFO, GEPIA Database and Kaplan-Meier Plotter. RESULTS We demonstrated that the expression levels of MPC1 in cervical cancer tissues were lower than those in normal cervical tissues. Kaplan-Meier survival curves showed shorter overall survival in cervical cancer patients with low levels of MPC1 expression. The expression of MPC1 was related to the infiltrating levels of tumor-infiltrating immune cells in cervical cancer. Moreover, MPC1 expression was associated with the iron-mediated cell death pathway, and several important ferroptosis genes were upregulated in cervical cancer cells. Furthermore, after knocking down MPC1 in HeLa cells, the expression of these genes decreased. CONCLUSION These findings indicate that MPC1 functions as a prognostic indicator and plays a role in the regulation of the ferroptosis pathway in cervical cancer.
Collapse
Affiliation(s)
- Miao Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rui Yang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xiaoyun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Tang Z, Li J, Li C. Post-Transcriptional Regulator RBM47 Stabilizes FBXO2 mRNA to Advance Osteoarthritis Development: WGCNA Analysis and Experimental Validation. Biochem Genet 2024; 62:3092-3110. [PMID: 38070024 DOI: 10.1007/s10528-023-10590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 07/31/2024]
Abstract
Osteoarthritis (OA) is a common chronic joint degenerative disease and a major cause of disability in the elderly. However, the current intervention strategies cannot effectively improve OA, and the pathogenesis of OA remains elusive. The present study identified RNA binding motif protein 47 (RBM47) as an upstream modulator of key dysregulation gene co-expression module based on weighted gene co-expression network analysis (WGCNA) analysis and least absolute shrinkage and selection operator (Lasso) modeling. Subsequently, data from real-time quantitative PCR and western blot analysis revealed that RBM47 was upregulated in OA models in vivo and in vitro compared with normal controls. Functional analysis results from the MTT assay, flow cytometry, evaluation of LDH activities and inflammatory mediators, and western blot analysis of extracellular matrix (ECM) proteins, showed that RBM47 knockdown significantly alleviated inflammation, apoptosis, and ECM degradation in interleukin 1β (IL-1β)-treated chondrocytes. Mechanistically, RBM47 bound to F box only protein 2 (FBXO2) and stabilized FBXO2 messenger RNA (mRNA) to promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in chondrocytes. Results from the recovery assay showed that the re-activation of STAT3 signaling by overexpressing FBXO2 or STAT3 counteracted the alleviating effect of RBM47 downregulation on IL-1β-induced inflammation, apoptosis, and ECM degradation. Altogether, our findings illustrate that RBM47 stabilizes FBXO2 mRNA to advance OA development by activating STAT3 signaling, which enhances our understanding of the molecular regulatory mechanisms underlying the development of OA.
Collapse
Affiliation(s)
- Zhifang Tang
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Jingyuan Li
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Chuan Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, No.212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
3
|
Wang Y, Zhang J, Yang Y, Chen J, Tan F, Zheng J. Single-cell analysis revealed that MTIF2 could promote hepatocellular carcinoma progression through modulating the ROS pathway. Heliyon 2024; 10:e34438. [PMID: 39082024 PMCID: PMC11284438 DOI: 10.1016/j.heliyon.2024.e34438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Aims To analyze the expression of mitochondrial translational initiation factor 2 (MTIF2) and the biological functions of the gene in hepatocellular carcinoma (HCC). Background The treatment of HCC treatment and its prognostic prediction are limited by a lack of comprehensive understanding of the molecular mechanisms in HCC. OBJECTIVE: To determine the cells expressing MTIF2 in HCC and the function of the MTIF2+ cell subpopulation. Methods Gene expression analysis on TIMER 2.0, UALCAN, and GEPIA databases was performed to measure the expression of MTIF2 in HCC tissues. Cell clustering subgroups and annotation were conducted based on the single-cell sequencing data of HCC and paracancerous tissues in the Gene Expression Omnibus (GEO) database. MTIF2 expression in different cell types was analyzed. Further, biological pathways potentially regulated by MTIF2 in each cell type were identified. In addition, protein-protein interaction (PPI) networks of MTIF2 with genes in its regulated biological pathways were developed. The cell function assay was performed to verify the effects of superoxide dismutase-2 (SOD2) and MTIF2 on HCC cells. Finally, we screened virtual drugs targeting MTIF2 and SOD2 employing database screening, molecular docking and molecular dynamics. Results MTIF2 showed a remarkably high expression in HCC tissues. We identified a total of 10 cell types between HCC tissues and paracancerous tissues. MTIF2 expression was upregulated in epithelial cells, macrophages, and hepatocytes. More importantly, high-expressed MTIF2 in HCC tissues was mainly derived from epithelial cells and hepatocytes, in which the reactive oxygen species (ROS) pathway was significantly positively correlated with MTIF2. In the PPI network, there was a unique interaction pair between SOD2 and MTIF2 in the ROS pathway. Cell function experiments showed that overexpression of MTIF2 enhanced the proliferative and invasive capacities of HCC, which could synergize with SOD2 to co-promote the development of HCC. Finally, molecular dynamics simulations showed that DB00183 maintained a high structural stability with MTIF2 and SOD2 proteins during the simulation process. Conclusion Our study confirmed that the high-expressed MTIF2 in HCC tissues was derived from epithelial cells and hepatocytes. MTIF2 might act on SOD2 to regulate the ROS pathway, thereby affective the progression of HCC.
Collapse
Affiliation(s)
- Yu Wang
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jingqiu Zhang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jinhao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Fengwu Tan
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| |
Collapse
|
4
|
Yuan Y, Li Y, Deng Q, Yang J, Zhang J. Selenadiazole-Induced Hela Cell Apoptosis through the Redox Oxygen Species-Mediated JAK2/STAT3 Signaling Pathway. ACS OMEGA 2024; 9:20919-20926. [PMID: 38764630 PMCID: PMC11097172 DOI: 10.1021/acsomega.3c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Cervical cancer is a significant global health concern, and novel therapeutic strategies are continually being sought to combat this disease. In recent years, selenadiazole found latent therapeutic effects on tumors. Herein, investigating the mechanism of selenadiazole in Hela cells holds promise for advancing cervical cancer treatment. Hela cells, a widely utilized model for studying cervical cancer, were treated with selenadiazole, and cell viability was assessed by using the cell counting kit-8 (CCK-8) assay. Changes in mitochondrial membrane potential were evaluated using JC-1 staining, while apoptosis induction was examined using AnnexinV-PI double staining. Intracellular ROS levels were measured by using specific fluorescent probes and the ELIASA system. Additionally, Western blotting was performed to assess the activation of related proteins in response to selenadiazole. Data analysis was performed using GraphPad. Exposure to selenadiazole led to a substantial increase in intracellular redox oxygen species (ROS) levels in Hela cells. Importantly, the induction of ROS by selenadiazole was associated with a marked increase in mitochondrial apoptosis, as evidenced by elevated levels of AnnexinV-positive cells, the JC-1 monomer, caspase-9, and Bcl-2. Furthermore, activation of the JAK2/STAT3 pathway was observed following the selenadiazole treatment. Selenadiazole holds the potential to suppress tumor growth in cervical cancer cells by increasing reactive oxygen species (ROS) levels and inducing mitochondrial apoptosis via the JAK2/STAT3 pathway. This study offers valuable insights into potential cervical cancer therapies and underscores the need for further research into the specific mechanisms of selenadiazole.
Collapse
Affiliation(s)
- Yi Yuan
- Center
Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Center
Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Qinglin Deng
- Nanfang
Hospital, Southern Medical University, Guangzhou 510120, China
| | - Jinying Yang
- Department
of Obstetrics, Longgang District Maternity
and Child Healthcare Hospital of Shenzhen City (Longgang Maternity
and Child Clinical Institute of Shantou University Medical College), Shenzhen 510080, China
| | - Jing Zhang
- Department
of Interventional Radiology, Guangdong Provincial People’s
Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
5
|
Xiao R, Lin M, Liu M, Ma Q. Single cells and TRUST4 reveal immunological features of the HFRS transcriptome. Front Med (Lausanne) 2024; 11:1403335. [PMID: 38803345 PMCID: PMC11128564 DOI: 10.3389/fmed.2024.1403335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
The etiology of hemorrhagic fever with renal syndrome (HFRS) is significantly impacted by a variety of immune cells. Nevertheless, the existing techniques for sequencing peripheral blood T cell receptor (TCR) or B cell receptor (BCR) libraries in HFRS are constrained by both limitations and high costs. In this investigation, we utilized the computational tool TRUST4 to generate TCR and BCR libraries utilizing comprehensive RNA-seq data from peripheral blood specimens of HFRS patients. This facilitated the examination of clonality and diversity within immune libraries linked to the condition. Despite previous research on immune cell function, the underlying mechanisms remain intricate, and differential gene expression across immune cell types and cell-to-cell interactions within immune cell clusters have not been thoroughly explored. To address this gap, we performed clustering analysis on 11 cell subsets derived from raw single-cell RNA-seq data, elucidating characteristic changes in cell subset proportions under disease conditions. Additionally, we utilized CellChat, a tool for cell-cell communication analysis, to investigate the impact of MIF family, CD70 family, and GALECTIN family cytokines-known to be involved in cell communication-on immune cell subsets. Furthermore, hdWGCNA analysis identified core genes implicated in HFRS pathogenesis within T cells and B cells. Trajectory analysis revealed that most cell subsets were in a developmental stage, with high expression of transcription factors such as NFKB and JUN in Effector CD8+ T cells, as well as in Naive CD4+ T cells and Naive B cells. Our findings provide a comprehensive understanding of the dynamic changes in immune cells during HFRS pathogenesis, identifying specific V genes and J genes in TCR and BCR that contribute to advancing our knowledge of HFRS. These insights offer potential implications for the diagnosis and treatment of this autoimmune disease.
Collapse
Affiliation(s)
| | | | | | - Qingqing Ma
- The Central Laboratory of Guizhou Aerospace Hospital, Zunyi, China
| |
Collapse
|
6
|
Wang Y, Xu M, Yao Y, Li Y, Zhang S, Fu Y, Wang X. Extracellular cancer‑associated fibroblasts: A novel subgroup in the cervical cancer microenvironment that exhibits tumor‑promoting roles and prognosis biomarker functions. Oncol Lett 2024; 27:167. [PMID: 38449793 PMCID: PMC10915806 DOI: 10.3892/ol.2024.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 03/08/2024] Open
Abstract
Tumor invasion and metastasis are the processes that primarily cause adverse outcomes in patients with cervical cancer. Cancer-associated fibroblasts (CAFs), which participate in cancer progression and metastasis, are novel targets for the treatment of tumors. The present study aimed to assess the heterogeneity of CAFs in the cervical cancer microenvironment through single-cell RNA sequencing. After collecting five cervical cancer samples and obtaining the CAF-associated gene sets, the CAFs in the cervical cancer microenvironment were divided into myofibroblastic CAFs and extracellular (ec)CAFs. The ecCAFs appeared with more robust pro-tumorigenic effects than myCAFs according to enrichment analysis. Subsequently, through combining the ecCAF hub genes and bulk gene expression data for cervical cancer obtained from The Cancer Genome Atlas and Gene Ontology databases, univariate Cox regression and least absolute shrinkage and selection operator analyses were performed to establish a CAF-associated risk signature for patients with cancer. The established risk signature demonstrated a stable and strong prognostic capability in both the training and validation cohorts. Subsequently, the association between the risk signature and clinical data was evaluated, and a nomogram to facilitate clinical application was established. The risk score was demonstrated to be associated with both the tumor immune microenvironment and the therapeutic responses. Moreover, the signature also has predictive value for the prognosis of head and neck squamous cell carcinoma, and bladder urothelial carcinoma, which were also associated with human papillomavirus infection. In conclusion, the present study assessed the heterogeneity of CAFs in the cervical cancer microenvironment, and a subgroup of CAFs that may be closely associated with tumor progression was defined. Moreover, a signature based on the hub genes of ecCAFs was shown to have biomarker functionality in terms of predicting survival rates, and therefore this CAF subgroup may become a therapeutic target for cervical cancer in the future.
Collapse
Affiliation(s)
- Yuehan Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Mingxia Xu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yeli Yao
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Songfa Zhang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yunfeng Fu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinyu Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
7
|
Feng S, Wang Z, Zhang H, Hou B, Xu Y, Hao S, Lu Y. Identification of prognostic biomarkers for cervical cancer based on programmed cell death-related genes and assessment of their immune profile and response to drug therapy. J Gene Med 2024; 26:e3643. [PMID: 38044747 DOI: 10.1002/jgm.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Programmed cell death (PCD) has been widely investigated in various human diseases. The present study aimed to identify a novel PCD-related genetic signature in cervical squamous cell carcinoma (CESC) to provide clues for survival, immunotherapy and drug sensitization prediction. METHODS Single-sample gene set enrichment analysis (ssGSEA) was used to quantify the PCD score and assess the distribution of PCD in clinicopathological characteristics in The Cancer Genome Atlas (TCGA)-CESC samples. Then, the ConsensusClusterPlus method was used to identify molecular subtypes in the TCGA-CESC database. Genomic mutation analysis, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment, as well as tumor microenvironment (TME) infiltration analysis, were performed for each molecular subtype group. Finally, a prognostic model by Uni-Cox and least absolute shrinkage and selection operator-Cox analysis was established based on differentially expressed genes from molecular subtypes. ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) and ssGSEA were performed to assess the correlation between the model and TME. Drug sensitization prediction was carried out with the oncoPredict package. RESULTS Preliminary analysis indicated that PCD had a potential association clinical characteristics of the TCGA-CESC cohort, and PCD-related genes mutated in 289 (70.59%) CESC patients. Next, four groups of CESC molecular typing were clustered based on 63 significantly prognostic PCD-related genes. Among four subtypes, C1 group displayed the worst prognosis combined with over expressed PCD genes and enriched cell cycle-related pathways. C4 group exhibited the best prognosis accompanied with high degree of immune infiltration. Finally, a five-gene (SERPINE1, TNF, CA9, CX3CL1 and JAK3) prognostic model was constructed. Patients in the high-risk group displayed unfavorable survival. Immune infiltration analysis found that the low-risk group had significantly higher levels of immune cell infiltration such as T cells, Macrophages_M1, relative to the high-risk group, and were significantly enriched in apoptosis-associated pathways, which predicted a higher level of immunity. Drug sensitivity correlation analysis revealed that the high-risk group was resistant to conventional chemotherapeutic drugs and sensitive to the Food and Drug Administration-approved drugs BI.2536_1086 and SCH772984_1564. CONCLUSIONS In the present study, we first found that PCD-related gene expression patterns were correlated with clinical features of CESC patients, which predicts the feasibility of subsequent mining of prognostic features based on these genes. The five-PCD-associated-gene prognostic model showed good assessment ability in predicting patient prognosis, immune response and drug-sensitive response, and provided guidance for the elucidation of the mechanism by which PCD affects CESC, as well as for the clinical targeting of drugs.
Collapse
Affiliation(s)
- Sijie Feng
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, Jiaozuo, China
| | - Zhenhui Wang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Huizhen Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Baohua Hou
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Yunkun Lu
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, Jiaozuo, China
- School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, Lin J, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 2024; 31:9-17. [PMID: 38102462 DOI: 10.1038/s41417-023-00682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zuo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shuichao Gao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hao Tian
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Wang X, Jin Y, Xu L, Tao S, Wu Y, Ao C. Integrating Single-Cell RNA-Seq and Bulk RNA-Seq to Construct a Novel γδT Cell-Related Prognostic Signature for Human Papillomavirus-Infected Cervical Cancer. Cancer Control 2024; 31:10732748241274228. [PMID: 39206965 PMCID: PMC11363054 DOI: 10.1177/10732748241274228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Gamma delta (γδ) T cells play dual roles in human tumors, with both antitumor and tumor-promoting functions. However, the role of γδT cells in HPV-infected cervical cancer is still undetermined. Therefore, we aimed to identify γδT cell-related prognostic signatures in the cervical tumor microenvironment. METHODS Single-cell RNA-sequencing (scRNA-seq) data, bulk RNA-seq data, and corresponding clinical information of cervical cancer patients were obtained from the TCGA and GEO databases. The Seurat R package was used for single-cell analysis, and machine learning algorithms were used to screen and construct a γδT cell-related prognostic signature. Real-time quantitative PCR (RT-qPCR) was performed to detect the expression of prognostic signature genes. RESULTS Single-cell analysis indicated distinct populations of γδT cells between HPV-positive (HPV+) and HPV-negative (HPV-) cervical cancers. A trajectory analysis indicated γδT cells clustered into differential clusters with the pseudotime. High-dimensional Weighted Gene Co-expression Network Analysis (hdWGCNA) identified the key γδT cell-related gene modules. Bulk RNA-seq analysis also demonstrated the heterogeneity of immune cells, and the γδT-score was positively associated with inflammatory response and negatively associated with MYC stemness. Eight γδT cell-related hub genes (GTRGs), including ITGAE, IKZF3, LSP1, NEDD9, CLEC2D, RBPJ, TRBC2, and OXNAD1, were selected and validated as a prognostic signature for cervical cancer. CONCLUSION We identified γδT cell-related prognostic signatures that can be considered independent factors for survival prediction in cervical cancer.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Yichao Jin
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Liangheng Xu
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Sizhen Tao
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Yifei Wu
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Chunping Ao
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| |
Collapse
|
10
|
Shen K, Chen B, Gao W. Integrated single-cell RNA sequencing analysis reveals a mesenchymal stem cell-associated signature for estimating prognosis and drug sensitivity in gastric cancer. J Cancer Res Clin Oncol 2023; 149:11829-11847. [PMID: 37410142 DOI: 10.1007/s00432-023-05058-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play an important role in regulating all stages of the immune response, angiogenesis, and transformation of matrix components in the tumor microenvironment. The aim of this study was to identify the prognostic value of MSC-related signatures in patients with gastric cancer (GC). METHODS MSC marker genes were identified by analyzing single-cell RNA sequencing (scRNA-seq) data for GC from the Gene Expression Omnibus (GEO) database. Using bulk sequencing data from the Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD), as a training cohort, and data from GEO, as a validation cohort, we developed a risk model consisting of MSC prognostic signature genes, and classified GC patients into high- and low-MSC risk subgroups. Multifactorial Cox regression was used to evaluate whether MSC prognostic signature was an independent prognostic factor. An MSC nomogram was constructed combining clinical information and risk grouping. Subsequently, we evaluated the effect of MSC prognostic signature on immune cell infiltration, antitumor drugs and immune checkpoints and verified the expression of MSC prognostic signature by in vitro cellular assays. RESULTS In this study, 174 MSC marker genes were identified by analyzing scRNA-seq data. We identified seven genes (POSTN, PLOD2, ITGAV, MMP11, SDC2, MARCKS, ANXA5) to construct MSC prognostic signature. MSC prognostic signature was an independent risk factor in the TCGA and GEO cohorts. GC patients in the high-MSC risk group had worse prognoses. In addition, the MSC nomogram has a high clinical application value. Notably, the MSC signature can induce the development of a poor immune microenvironment. GC patients in the high MSC-risk group were more sensitive to anticancer drugs and tended to have higher levels of immune checkpoint markers. In qRT-PCR assays, the MSC signature was more highly expressed in GC cell lines. CONCLUSIONS The MSC marker gene-based risk signature developed in this study can not only be used to predict the prognosis of GC patients, but also has the potential to reflect the efficacy of antitumor therapies.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
11
|
Gameiro SF, Flondra KM. Human Papillomavirus-Associated Tumor Extracellular Vesicles in HPV + Tumor Microenvironments. J Clin Med 2023; 12:5668. [PMID: 37685735 PMCID: PMC10488665 DOI: 10.3390/jcm12175668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Most infections with human papillomaviruses (HPVs) are self-resolving and asymptomatic. However, some infections can lead to the development of cancer at different mucosal sites, such as the cervix and the head and neck. Head and neck cancers (HNCs) are dichotomized into HPV-positive (HPV+) or HPV-negative (HPV-) based on their respective etiologies. Notably, the tumor microenvironment (TME) of the HPV+ subtype has an immune landscape characterized with increased immune infiltration, higher levels of T cell activation, and higher levels of immunoregulatory stimuli compared to their HPV- counterparts. Both enveloped and nonenveloped viruses hijack the extracellular vesicle (EV) biogenesis pathway to deploy a "trojan horse" strategy with a pseudoviral envelope to enhance infectivity and evade inflammation. EVs derived from HPV-infected tumor cells could allow for the stealth transport of viral cargo to neighboring nonmalignant cellular populations or infiltrating immune cells within the TME. Furthermore, viral cargo or altered cellular cargo from HPV-associated tumor EVs (HPV-TEVs) could alter the functional state or biological responses of the recipient cellular populations, which could shape the distinctive HPV+ TME. This review will cover the impact of EVs released from HPV-infected cells on HPV-induced carcinogenesis, their role in shaping the distinctive HPV+ tumor microenvironment, and current efforts to develop a painless EV-based liquid biopsy for HPV+ cancers.
Collapse
Affiliation(s)
- Steven F. Gameiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kaitlyn M. Flondra
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, London, ON N6A 5C1, Canada;
| |
Collapse
|
12
|
Li Y, Wang C, Ma A, Rani AQ, Luo M, Li J, Liu X, Ma Q. Identification of HPV oncogene and host cell differentiation associated cellular heterogeneity in cervical cancer via single-cell transcriptomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552878. [PMID: 37645794 PMCID: PMC10462038 DOI: 10.1101/2023.08.10.552878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Human Papillomaviruses (HPVs) are associated with around 5-10% of human cancer, notably nearly 99% of cervical cancer. The mechanisms HPV interacts with stratified epithelium (differentiated layers) during the viral life cycle, and oncogenesis remain unclear. In this study, we used single-cell transcriptome analysis to study viral gene and host cell differentiation-associated heterogeneity of HPV-positive cervical cancer tissue. We examined the HPV16 genes - E1, E6, and E7, and found they expressed differently across nine epithelial clusters. We found that three epithelial clusters had the highest proportion of HPV-positive cells (33.6%, 37.5%, and 32.4%, respectively), while two exhibited the lowest proportions (7.21% and 5.63%, respectively). Notably, the cluster with the most HPV-positive cells deviated significantly from normal epithelial layer markers, exhibiting functional heterogeneity and altered epithelial structuring, indicating that significant molecular heterogeneity existed in cancer tissues and that these cells exhibited unique/different gene signatures compared with normal epithelial cells. These HPV-positive cells, compared to HPV-negative, showed different gene expressions related to the extracellular matrix, cell adhesion, proliferation, and apoptosis. Further, the viral oncogenes E6 and E7 appeared to modify epithelial function via distinct pathways, thus contributing to cervical cancer progression. We investigated the HPV and host transcripts from a novel viewpoint focusing on layer heterogeneity. Our results indicated varied HPV expression across epithelial clusters and epithelial heterogeneity associated with viral oncogenes, contributing biological insights to this critical field of study.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Abdul Qawee Rani
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Mingjue Luo
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Jenny Li
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Liu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- The Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
13
|
Li Y, Wang C, Ma A, Rani AQ, Luo M, Li J, Liu X, Ma Q. Identification of HPV oncogene and host cell differentiation associated cellular heterogeneity in cervical cancer via single-cell transcriptomic analysis. J Med Virol 2023; 95:e29060. [PMID: 37638381 DOI: 10.1002/jmv.29060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Human Papillomaviruses (HPVs) are associated with around 5%-10% of human cancer, notably nearly 99% of cervical cancer. The mechanisms HPV interacts with stratified epithelium (differentiated layers) during the viral life cycle, and oncogenesis remain unclear. In this study, we used single-cell transcriptome analysis to study viral gene and host cell differentiation-associated heterogeneity of HPV-positive cervical cancer tissue. We examined the HPV16 genes-E1, E6, and E7, and found they expressed differently across nine epithelial clusters. We found that three epithelial clusters had the highest proportion of HPV-positive cells (33.6%, 37.5%, and 32.4%, respectively), while two exhibited the lowest proportions (7.21% and 5.63%, respectively). Notably, the cluster with the most HPV-positive cells deviated significantly from normal epithelial layer markers, exhibiting functional heterogeneity and altered epithelial structuring, indicating that significant molecular heterogeneity existed in cancer tissues and that these cells exhibited unique/different gene signatures compared with normal epithelial cells. These HPV-positive cells, compared to HPV-negative, showed different gene expressions related to the extracellular matrix, cell adhesion, proliferation, and apoptosis. Further, the viral oncogenes E6 and E7 appeared to modify epithelial function via distinct pathways, thus contributing to cervical cancer progression. We investigated the HPV and host transcripts from a novel viewpoint focusing on layer heterogeneity. Our results indicated varied HPV expression across epithelial clusters and epithelial heterogeneity associated with viral oncogenes, contributing biological insights to this critical field of study.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Abdul Qawee Rani
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Mingjue Luo
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Jenny Li
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- The Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Wei E, Li J, Anand P, French LE, Wattad A, Clanner-Engelshofen B, Reinholz M. "From molecular to clinic": The pivotal role of CDC42 in pathophysiology of human papilloma virus related cancers and a correlated sensitivity of afatinib. Front Immunol 2023; 14:1118458. [PMID: 36936942 PMCID: PMC10014535 DOI: 10.3389/fimmu.2023.1118458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Human papilloma virus (HPV)-related cancers are global health challenge. Insufficient comprehension of these cancers has impeded the development of novel therapeutic interventions. Bioinformatics empowered us to investigate these cancers from new entry points. Methods DNA methylation data of cervical squamous cell carcinoma (CESC) and anal squamous cell carcinoma (ASCC) were analyzed to identify the significantly altered pathways. Through analyses integrated with RNA sequencing data of genes in these pathways, genes with strongest correlation to the TNM staging of CESC was identified and their correlations with overall survival in patients were assessed. To find a potential promising drug, correlation analysis of gene expression levels and compound sensitivity was performed. In vitro experiments were conducted to validate these findings. We further performed molecular docking experiments to explain our findings. Results Significantly altered pathways included immune, HPV infection, oxidative stress, ferroptosis and necroptosis. 10 hub genes in these pathways (PSMD11, RB1, SAE1, TAF15, TFDP1, CORO1C, JOSD1, CDC42, KPNA2 and NUP62) were identified, in which only CDC42 high expression was statistically significantly correlated with overall survival (Hazard Ratio: 1.6, P = 0.045). Afatinib was then screened out to be tested. In vitro experiments exhibited that the expression level of CDC42 was upregulated in HaCaT/A431 cells transfected with HPV E6 and E7, and the inhibitory effect of afatinib on proliferation was enhanced after transfection. CDC42-GTPase-effector interface-EGFR-afatinib was found to be a stable complex with a highest ZDOCK score of 1264.017. Conclusion We identified CDC42 as a pivotal gene in the pathophysiology of HPV-related cancers. The upregulation of CDC42 could be a signal for afatinib treatment and the mechanism in which may be an increased affinity of EGFR to afatinib, inferred from a high stability in the quaternary complex of CDC42-GTPase-effector interface-EGFR-afatinib.
Collapse
Affiliation(s)
- Erdong Wei
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilians University of Munich (LMU) Munich, Munich, Germany
| | - Jiahua Li
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilians University of Munich (LMU) Munich, Munich, Germany
- *Correspondence: Jiahua Li,
| | - Philipp Anand
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilians University of Munich (LMU) Munich, Munich, Germany
| | - Lars E. French
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilians University of Munich (LMU) Munich, Munich, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
| | - Adam Wattad
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilians University of Munich (LMU) Munich, Munich, Germany
| | - Benjamin Clanner-Engelshofen
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilians University of Munich (LMU) Munich, Munich, Germany
| | - Markus Reinholz
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilians University of Munich (LMU) Munich, Munich, Germany
| |
Collapse
|
15
|
Gameiro SF, Mymryk JS. Special Issue “Human Papillomavirus Clinical Research: From Infection to Cancer”. J Clin Med 2022; 11:jcm11144225. [PMID: 35887988 PMCID: PMC9319198 DOI: 10.3390/jcm11144225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Steven F. Gameiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| | - Joe S. Mymryk
- Department of Microbiology & Immunology, Oncology and Otolaryngology, Head & Neck Surgery, The Western University, London, ON N6A 3K7, Canada;
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|