1
|
Derbal Y. Adaptive Treatment of Metastatic Prostate Cancer Using Generative Artificial Intelligence. Clin Med Insights Oncol 2025; 19:11795549241311408. [PMID: 39776668 PMCID: PMC11701910 DOI: 10.1177/11795549241311408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is compelling the consideration of its capabilities as a potential lever to advance the development of effective cancer treatments. This article presents a hypothetical case study on the application of generative pre-trained transformers (GPTs) to the treatment of metastatic prostate cancer (mPC). The case explores the design of GPT-supported adaptive intermittent therapy for mPC. Testosterone and prostate-specific antigen (PSA) are assumed to be repeatedly monitored while treatment may involve a combination of androgen deprivation therapy (ADT), androgen receptor-signalling inhibitors (ARSI), chemotherapy, and radiotherapy. The analysis covers various questions relevant to the configuration, training, and inferencing of GPTs for the case of mPC treatment with a particular attention to risk mitigation regarding the hallucination problem and its implications to clinical integration of GenAI technologies. The case study provides elements of an actionable pathway to the realization of GenAI-assisted adaptive treatment of metastatic prostate cancer. As such, the study is expected to help facilitate the design of clinical trials of GenAI-supported cancer treatments.
Collapse
Affiliation(s)
- Youcef Derbal
- Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
2
|
Wang JH, Deek MP, Mendes AA, Song Y, Shetty A, Bazyar S, Van der Eecken K, Chen E, Showalter TN, Royce TJ, Todorovic T, Huang HC, Houck SA, Yamashita R, Kiess AP, Song DY, Lotan T, DeWeese T, Marchionni L, Ren L, Sawant A, Simone N, Berlin A, Onal C, Esteva A, Feng FY, Tran PT, Sutera P, Ost P. Validation of an artificial intelligence-based prognostic biomarker in patients with oligometastatic Castration-Sensitive prostate cancer. Radiother Oncol 2025; 202:110618. [PMID: 39510141 DOI: 10.1016/j.radonc.2024.110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND There is a need for clinically actionable prognostic and predictive tools to guide the management of oligometastatic castration-sensitive prostate cancer (omCSPC). METHODS This is a multicenter retrospective study to assess the prognostic and predictive performance of a multimodal artificial intelligence biomarker (MMAI; the ArteraAI Prostate Test) in men with omCSPC (n = 222). The cohort also included 51 patients from the STOMP and ORIOLE phase 2 clinical trials which randomized patients to observation versus metastasis-directed therapy (MDT). MMAI scores were computed from digitized histopathology slides and clinical variables. Overall survival (OS) and time to castration-resistant prostate cancer (TTCRPC) were assessed for the entire cohort from time of diagnosis. Metastasis free survival (MFS) was assessed for the trial cohort from time of randomization. RESULTS In the overall cohort, patients with a high MMAI score had significantly worse OS (HR = 6.46, 95 % CI = 1.44-28.9; p = 0.01) and shorter TTCRPC (HR = 2.07, 95 % CI = 1.15-3.72; p = 0.015). In a multivariable Cox model, MMAI score remained the only variable significantly associated with OS (HR = 6.51, 95 % CI = 1.32-32.2; p = 0.02). In the subset of patients randomized in the STOMP and ORIOLE trials, high MMAI score corresponded to improved MFS with MDT (p = 0.039) compared to patients with a low score, with pinteraction = 0.04. CONCLUSION The ArteraAI MMAI biomarker is prognostic for OS and TTCRPC among patients with omCSPC and may predict for response to MDT. Further work is needed to validate the MMAI biomarker in a broader mCSPC cohort.
Collapse
Affiliation(s)
| | - Matthew P Deek
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Yang Song
- Johns Hopkins University, Baltimore, MD, USA
| | - Amol Shetty
- University of Maryland Medical Center, Baltimore, MD, USA
| | - Soha Bazyar
- University of Maryland Medical Center, Baltimore, MD, USA
| | | | | | - Timothy N Showalter
- Artera Inc., Los Altos, CA, USA; University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | - Ana P Kiess
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | - Lei Ren
- University of Maryland Medical Center, Baltimore, MD, USA
| | - Amit Sawant
- University of Maryland Medical Center, Baltimore, MD, USA
| | | | | | - Cem Onal
- Baskent University, Ankara, Turkey
| | | | - Felix Y Feng
- Artera Inc., Los Altos, CA, USA; University of California San Francisco, San Francisco, CA, USA
| | - Phuoc T Tran
- University of Maryland Medical Center, Baltimore, MD, USA.
| | - Philip Sutera
- University of Rochester Medical Center, Rochester, NY, USA.
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Iridium Network, Antwerp, Belgium.
| |
Collapse
|
3
|
Dupas A, Goetz JG, Osmani N. Extravasation of immune and tumor cells from an endothelial perspective. J Cell Sci 2024; 137:jcs262066. [PMID: 39530179 DOI: 10.1242/jcs.262066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Crossing the vascular endothelium is a necessary stage for circulating cells aiming to reach distant organs. Leukocyte passage through the endothelium, known as transmigration, is a multistep process during which immune cells adhere to the vascular wall, migrate and crawl along the endothelium until they reach their exit site. Similarly, circulating tumor cells (CTCs), which originate from the primary tumor or reseed from early metastatic sites, disseminate using the blood circulation and also must cross the endothelial barrier to set new colonies in distant organs. CTCs are thought to mimic arrest and extravasation utilized by leukocytes; however, their extravasation also requires processes that, from an endothelial perspective, are specific to cancer cells. Although leukocyte extravasation relies on maintaining endothelial impermeability, it appears that cancer cells can indoctrinate endothelial cells into promoting their extravasation independently of their normal functions. In this Review, we summarize the common and divergent mechanisms of endothelial responses during extravasation of leukocytes (in inflammation) and CTCs (in metastasis), and highlight how these might be leveraged in the development of anti-metastatic treatments.
Collapse
Affiliation(s)
- Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Jacky G Goetz
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
4
|
Ashfaq W, Rehman K, Shahid A, Younis MN. Therapeutic response and safety of radioligand therapy with 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer patients. Med Oncol 2024; 41:226. [PMID: 39136842 DOI: 10.1007/s12032-024-02466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Prostate cancer is one of the most common cancers and leading cause of death due to cancer across the globe. This persuaded researchers to devise innovative treatment modalities that may prove effective, safe, and demonstrate better outcomes in terms of patient morbidity and survival. The advancement in theranostics such as lutetium-177 (177Lu)-PSMA-617 radioligand therapies can target prostate cancer cells causing negligible or no damage to most of the normal tissues in patients. It has been proven to effectively improve the quality of life and progression-free survival. In this study, stage IV metastatic castration-resistant prostate cancer patients were treated with 177Lu-PSMA-617, and the therapeutic response and safety of 177Lu-PSMA-617 radioligand therapy were evaluated six months after the treatment. Additionally, molecular docking studies were also conducted to find the possible mechanism at the molecular level that causes the effectiveness of 177Lu-PSMA-617 in prostate cancer.
Collapse
Affiliation(s)
- Wardah Ashfaq
- Department of Nuclear Medicine, INMOL Hospital, Khayaban-e-Jamia Punjab, Block D Muslim Town, Lahore, Punjab, Pakistan
| | - Khurram Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Abubaker Shahid
- Department of Oncology, INMOL Hospital, Khayaban-e-Jamia Punjab, Block D Muslim Town, Lahore, Pakistan
| | - Muhammad Numair Younis
- Department of Nuclear Medicine, INMOL Hospital, Khayaban-e-Jamia Punjab, Block D Muslim Town, Lahore, Punjab, Pakistan.
| |
Collapse
|
5
|
Lopez-Valcarcel M, Lopez-Campos F, Zafra J, Cienfuegos I, Ferri M, Barrado M, Hernando S, Counago F. Liquid biopsy to personalize treatment for metastatic prostate cancer. Am J Transl Res 2024; 16:1531-1549. [PMID: 38883349 PMCID: PMC11170619 DOI: 10.62347/dicu9510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/17/2024] [Indexed: 06/18/2024]
Abstract
Liquid biopsy is an innovative approach that provides a more complete understanding of treatment response and prognosis in monitoring metastatic prostate cancer. It complements invasive tissue biopsy and involves the assessment of various biomarkers in body fluids such as blood, semen, and urine. Liquid biopsy analyzes circulating tumor cells, extracellular vesicles, circulating tumor DNA, and the secretome. This is particularly important given the heterogeneity of prostate cancer and the need for better prognostic biomarkers. Liquid biopsy can personalize the treatment of homonosensitive and castration-resistant metastatic prostate cancer by acting as a predictive and prognostic tool. This review discusses various biomarkers, assay techniques, and potential applications in daily clinical practice, highlighting the exciting possibilities that this emerging field holds for improving patient outcomes.
Collapse
Affiliation(s)
- Marta Lopez-Valcarcel
- Department of Radiation Oncology, Puerta de Hierro University Hospital Madrid, Spain
| | | | - Juan Zafra
- Department of Radiation Oncology, Virgen de la Victoria University Hospital Málaga, Spain
| | - Irene Cienfuegos
- Department of Urology, Virgen del Puerto Hospital Plasencia, Cáceres, Extremadura, Spain
| | - Maria Ferri
- Department of Radiation Oncology, Marques de Valdecilla University Hospital Santander, Cantabria, Spain
| | - Marta Barrado
- Department of Radiation Oncology, Navarra University Hospital Pamplona, Navarra, Spain
| | - Susana Hernando
- Department of Clinical Oncology, Fundación Alcorcon University Hospital Alcorcón, Madrid, Spain
| | - Felipe Counago
- Department of Radiation Oncology, GenesisCare Madrid Clinical Director, San Francisco de Asis and La Milagrosa Hospitals, National Chair of Research and Clinical Trials GenesisCare, Madrid, Spain
| |
Collapse
|
6
|
Almeida-Marques C, Rolfs F, Piersma SR, Bijnsdorp IV, Pham TV, Knol JC, Jimenez CR. Secretome processing for proteomics: A methods comparison. Proteomics 2024; 24:e2300262. [PMID: 38221716 DOI: 10.1002/pmic.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
The cancer cell secretome comprises a treasure-trove for biomarkers since it reflects cross-talk between tumor cells and their surrounding environment with high detectability in biofluids. In this study, we evaluated six secretome sample processing workflows coupled to single-shot mass spectrometry: (1) Protein concentration by ultrafiltration with a molecular weight cut-off (MWCO) filter and sample preparation through in-gel digestion (IGD); (2) Acetone protein precipitation coupled to IGD; (3) MWCO filter-based protein concentration followed by to in-solution digestion (ISD); (4) Acetone protein precipitation coupled to ISD; (5) Direct ISD; (6) Secretome lyophilization and ISD. To this end, we assessed workflow triplicates in terms of total number of protein identifications, unique identifications, reproducibility of protein identification and quantification and detectability of small proteins with important functions in cancer biology such as cytokines, chemokines, and growth factors. Our findings revealed that acetone protein precipitation coupled to ISD outperformed the other methods in terms of the number of identified proteins (2246) and method reproducibility (correlation coefficient between replicates (r = 0.94, CV = 19%). Overall, especially small proteins such as those from the classes mentioned above were better identified using ISD workflows. Concluding, herein we report that secretome protein precipitation coupled to ISD is the method of choice for high-throughput secretome proteomics via single shot nanoLC-MS/MS.
Collapse
Affiliation(s)
- Catarina Almeida-Marques
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Frank Rolfs
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Sander R Piersma
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Irene V Bijnsdorp
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
- Department Urology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Thang V Pham
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Jaco C Knol
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Connie R Jimenez
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| |
Collapse
|
7
|
Büttner T, Dietrich D, Zarbl R, Klümper N, Ellinger J, Krausewitz P, Ritter M. Feasibility of Monitoring Response to Metastatic Prostate Cancer Treatment with a Methylation-Based Circulating Tumor DNA Approach. Cancers (Basel) 2024; 16:482. [PMID: 38339235 PMCID: PMC10854643 DOI: 10.3390/cancers16030482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Metastatic prostate cancer (mPCA) poses challenges in treatment response assessment, particularly in cases where prostate-specific antigen (PSA) levels do not reliably indicate a response. Liquid biopsy, focusing on circulating cell-free DNA (ccfDNA) methylation analysis as a proxy for circulating tumor DNA, offers a non-invasive and cost-effective approach. This study explores the potential of two methylation markers, short stature homeobox 2 (SHOX2) and Septin 9 (SEPT9), as on-mPCA-treatment biomarkers. METHODS Plasma samples were collected from 11 mPCA patients undergoing various treatments. Quantitative assessment of hypermethylated SHOX2 (mSHOX2) and SEPT9 (mSEPT9) levels in ccfDNA was conducted through methylation-specific real-time PCR. Early and overall dynamics of PSA, mSHOX2, and mSEPT9 were analyzed. Statistical evaluation employed Wilcoxon tests. RESULTS mSHOX2 demonstrated a significant decline post-treatment in patients with a radiographic treatment response as well as in an early treatment setting. mSEPT9 and PSA exhibited non-significant declines. In individual cases, biomarker dynamics revealed unique patterns compared to PSA. DISCUSSION mSHOX2 and mSEPT9 exhibit dynamics on mPCA treatment. This proof-of-concept study lays the groundwork for further investigation into these markers as valuable additions to treatment response monitoring in mPCA. Further validation in larger cohorts is essential for establishing clinical utility.
Collapse
Affiliation(s)
- Thomas Büttner
- Department of Urology and Pediatric Urology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (N.K.); (J.E.); (P.K.); (M.R.)
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Hospital Bonn, 53127 Bonn, Germany; (D.D.); (R.Z.)
| | - Romina Zarbl
- Department of Otorhinolaryngology, University Hospital Bonn, 53127 Bonn, Germany; (D.D.); (R.Z.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (N.K.); (J.E.); (P.K.); (M.R.)
| | - Jörg Ellinger
- Department of Urology and Pediatric Urology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (N.K.); (J.E.); (P.K.); (M.R.)
| | - Philipp Krausewitz
- Department of Urology and Pediatric Urology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (N.K.); (J.E.); (P.K.); (M.R.)
| | - Manuel Ritter
- Department of Urology and Pediatric Urology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (N.K.); (J.E.); (P.K.); (M.R.)
| |
Collapse
|
8
|
Chen TY, Mihalopoulos M, Zuluaga L, Rich J, Ganta T, Mehrazin R, Tsao CK, Tewari A, Gonzalez-Kozlova E, Badani K, Dogra N, Kyprianou N. Clinical Significance of Extracellular Vesicles in Prostate and Renal Cancer. Int J Mol Sci 2023; 24:14713. [PMID: 37834162 PMCID: PMC10573190 DOI: 10.3390/ijms241914713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs)-including apoptotic bodies, microvesicles, and exosomes-are released by almost all cell types and contain molecular footprints from their cell of origin, including lipids, proteins, metabolites, RNA, and DNA. They have been successfully isolated from blood, urine, semen, and other body fluids. In this review, we discuss the current understanding of the predictive value of EVs in prostate and renal cancer. We also describe the findings supporting the use of EVs from liquid biopsies in stratifying high-risk prostate/kidney cancer and advanced disease, such as castration-resistant (CRPC) and neuroendocrine prostate cancer (NEPC) as well as metastatic renal cell carcinoma (RCC). Assays based on EVs isolated from urine and blood have the potential to serve as highly sensitive diagnostic studies as well as predictive measures of tumor recurrence in patients with prostate and renal cancers. Overall, we discuss the biogenesis, isolation, liquid-biopsy, and therapeutic applications of EVs in CRPC, NEPC, and RCC.
Collapse
Affiliation(s)
- Tzu-Yi Chen
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Laura Zuluaga
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Jordan Rich
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Teja Ganta
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Che-Kai Tsao
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Ash Tewari
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Navneet Dogra
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
- The Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| |
Collapse
|
9
|
Isebia KT, Mostert B, Deger T, Kraan J, de Weerd V, Oomen‐de Hoop E, Hamberg P, Haberkorn BCM, Helgason HH, de Wit R, Mathijssen RHJ, Lolkema MP, Wilting SM, van Riet J, Martens JWM. mFast-SeqS-based aneuploidy score in circulating cell-free DNA is a prognostic biomarker in prostate cancer. Mol Oncol 2023; 17:1898-1907. [PMID: 37178439 PMCID: PMC10483599 DOI: 10.1002/1878-0261.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple prognostic biomarkers, including circulating tumour cell (CTC) counts, exist in metastatic castration-resistant prostate cancer (mCRPC) patients, but none of them have been implemented into daily clinical care. The modified fast aneuploidy screening test-sequencing system (mFast-SeqS), which yields a genome-wide aneuploidy score, is able to reflect the fraction of cell-free tumour DNA (ctDNA) within cell-free DNA (cfDNA) and may be a promising biomarker in mCRPC. In this study, we investigated the prognostic value of dichotomized aneuploidy scores (< 5 vs. ≥ 5) as well as CTC counts (< 5 vs. ≥ 5) in 131 mCRPC patients prior to treatment with cabazitaxel. We validated our findings in an independent cohort of 50 similarly treated mCRPC patients. We observed that, similar to the dichotomized CTC count [HR: 2.92; 95% confidence interval (CI);1.84-4.62], dichotomized aneuploidy scores (HR: 3.24; CI: 2.12-4.94) significantly correlated with overall survival in mCRPC patients. We conclude that a dichotomized aneuploidy score from cfDNA is a prognostic marker for survival in mCRPC patients within our discovery cohort and in an independent mCRPC validation cohort. Therefore, this easy and robust minimally-invasive assay can be readily implemented as a prognostic marker in mCRPC. A dichotomized aneuploidy score might also be used as a stratification factor in clinical studies to account for tumour load.
Collapse
Affiliation(s)
- Khrystany T. Isebia
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Bianca Mostert
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Teoman Deger
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Esther Oomen‐de Hoop
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Paul Hamberg
- Department of Internal MedicineFranciscus Gasthuis & VlietlandRotterdam/SchiedamThe Netherlands
| | | | - Helgi H. Helgason
- Department of Medical OncologyHaaglanden Medical CentreThe HagueThe Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - Job van Riet
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamThe Netherlands
| |
Collapse
|
10
|
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int J Mol Sci 2023; 24:12797. [PMID: 37628978 PMCID: PMC10454494 DOI: 10.3390/ijms241612797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Epidemiological data highlight prostate cancer as a significant global health issue, with high incidence and substantial impact on patients' quality of life. The prevalence of this disease is associated with various factors, including age, heredity, and race. Recent research in prostate cancer genetics has identified several genetic variants that may be associated with an increased risk of developing the disease. However, despite the significance of these findings, genetic markers for prostate cancer are not currently utilized in clinical practice as reliable indicators of the disease. In addition to genetics, epigenetic alterations also play a crucial role in prostate cancer development. Aberrant DNA methylation, changes in chromatin structure, and microRNA (miRNA) expression are major epigenetic events that influence oncogenesis. Existing markers for prostate cancer, such as prostate-specific antigen (PSA), have limitations in terms of sensitivity and specificity. The cost of testing, follow-up procedures, and treatment for false-positive results and overdiagnosis contributes to the overall healthcare expenditure. Improving the effectiveness of prostate cancer diagnosis and prognosis requires either narrowing the risk group by identifying new genetic factors or enhancing the sensitivity and specificity of existing markers. Immunological biomarkers (both circulating and intra-tumoral), including markers of immune response and immune dysfunction, represent a potentially useful area of research for enhancing the diagnosis and prognosis of prostate cancer. Our review emphasizes the need for developing novel immunological biomarkers to improve the diagnosis, prognosis, and management of prostate cancer. We highlight the most recent achievements in the identification of biomarkers provided by circulating monocytes and tumor-associated macrophages (TAMs). We highlight that monocyte-derived and TAM-derived biomarkers can enable to establish the missing links between genetic predisposition, hormonal metabolism and immune responses in prostate cancer.
Collapse
Affiliation(s)
- Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
| |
Collapse
|
11
|
Goberdhan DCI. Large tumour-derived extracellular vesicles as prognostic indicators of metastatic cancer patient survival. Br J Cancer 2023; 128:471-473. [PMID: 36385555 PMCID: PMC9938279 DOI: 10.1038/s41416-022-02055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular vesicles (EVs) are released by all cells and produced at particularly high levels by many cancer cells, often inducing pro-tumorigenic effects. Since these cancer EVs carry tumour proteins and RNAs, they can potentially be used at biomarkers. The heterogeneity of surface markers and cargos carried by EVs, however, presents some challenges to developing such approaches. Nanou et al. [1] found that automated counting of large tumour-derived EVs (tdEVs) performed at least as effectively as counting circulating tumour-derived cells (CTCs) and with higher sensitivity, in distinguishing the survival of patients with castration-resistant prostate cancer (CRPC), metastatic colorectal cancer (mCRC) and metastatic breast cancer (MBC), but not for non-small cell lung cancer (NSCLC). Subsequent work has suggested that these tdEVs may also be used to assess tumour subtype and that the number of large EVs produced by endothelial cells can also be increased in cancer patients. While by itself, the tdEV imaging approach used by Nanou et al. [1] is not specific enough to predict the survival of individual patients, in combination with other EV-associated assays, this test, perhaps enhanced through the inclusion of other tumour antigens, could prove invaluable in predicting cancer survival and other outcomes in the clinic.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
12
|
Principle Superiority and Clinical Extensibility of 2D and 3D Charged Nanoprobe Detection Platform Based on Electrophysiological Characteristics of Circulating Tumor Cells. Cells 2023; 12:cells12020305. [PMID: 36672240 PMCID: PMC9856308 DOI: 10.3390/cells12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The electrical characteristic of cancer cells is neglected among tumor biomarkers. The development of nanoprobes with opposing charges for monitoring the unique electrophysiological characteristics of cancer cells. Micro-nano size adsorption binding necessitates consideration of the nanoprobe's specific surface area. On the basis of the electrophysiological characteristics of circulating tumor cells (CTCs), clinical application and performance assessment are determined. To demonstrate that cancer cells have a unique pattern of electrophysiological patterns compared to normal cells, fluorescent nanoprobes with opposing charges were developed and fabricated. Graphene oxide (GO) was used to transform three-dimensional (3D) nanoprobes into two-dimensional (2D) nanoprobes. Compare 2D and 3D electrophysiological magnetic nanoprobes (MNP) in clinical samples and evaluate the adaptability and development of CTCs detection based on cell electrophysiology. Positively charged nanoprobes rapidly bind to negatively charged cancer cells based on electrostatic interactions. Compared to MNPs(+) without GO, the GO/MNPs(+) nanoprobe is more efficient and uses less material to trap cancer cells. CTCs can be distinguished from normal cells that are fully unaffected by nanoprobes by microscopic cytomorphological inspection, enabling the tracking of the number and pathological abnormalities of CTCs in the same patient at various chemotherapy phases to determine the efficacy of treatment. The platform for recognizing CTCs on the basis of electrophysiological characteristics compensates for the absence of epithelial biomarker capture and size difference capture in clinical performance. Under the influence of electrostatic attraction, the binding surface area continues to influence the targeting of cancer cells by nanoprobes. The specific recognition and detection of nanoprobes based on cell electrophysiological patterns has enormous potential in the clinical diagnosis and therapeutic monitoring of cancer.
Collapse
|
13
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
14
|
Li W, Zhou R, Sun B, Jin X, Chen Y, Xu X. Prognostic significance of lncRNA AP004608.1 in prostate cancer. Front Oncol 2022; 12:1017635. [PMID: 36249054 PMCID: PMC9556701 DOI: 10.3389/fonc.2022.1017635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to screen and determine the value of AP004608.1 expression as a biomarker for Prostate cancer (PCa) survival. We investigated the expression and prognosis of AP004608.1 through bioinformatics analysis. Low AP004608.1 expression predicted favorable Overall survival (OS) and Progression-free survival (PFS) in PCa patients, according to the Cancer Genome Atlas (TCGA) database. Cox regression demonstrated that low AP004608.1 expression were in-dependent biomarkers for OS. Moreover, Gene Expression Omnibus (GEO) database was utilized to verify the prognostic role of AP004608.1 in PCa, and the similar results were reached. A meta-analysis revealed that low AP004608.1 expression was closely relevant to better OS. AP004608.1 could constitute a promising prognostic biomarker, and probably plays an important role in PCa.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Traditional Chinese medicine (TCM)-Related Comorbid Depression, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Wei Li, ; Xuefen Xu,
| | - Runze Zhou
- Institute of Traditional Chinese medicine (TCM)-Related Comorbid Depression, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Sun
- Institute of Traditional Chinese medicine (TCM)-Related Comorbid Depression, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Jin
- Department of Pharmacy, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuan Chen
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuefen Xu
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Wei Li, ; Xuefen Xu,
| |
Collapse
|