1
|
Wallimann P, Piccirelli M, Nowakowska S, Armstrong T, Mayinger M, Boss A, Bink A, Guckenberger M, Tanadini-Lang S, Andratschke N, Pouymayou B. Validation of echo planar imaging based diffusion-weighted magnetic resonance imaging on a 0.35 T MR-Linac. Phys Imaging Radiat Oncol 2024; 30:100579. [PMID: 38707628 PMCID: PMC11068927 DOI: 10.1016/j.phro.2024.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Background and Purpose The feasibility of acquiring diffusion-weighted imaging (DWI) images on an MR-Linac for quantitative response assessment during radiotherapy was explored. DWI data obtained with a Spin Echo Echo Planar Imaging sequence adapted for a 0.35 T MR-Linac were examined and compared with DWI data from a conventional 3 T scanner. Materials and Methods Apparent diffusion coefficient (ADC) measurements and a distortion correction technique were investigated using DWI-calibrated phantoms and in the brains of seven volunteers. All DWI utilized two phase-encoding directions for distortion correction and off-resonance field estimation. ADC maps in the brain were analyzed for automatically segmented normal tissues. Results Phantom ADC measurements on the MR-Linac were within a 3 % margin of those recorded by the 3 T scanner. The maximum distortion observed in the phantom was 2.0 mm prior to correction and 1.1 mm post-correction on the MR-Linac, compared to 6.0 mm before correction and 3.6 mm after correction at 3 T. In vivo, the average ADC values for gray and white matter exhibited variations of 14 % and 4 %, respectively, for different selections of b-values on the MR-Linac. Distortions in brain images before correction, estimated through the off-resonance field, reached 2.7 mm on the MR-Linac and 12 mm at 3 T. Conclusion Accurate ADC measurements are achievable on a 0.35 T MR-Linac, both in phantom and in vivo. The selection of b-values significantly influences ADC values in vivo. DWI on the MR-Linac demonstrated lower distortion levels, with a maximum distortion reduced to 1.1 mm after correction.
Collapse
Affiliation(s)
- Philipp Wallimann
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sylwia Nowakowska
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tess Armstrong
- ViewRay Inc., 2 Thermo Fisher Way, Oakwood Village, OH 44146, USA
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bertrand Pouymayou
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Rabe M, Dietrich O, Forbrig R, Niyazi M, Belka C, Corradini S, Landry G, Kurz C. Repeatability quantification of brain diffusion-weighted imaging for future clinical implementation at a low-field MR-linac. Radiat Oncol 2024; 19:31. [PMID: 38448888 PMCID: PMC10916154 DOI: 10.1186/s13014-024-02424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Longitudinal assessments of apparent diffusion coefficients (ADCs) derived from diffusion-weighted imaging (DWI) during intracranial radiotherapy at magnetic resonance imaging-guided linear accelerators (MR-linacs) could enable early response assessment by tracking tumor diffusivity changes. However, DWI pulse sequences are currently unavailable in clinical practice at low-field MR-linacs. Quantifying the in vivo repeatability of ADC measurements is a crucial step towards clinical implementation of DWI sequences but has not yet been reported on for low-field MR-linacs. This study assessed ADC measurement repeatability in a phantom and in vivo at a 0.35 T MR-linac. METHODS Eleven volunteers and a diffusion phantom were imaged on a 0.35 T MR-linac. Two echo-planar imaging DWI sequence variants, emphasizing high spatial resolution ("highRes") and signal-to-noise ratio ("highSNR"), were investigated. A test-retest study with an intermediate outside-scanner-break was performed to assess repeatability in the phantom and volunteers' brains. Mean ADCs within phantom vials, cerebrospinal fluid (CSF), and four brain tissue regions were compared to literature values. Absolute relative differences of mean ADCs in pre- and post-break scans were calculated for the diffusion phantom, and repeatability coefficients (RC) and relative RC (relRC) with 95% confidence intervals were determined for each region-of-interest (ROI) in volunteers. RESULTS Both DWI sequence variants demonstrated high repeatability, with absolute relative deviations below 1% for water, dimethyl sulfoxide, and polyethylene glycol in the diffusion phantom. RelRCs were 7% [5%, 12%] (CSF; highRes), 12% [9%, 22%] (CSF; highSNR), 9% [8%, 12%] (brain tissue ROIs; highRes), and 6% [5%, 7%] (brain tissue ROIs; highSNR), respectively. ADCs measured with the highSNR variant were consistent with literature values for volunteers, while smaller mean values were measured for the diffusion phantom. Conversely, the highRes variant underestimated ADCs compared to literature values, indicating systematic deviations. CONCLUSIONS High repeatability of ADC measurements in a diffusion phantom and volunteers' brains were measured at a low-field MR-linac. The highSNR variant outperformed the highRes variant in accuracy and repeatability, at the expense of an approximately doubled voxel volume. The observed high in vivo repeatability confirms the potential utility of DWI at low-field MR-linacs for early treatment response assessment.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and LMU University Hospital Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and LMU University Hospital Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Chiloiro G, Gani C, Boldrini L. Rectal Cancer MRI Guided Radiotherapy: A Practical Review for the Physician. Semin Radiat Oncol 2024; 34:64-68. [PMID: 38105095 DOI: 10.1016/j.semradonc.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
MR-guided radiotherapy is a treatment approach that combines the advantages of magnetic resonance imaging (MRI) with the precision of radiation therapy. This practical review provides an overview of the current state-of-the-art of MR-guided radiotherapy for rectal cancer, including its technical aspects, clinical outcomes, and existing limitations. Even though some studies have demonstrated the feasibility and safety of this treatment modality, challenges remain in terms of patient selection, treatment planning optimization, and long-term follow-up. Despite these issues, MR-guided radiotherapy shows promise as a potentially valuable rectal cancer treatment approach.
Collapse
Affiliation(s)
- Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Cihan Gani
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| |
Collapse
|
4
|
McDonald BA, Dal Bello R, Fuller CD, Balermpas P. The Use of MR-Guided Radiation Therapy for Head and Neck Cancer and Recommended Reporting Guidance. Semin Radiat Oncol 2024; 34:69-83. [PMID: 38105096 PMCID: PMC11372437 DOI: 10.1016/j.semradonc.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Although magnetic resonance imaging (MRI) has become standard diagnostic workup for head and neck malignancies and is currently recommended by most radiological societies for pharyngeal and oral carcinomas, its utilization in radiotherapy has been heterogeneous during the last decades. However, few would argue that implementing MRI for annotation of target volumes and organs at risk provides several advantages, so that implementation of the modality for this purpose is widely accepted. Today, the term MR-guidance has received a much broader meaning, including MRI for adaptive treatments, MR-gating and tracking during radiotherapy application, MR-features as biomarkers and finally MR-only workflows. First studies on treatment of head and neck cancer on commercially available dedicated hybrid-platforms (MR-linacs), with distinct common features but also differences amongst them, have also been recently reported, as well as "biological adaptation" based on evaluation of early treatment response via functional MRI-sequences such as diffusion weighted ones. Yet, all of these approaches towards head and neck treatment remain at their infancy, especially when compared to other radiotherapy indications. Moreover, the lack of standardization for reporting MR-guided radiotherapy is a major obstacle both to further progress in the field and to conduct and compare clinical trials. Goals of this article is to present and explain all different aspects of MR-guidance for radiotherapy of head and neck cancer, summarize evidence, as well as possible advantages and challenges of the method and finally provide a comprehensive reporting guidance for use in clinical routine and trials.
Collapse
Affiliation(s)
- Brigid A McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Weygand J, Armstrong T, Bryant JM, Andreozzi JM, Oraiqat IM, Nichols S, Liveringhouse CL, Latifi K, Yamoah K, Costello JR, Frakes JM, Moros EG, El Naqa IM, Naghavi AO, Rosenberg SA, Redler G. Accurate, repeatable, and geometrically precise diffusion-weighted imaging on a 0.35 T magnetic resonance imaging-guided linear accelerator. Phys Imaging Radiat Oncol 2023; 28:100505. [PMID: 38045642 PMCID: PMC10692914 DOI: 10.1016/j.phro.2023.100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Background and purpose Diffusion weighted imaging (DWI) allows for the interrogation of tissue cellularity, which is a surrogate for cellular proliferation. Previous attempts to incorporate DWI into the workflow of a 0.35 T MR-linac (MRL) have lacked quantitative accuracy. In this study, accuracy, repeatability, and geometric precision of apparent diffusion coefficient (ADC) maps produced using an echo planar imaging (EPI)-based DWI protocol on the MRL system is illustrated, and in vivo potential for longitudinal patient imaging is demonstrated. Materials and methods Accuracy and repeatability were assessed by measuring ADC values in a diffusion phantom at three timepoints and comparing to reference ADC values. System-dependent geometric distortion was quantified by measuring the distance between 93 pairs of phantom features on ADC maps acquired on a 0.35 T MRL and a 3.0 T diagnostic scanner and comparing to spatially precise CT images. Additionally, for five sarcoma patients receiving radiotherapy on the MRL, same-day in vivo ADC maps were acquired on both systems, one of which at multiple timepoints. Results Phantom ADC quantification was accurate on the 0.35 T MRL with significant discrepancies only seen at high ADC. Average geometric distortions were 0.35 (±0.02) mm and 0.85 (±0.02) mm in the central slice and 0.66 (±0.04) mm and 2.14 (±0.07) mm at 5.4 cm off-center for the MRL and diagnostic system, respectively. In the sarcoma patients, a mean pretreatment ADC of 910x10-6 (±100x10-6) mm2/s was measured on the MRL. Conclusions The acquisition of accurate, repeatable, and geometrically precise ADC maps is possible at 0.35 T with an EPI approach.
Collapse
Affiliation(s)
- Joseph Weygand
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - Steven Nichols
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Kujtim Latifi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Jessica M. Frakes
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eduardo G. Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Issam M. El Naqa
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| | - Arash O. Naghavi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Gage Redler
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|