1
|
Sengupta R, Topiwala IS, Shakthi A M, Dhar R, Devi A. Immune Cell-Derived Exosomes: A Cell-Free Cutting-Edge Tumor Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:7076-7087. [PMID: 39495624 DOI: 10.1021/acsabm.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Extracellular vesicles (EVs) are cellular communication molecules and are classified into three major subpopulations, such as microvesicles, apoptotic bodies, and exosomes. Among these, exosomes-based cancer research is a cutting-edge investigation approach to cancer understanding. During cancer progression , tumor-derived exosomes can reprogram the cellular system and promote cancer. Circulating exosomes in the body fluids such as blood, plasma, serum, saliva, CSF, sweat, and tears play a key role in identifying diagnostic and prognostic cancer biomarkers. Diverse therapeutic sources of exosomes including stem cells, plants, and immune cells, etc. exhibit significant cancer-healing properties. Although cancer-targeting immunotherapy is an effective strategy, it has limitations such as toxicity, and high costs. In comparison, immune cell-derived exosomes-based immunotherapy is a cell-free approach for cancer treatment and has advantages like less toxicity, biocompatibility, reduced immunogenicity, and efficient, target-specific cancer therapeutic development. This review highlights the therapeutic signature of immune cell-derived exosomes for cancer treatment.
Collapse
Affiliation(s)
- Ranjini Sengupta
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Ibrahim S Topiwala
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Meghana Shakthi A
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| |
Collapse
|
2
|
Lee RM, Donnan J, Harris N, Garland SN. A Cross Sectional Survey of Factors Related to Cannabis Use as a Sleep Aid Among Canadian Cancer Survivors. Behav Sleep Med 2024; 22:754-769. [PMID: 38804699 DOI: 10.1080/15402002.2024.2361015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
OBJECTIVES Poor sleep is a common side effect of cancer. Cannabis is increasingly used to manage cancer treatment-related symptoms, including sleep. This study investigated factors related to cannabis use for sleep among Canadian cancer survivors. METHOD Adult Canadian cancer survivors (N = 940) were recruited via the Angus Reid Institute and completed an online, cross-sectional survey. Univariate and multiple binomial logistic regression models identified factors associated with cannabis use for sleep. RESULTS Of the participants (Mage = 64.5 yrs; Women = 51.1%; White = 92.9%), 25.1% (n = 236) currently use cannabis for sleep. Participants were at greater odds of using cannabis for sleep if they identified as a gender other than man or woman (AOR = 11.132), were diagnosed with multiple medical conditions (2:AOR = 1.988; 3+:AOR = 1.902), two psychological conditions (AOR = 2.171), multiple sleep disorders (AOR = 2.338), insomnia (AOR = 1.942), bone (AOR = 6.535), gastrointestinal (AOR = 4.307), genitourinary (AOR = 2.586), hematological (AOR = 4.739), or an unlisted cancer (AOR = 3.470), received hormone therapy only (AOR = 3.054), drink heavily (AOR = 2.748), or had mild insomnia (AOR = 1.828). Older participants (AOR=.972) and those with sleep apnea were less likely to use cannabis for sleep (AOR=.560). CONCLUSION Given its prevalence, research is needed to understand how factors associated with cannabis use as a sleep aid among Canadian cancer survivors may influence its use and effectiveness and whether these factors are barriers to accessing evidence-based treatments.
Collapse
Affiliation(s)
- Rachel M Lee
- Department of Psychology, Faculty of Science, Memorial University, St. John's, NL, Canada
- Pharmacy, Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Jennifer Donnan
- School of Pharmacy, Memorial University, St. John's, NL, Canada
| | - Nick Harris
- Department of Psychology, Faculty of Science, Memorial University, St. John's, NL, Canada
| | - Sheila N Garland
- Department of Psychology, Faculty of Science, Memorial University, St. John's, NL, Canada
- Pharmacy, Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
3
|
Mujahid K, Rana I, Suliman IH, Li Z, Wu J, He H, Nam J. Biomaterial-Based Sustained-Release Drug Formulations for Localized Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4944-4961. [PMID: 38050811 DOI: 10.1021/acsabm.3c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cancer immunotherapy has revolutionized clinical cancer treatments by taking advantage of the immune system to selectively and effectively target and kill cancer cells. However, clinical cancer immunotherapy treatments often have limited efficacy and/or present severe adverse effects associated primarily with their systemic administration. Localized immunotherapy has emerged to overcome these limitations by directly targeting accessible tumors via local administration, reducing potential systemic drug distribution that hampers drug efficacy and safety. Sustained-release formulations can prolong drug activity at target sites, which maximizes the benefits of localized immunotherapy to increase the therapeutic window using smaller dosages than those used for systemic injection, avoiding complications of frequent dosing. The performance of sustained-release formulations for localized cancer immunotherapy has been validated preclinically using various implantable and injectable scaffold platforms. This review introduces the sustained-release formulations developed for localized cancer immunotherapy and highlights their biomaterial-based platforms for representative classes, including inorganic scaffolds, natural hydrogels, synthetic hydrogels, and microneedle patches. The design rationale and other considerations are summarized for further development of biomaterials for the construction of optimal sustained-release formulations.
Collapse
Affiliation(s)
- Khizra Mujahid
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Isra Rana
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | | | - Zhen Li
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, P. R. China
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
4
|
Lu C, Gao H, Li H, Luo N, Fan S, Li X, Deng R, He D, Zhao H. A novel LINC02321 promotes cell proliferation and decreases cisplatin sensitivity in bladder cancer by regulating RUVBL2. Transl Oncol 2024; 45:101962. [PMID: 38677015 PMCID: PMC11066559 DOI: 10.1016/j.tranon.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Bladder cancer (BC) has a high incidence and is prone to recurrence. In most instances, the low 5-year survival rate of advanced BC patients results from postoperative recurrence and drug resistance. Long noncoding RNAs (lncRNAs) can participate in numerous biological functions by regulating the expression of genes to affect tumorigenesis. Our previous work had demonstrated that a novel lncRNA, LINC02321, was associated with BC prognosis. In this study, A high expression of LINC02321 was found in BC tissues, which was associated with poor prognosis in patients. LINC02321 promoted both proliferation and G1-G0 progression in BC cells, while also inhibited sensitivity to cisplatin. Mechanistically, LINC02321 can bind to RUVBL2 and regulate the expression levels of RUVBL2 protein by affecting its half-life. RUVBL2 is involved in the DNA damage response. The potential of DNA damage repair pathways to exert chemosensitization has been demonstrated in vivo. The rescue experiment demonstrated that RUVBL2 overexpression can markedly abolish the decreased cell proliferation and the increased sensitivity of BC cells to cisplatin caused by LINC02321 knockdown. The results indicate that LINC02321 functions as an oncogene in BC, and may serve as a novel potential target for controlling BC progression and addressing cisplatin resistance in BC therapy.
Collapse
Affiliation(s)
- Chuncheng Lu
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Hongbin Gao
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Haiyuan Li
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Ning Luo
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Shipeng Fan
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Xi Li
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Renbin Deng
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Danpeng He
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Hui Zhao
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China.
| |
Collapse
|
5
|
Zhang W, Chen XS, Wei Y, Wang XM, Chen XJ, Chi BT, Huang LQ, He RQ, Huang ZG, Li Q, Chen G, He J, Wu M. Overexpressed KCNK1 regulates potassium channels affecting molecular mechanisms and biological pathways in bladder cancer. Eur J Med Res 2024; 29:257. [PMID: 38689322 PMCID: PMC11059691 DOI: 10.1186/s40001-024-01844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND This study aimed to explore the expression, molecular mechanism and its biological function of potassium two pore domain channel subfamily K member 1 (KCNK1) in bladder cancer (BC). METHODS We integrated large numbers of external samples (n = 1486) to assess KCNK1 mRNA expression levels and collected in-house samples (n = 245) for immunohistochemistry (IHC) experiments to validate at the KCNK1 protein level. Single-cell RNA sequencing (scRNA-seq) analysis was performed to further assess KCNK1 expression and cellular communication. The transcriptional regulatory mechanisms of KCNK1 expression were explored by ChIP-seq, ATAC-seq and ChIA-PET data. Highly expressed co-expressed genes (HECEGs) of KCNK1 were used to explore potential signalling pathways. Furthermore, the immunoassay, clinical significance and molecular docking of KCNK1 were calculated. RESULTS KCNK1 mRNA was significantly overexpressed in BC (SMD = 0.58, 95% CI [0.05; 1.11]), validated at the protein level (p < 0.0001). Upregulated KCNK1 mRNA exhibited highly distinguishing ability between BC and control samples (AUC = 0.82 [0.78-0.85]). Further, scRNA-seq analysis revealed that KCNK1 expression was predominantly clustered in BC epithelial cells and tended to increase with cellular differentiation. BC epithelial cells were involved in cellular communication mainly through the MK signalling pathway. Secondly, the KCNK1 transcription start site (TSS) showed promoter-enhancer interactions in three-dimensional space, while being transcriptionally regulated by GRHL2 and FOXA1. Most of the KCNK1 HECEGs were enriched in cell cycle-related signalling pathways. KCNK1 was mainly involved in cellular metabolism-related pathways and regulated cell membrane potassium channel activity. KCNK1 expression was associated with the level of infiltration of various immune cells. Immunotherapy and chemotherapy (docetaxel, paclitaxel and vinblastine) were more effective in BC patients in the high KCNK1 expression group. KCNK1 expression correlated with age, pathology grade and pathologic_M in BC patients. CONCLUSIONS KCNK1 was significantly overexpressed in BC. A complex and sophisticated three-dimensional spatial transcriptional regulatory network existed in the KCNK1 TSS and promoted the upregulated of KCNK1 expression. The high expression of KCNK1 might be involved in the cell cycle, cellular metabolism, and tumour microenvironment through the regulation of potassium channels, and ultimately contributed to the deterioration of BC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Song Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ying Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Min Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xian-Jin Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lin-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
6
|
Tuo Z, Wang J, Zhang Y, Bi L. Learning Curve of a Novel Three-Port Laparoscopic Radical Cystectomy with Urinary Diversion: A Single-Center Retrospective Analysis. J Laparoendosc Adv Surg Tech A 2023; 33:188-193. [PMID: 35980359 DOI: 10.1089/lap.2022.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Three-port laparoscopic radical cystectomy (LRC) is a novel method of radical cystectomy, which is being spread by our team in primary hospitals in our country. The purpose of this study was to evaluate the learning curve of urologists using this technique for bladder cancer patients. Methods: We retrospectively evaluated clinical data from patients with bladder cancer who received three-port LRC with urinary diversion at our medical center between January 2018 and December 2021. Consecutive cases were grouped according to different surgical years, and perioperative parameters among groups were assessed as variables for the learning curve, including operative time, estimated blood loss (EBL), lymph nodes (LN) yield, and postoperative hospital stay. Results: We assessed 154 patients who were divided into three groups, all of which were comparable in terms of preoperative characteristics. With the increase in surgical experience, the operation time of urologists is obviously reduced (P < .05), especially after 100 surgeries, whereas no statistically significant difference was observed in terms of EBL, LN yield, and postoperative hospital stay in the different surgical experience groups (P > .05). Conclusions: Our early learning curve experience indicates that the three-port LRC with urinary diversion is a safe and feasible technique that can be mastered by urologists after learning from a large sample. Given its advantages in cost and significantly improved learning curve, we recommend this technique to surgeons with extensive laparoscopic experience.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|