1
|
Hao J, Liu M, Zhou Z, Zhao C, Dai L, Ouyang S. Predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients through logistic regression: a model incorporating clinical characteristics, computed tomography (CT) imaging features, and tumor marker levels. PeerJ 2024; 12:e18618. [PMID: 39650554 PMCID: PMC11623057 DOI: 10.7717/peerj.18618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/09/2024] [Indexed: 12/11/2024] Open
Abstract
Background Approximately 60% of Asian populations with non-small cell lung cancer (NSCLC) harbor epidermal growth factor receptor (EGFR) gene mutations, marking it as a pivotal target for genotype-directed therapies. Currently, determining EGFR mutation status relies on DNA sequencing of histological or cytological specimens. This study presents a predictive model integrating clinical parameters, computed tomography (CT) characteristics, and serum tumor markers to forecast EGFR mutation status in NSCLC patients. Methods Retrospective data collection was conducted on NSCLC patients diagnosed between January 2018 and June 2019 at the First Affiliated Hospital of Zhengzhou University, with available molecular pathology results. Clinical information, CT imaging features, and serum tumor marker levels were compiled. Four distinct models were employed in constructing the diagnostic model. Model diagnostic efficacy was assessed through receiver operating characteristic (ROC) area under the curve (AUC) values and calibration curves. DeLong's test was administered to validate model robustness. Results Our study encompassed 748 participants. Logistic regression modeling, trained with the aforementioned variables, demonstrated remarkable predictive capability, achieving an AUC of 0.805 (95% confidence interval (CI) [0.766-0.844]) in the primary cohort and 0.753 (95% CI [0.687-0.818]) in the validation cohort. Calibration plots suggested a favorable fit of the model to the data. Conclusions The developed logistic regression model emerges as a promising tool for forecasting EGFR mutation status. It holds potential to aid clinicians in more precisely identifying patients likely to benefit from EGFR molecular testing and facilitating targeted therapy decision-making, particularly in scenarios where molecular testing is impractical or inaccessible.
Collapse
Affiliation(s)
- Jimin Hao
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan, China
| | - Zhigang Zhou
- Department of Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunling Zhao
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Yang L, Ding H, Gao X, Xu Y, Xu S, Wang K. Can we skip invasive biopsy of sentinel lymph nodes? A preliminary investigation to predict sentinel lymph node status using PET/CT-based radiomics. BMC Cancer 2024; 24:1316. [PMID: 39455907 PMCID: PMC11515836 DOI: 10.1186/s12885-024-13031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sentinel lymph node (SLN) biopsy (SLNB) is considered the gold standard for detecting SLN metastases in patients with invasive ductal breast cancer (IDC). However, SLNB is invasive and associated with several complications. Thus, this study aimed to evaluate the diagnostic performance of a non-invasive radiomics analysis utilizing 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) for assessing SLN metastasis in IDC patients. METHODS This retrospective study included 132 patients with biopsy-confirmed IDC, who underwent 18F-FDG PET/CT scans prior to mastectomy or breast-conserving surgery with SLNB. Tumor resection or SLNB was conducted within one-week post-scan. Clinical data and metabolic parameters were analyzed to identify independent SLN metastasis predictors. Radiomic features were extracted from each PET volume of interest (VOI) and CT-VOI. Feature selection involved univariate and multivariate logistic regression analysis, and the least absolute shrinkage and selection operator (LASSO) method. Three models were developed to predict SLN status using the random forest (RF), decision tree (DT), and k-Nearest Neighbors (KNN) classifiers. Model performance was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS The study included 91 cases (32 SLN-positive and 59 SLN-negative patients) in the training cohort and 41 cases (29 SLN-positive and 12 SLN-negative patients) in the validation cohort. Multivariate logistic regression analysis identified Ki 67 and TLG as independent predictors of SLN status. Five PET-derived features, three CT-derived features, and two clinical variables were selected for model development. The AUC values of the RF, KNN, and DT models for the training cohort were 0.887, 0.849, and 0.824, respectively, and for the validation cohort were 0.856, 0.830, and 0.819, respectively. The RF model demonstrated the highest accuracy for the preoperative prediction of SLN metastasis in IDC patients. CONCLUSION The PET-CT radiomics approach may offer robust and non-invasive predictors for SLN status in IDC patients, potentially aiding in the planning of personalized treatment strategies for IDC patients.
Collapse
Affiliation(s)
- Liping Yang
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Hongchao Ding
- Department of Physical Diagnostics, Heilongjiang Provincial Hospital, Harbin, China
| | - Xing Gao
- Department of Physical Diagnostics, Heilongjiang Provincial Hospital, Harbin, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Shichuan Xu
- Department of Medical Instruments, Second Hospital of Harbin, Harbin, 150001, China.
| | - Kezheng Wang
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
| |
Collapse
|
3
|
Zuo Y, Liu Q, Li N, Li P, Fang Y, Bian L, Zhang J, Song S. Explainable 18F-FDG PET/CT radiomics model for predicting EGFR mutation status in lung adenocarcinoma: a two-center study. J Cancer Res Clin Oncol 2024; 150:469. [PMID: 39436414 PMCID: PMC11496337 DOI: 10.1007/s00432-024-05998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
PURPOSE To establish an explainable 18F-FDG PET/CT-derived prediction model to identify EGFR mutation status and subtypes (EGFR wild, EGFR-E19, and EGFR-E21) in lung adenocarcinoma (LUAD). METHODS Baseline 18F-FDG PET/CT images of 478 patients with LUAD from 2 hospitals were collected. Data from hospital A (n = 390) was randomly split into a training group (n = 312) and an internal test group (n = 78), with data from hospital B (n = 88) utilized for external test. Further, a total of 4,760 handcrafted radiomics features (HRFs) were extracted from PET/CT scans. Candidates for the prediction model were constructed by cross-combinations of 11 feature selection methods and 7 classifiers. The optimal model was determined by combining the results of cross-center data validation and model visualization (Yellowbrick). The predictive performance was assessed via receiver operating characteristic curve, confusion matrix and classification report. Four explainable artificial intelligence technologies were used for optimal model interpretation. RESULTS Sex and SUVmax were selected as clinical risk factors, which were then combined with 8 robust PET/CT HRFs to establish the models. The optimal performance was obtained by combining a light gradient boosting machine classifier with random forest feature selection method achieving an optimal performance with a macro-average AUC of 0.75 in the internal test group and 0.81 in the external test group. CONCLUSION The explainable EGFR mutation status prediction model have certain clinical practicability and good generalization performance, which may help in the timely selection of treatment options and prognosis prediction in patients with LUAD.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, shanghai, 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, shanghai, 200032, P. R. China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, shanghai, 200433, P. R. China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, shanghai, 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, shanghai, 200032, P. R. China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, shanghai, 200433, P. R. China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, shanghai, 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, shanghai, 200032, P. R. China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, shanghai, 200433, P. R. China
| | - Panli Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, shanghai, 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, shanghai, 200032, P. R. China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, shanghai, 200433, P. R. China
| | - Yichong Fang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, P. R. China
| | - Linjie Bian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, shanghai, 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, shanghai, 200032, P. R. China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, shanghai, 200433, P. R. China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, shanghai, 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, shanghai, 200032, P. R. China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, shanghai, 200433, P. R. China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, P. R. China.
- Center for Biomedical Imaging, Fudan University, shanghai, 200032, P. R. China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, shanghai, 200032, P. R. China.
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, shanghai, 200433, P. R. China.
| |
Collapse
|
4
|
Zhang Y, Huang W, Jiao H, Kang L. PET radiomics in lung cancer: advances and translational challenges. EJNMMI Phys 2024; 11:81. [PMID: 39361110 PMCID: PMC11450131 DOI: 10.1186/s40658-024-00685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Radiomics is an emerging field of medical imaging that aims at improving the accuracy of diagnosis, prognosis, treatment planning and monitoring non-invasively through the automated or semi-automated quantitative analysis of high-dimensional image features. Specifically in the field of nuclear medicine, radiomics utilizes imaging methods such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) to evaluate biomarkers related to metabolism, blood flow, cellular activity and some biological pathways. Lung cancer ranks among the leading causes of cancer-related deaths globally, and radiomics analysis has shown great potential in guiding individualized therapy, assessing treatment response, and predicting clinical outcomes. In this review, we summarize the current state-of-the-art radiomics progress in lung cancer, highlighting the potential benefits and existing limitations of this approach. The radiomics workflow was introduced first including image acquisition, segmentation, feature extraction, and model building. Then the published literatures were described about radiomics-based prediction models for lung cancer diagnosis, differentiation, prognosis and efficacy evaluation. Finally, we discuss current challenges and provide insights into future directions and potential opportunities for integrating radiomics into routine clinical practice.
Collapse
Affiliation(s)
- Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Hao Jiao
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
| |
Collapse
|
5
|
Amrane K, Meur CL, Thuillier P, Berthou C, Uguen A, Deandreis D, Bourhis D, Bourbonne V, Abgral R. Review on radiomic analysis in 18F-fluorodeoxyglucose positron emission tomography for prediction of melanoma outcomes. Cancer Imaging 2024; 24:87. [PMID: 38970050 PMCID: PMC11225300 DOI: 10.1186/s40644-024-00732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
Over the past decade, several strategies have revolutionized the clinical management of patients with cutaneous melanoma (CM), including immunotherapy and targeted tyrosine kinase inhibitor (TKI)-based therapies. Indeed, immune checkpoint inhibitors (ICIs), alone or in combination, represent the standard of care for patients with advanced disease without an actionable mutation. Notably BRAF combined with MEK inhibitors represent the therapeutic standard for disease disclosing BRAF mutation. At the same time, FDG PET/CT has become part of the routine staging and evaluation of patients with cutaneous melanoma. There is growing interest in using FDG PET/CT measurements to predict response to ICI therapy and/or target therapy. While semiquantitative values such as standardized uptake value (SUV) are limited for predicting outcome, new measures including tumor metabolic volume, total lesion glycolysis and radiomics seem promising as potential imaging biomarkers for nuclear medicine. The aim of this review, prepared by an interdisciplinary group of experts, is to take stock of the current literature on radiomics approaches that could improve outcomes in CM.
Collapse
Affiliation(s)
- Karim Amrane
- Department of Oncology, Regional Hospital of Morlaix, Morlaix, 29600, France.
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France.
| | - Coline Le Meur
- Department of Radiotherapy, University Hospital of Brest, Brest, France
| | - Philippe Thuillier
- Department of Endocrinology, University Hospital of Brest, Brest, France
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
| | - Christian Berthou
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France
- Department of Hematology, University Hospital of Brest, Brest, France
| | - Arnaud Uguen
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France
- Department of Pathology, University Hospital of Brest, Brest, France
| | - Désirée Deandreis
- Department of Nuclear Medicine, Gustave Roussy Institute, University of Paris Saclay, Paris, France
| | - David Bourhis
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Vincent Bourbonne
- Department of Radiotherapy, University Hospital of Brest, Brest, France
- Inserm, UMR1101, LaTIM, University of Western Brittany, Brest, France
| | - Ronan Abgral
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| |
Collapse
|
6
|
Xu N, Wang J, Dai G, Lu T, Li S, Deng K, Song J. EfficientNet-Based System for Detecting EGFR-Mutant Status and Predicting Prognosis of Tyrosine Kinase Inhibitors in Patients with NSCLC. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1086-1099. [PMID: 38361006 PMCID: PMC11169294 DOI: 10.1007/s10278-024-01022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
We aimed to develop and validate a deep learning-based system using pre-therapy computed tomography (CT) images to detect epidermal growth factor receptor (EGFR)-mutant status in patients with non-small cell lung cancer (NSCLC) and predict the prognosis of advanced-stage patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors (TKI). This retrospective, multicenter study included 485 patients with NSCLC from four hospitals. Of them, 339 patients from three centers were included in the training dataset to develop an EfficientNetV2-L-based model (EME) for predicting EGFR-mutant status, and the remaining patients were assigned to an independent test dataset. EME semantic features were extracted to construct an EME-prognostic model to stratify the prognosis of EGFR-mutant NSCLC patients receiving EGFR-TKI. A comparison of EME and radiomics was conducted. Additionally, we included patients from The Cancer Genome Atlas lung adenocarcinoma dataset with both CT images and RNA sequencing data to explore the biological associations between EME score and EGFR-related biological processes. EME obtained an area under the curve (AUC) of 0.907 (95% CI 0.840-0.926) on the test dataset, superior to the radiomics model (P = 0.007). The EME and radiomics fusion model showed better (AUC, 0.941) but not significantly increased performance (P = 0.895) compared with EME. In prognostic stratification, the EME-prognostic model achieved the best performance (C-index, 0.711). Moreover, the EME-prognostic score showed strong associations with biological pathways related to EGFR expression and EGFR-TKI efficacy. EME demonstrated a non-invasive and biologically interpretable approach to predict EGFR status, stratify survival prognosis, and correlate biological pathways in patients with NSCLC.
Collapse
Affiliation(s)
- Nan Xu
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Gang Dai
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, 230036, China
| | - Tao Lu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Shu Li
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, 230036, China
| | - Jiangdian Song
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
7
|
Rogasch JMM, Shi K, Kersting D, Seifert R. Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET). Nuklearmedizin 2023; 62:361-369. [PMID: 37995708 PMCID: PMC10667066 DOI: 10.1055/a-2198-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
AIM Despite a vast number of articles on radiomics and machine learning in positron emission tomography (PET) imaging, clinical applicability remains limited, partly owing to poor methodological quality. We therefore systematically investigated the methodology described in publications on radiomics and machine learning for PET-based outcome prediction. METHODS A systematic search for original articles was run on PubMed. All articles were rated according to 17 criteria proposed by the authors. Criteria with >2 rating categories were binarized into "adequate" or "inadequate". The association between the number of "adequate" criteria per article and the date of publication was examined. RESULTS One hundred articles were identified (published between 07/2017 and 09/2023). The median proportion of articles per criterion that were rated "adequate" was 65% (range: 23-98%). Nineteen articles (19%) mentioned neither a test cohort nor cross-validation to separate training from testing. The median number of criteria with an "adequate" rating per article was 12.5 out of 17 (range, 4-17), and this did not increase with later dates of publication (Spearman's rho, 0.094; p = 0.35). In 22 articles (22%), less than half of the items were rated "adequate". Only 8% of articles published the source code, and 10% made the dataset openly available. CONCLUSION Among the articles investigated, methodological weaknesses have been identified, and the degree of compliance with recommendations on methodological quality and reporting shows potential for improvement. Better adherence to established guidelines could increase the clinical significance of radiomics and machine learning for PET-based outcome prediction and finally lead to the widespread use in routine clinical practice.
Collapse
Affiliation(s)
- Julian Manuel Michael Rogasch
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Ge X, Gao J, Niu R, Shi Y, Shao X, Wang Y, Shao X. New research progress on 18F-FDG PET/CT radiomics for EGFR mutation prediction in lung adenocarcinoma: a review. Front Oncol 2023; 13:1242392. [PMID: 38094613 PMCID: PMC10716448 DOI: 10.3389/fonc.2023.1242392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/16/2023] [Indexed: 11/09/2024] Open
Abstract
Lung cancer, the most frequently diagnosed cancer worldwide, is the leading cause of cancer-associated deaths. In recent years, significant progress has been achieved in basic and clinical research concerning the epidermal growth factor receptor (EGFR), and the treatment of lung adenocarcinoma has also entered a new era of individualized, targeted therapies. However, the detection of lung adenocarcinoma is usually invasive. 18F-FDG PET/CT can be used as a noninvasive molecular imaging approach, and radiomics can acquire high-throughput data from standard images. These methods play an increasingly prominent role in diagnosing and treating cancers. Herein, we reviewed the progress in applying 18F-FDG PET/CT and radiomics in lung adenocarcinoma clinical research and how these data are analyzed via traditional statistics, machine learning, and deep learning to predict EGFR mutation status, all of which achieved satisfactory results. Traditional statistics extract features effectively, machine learning achieves higher accuracy with complex algorithms, and deep learning obtains significant results through end-to-end methods. Future research should combine these methods to achieve more accurate predictions, providing reliable evidence for the precision treatment of lung adenocarcinoma. At the same time, facing challenges such as data insufficiency and high algorithm complexity, future researchers must continuously explore and optimize to better apply to clinical practice.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Jianxiong Gao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Rong Niu
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Yunmei Shi
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Yuetao Wang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Xiaonan Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| |
Collapse
|
9
|
Felfli M, Liu Y, Zerka F, Voyton C, Thinnes A, Jacques S, Iannessi A, Bodard S. Systematic Review, Meta-Analysis and Radiomics Quality Score Assessment of CT Radiomics-Based Models Predicting Tumor EGFR Mutation Status in Patients with Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:11433. [PMID: 37511192 PMCID: PMC10380456 DOI: 10.3390/ijms241411433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Assessment of the quality and current performance of computed tomography (CT) radiomics-based models in predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small-cell lung carcinoma (NSCLC). Two medical literature databases were systematically searched, and articles presenting original studies on CT radiomics-based models for predicting EGFR mutation status were retrieved. Forest plots and related statistical tests were performed to summarize the model performance and inter-study heterogeneity. The methodological quality of the selected studies was assessed via the Radiomics Quality Score (RQS). The performance of the models was evaluated using the area under the curve (ROC AUC). The range of the Risk RQS across the selected articles varied from 11 to 24, indicating a notable heterogeneity in the quality and methodology of the included studies. The average score was 15.25, which accounted for 42.34% of the maximum possible score. The pooled Area Under the Curve (AUC) value was 0.801, indicating the accuracy of CT radiomics-based models in predicting the EGFR mutation status. CT radiomics-based models show promising results as non-invasive alternatives for predicting EGFR mutation status in NSCLC patients. However, the quality of the studies using CT radiomics-based models varies widely, and further harmonization and prospective validation are needed before the generalization of these models.
Collapse
Affiliation(s)
- Mehdi Felfli
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Yan Liu
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Fadila Zerka
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Charles Voyton
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Alexandre Thinnes
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Sebastien Jacques
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Antoine Iannessi
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
- Centre Antoine Lacassagne, F-06100 Nice, France
| | - Sylvain Bodard
- AP-HP, Service d’Imagerie Adulte, Hôpital Necker Enfants Malades, Université de Paris Cité, F-75015 Paris, France
- CNRS UMR 7371, INSERM U 1146, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, F-75006 Paris, France
| |
Collapse
|
10
|
Gao J, Niu R, Shi Y, Shao X, Jiang Z, Ge X, Wang Y, Shao X. The predictive value of [ 18F]FDG PET/CT radiomics combined with clinical features for EGFR mutation status in different clinical staging of lung adenocarcinoma. EJNMMI Res 2023; 13:26. [PMID: 37014500 PMCID: PMC10073367 DOI: 10.1186/s13550-023-00977-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND This study aims to construct radiomics models based on [18F]FDG PET/CT using multiple machine learning methods to predict the EGFR mutation status of lung adenocarcinoma and evaluate whether incorporating clinical parameters can improve the performance of radiomics models. METHODS A total of 515 patients were retrospectively collected and divided into a training set (n = 404) and an independent testing set (n = 111) according to their examination time. After semi-automatic segmentation of PET/CT images, the radiomics features were extracted, and the best feature sets of CT, PET, and PET/CT modalities were screened out. Nine radiomics models were constructed using logistic regression (LR), random forest (RF), and support vector machine (SVM) methods. According to the performance in the testing set, the best model of the three modalities was kept, and its radiomics score (Rad-score) was calculated. Furthermore, combined with the valuable clinical parameters (gender, smoking history, nodule type, CEA, SCC-Ag), a joint radiomics model was built. RESULTS Compared with LR and SVM, the RF Rad-score showed the best performance among the three radiomics models of CT, PET, and PET/CT (training and testing sets AUC: 0.688, 0.666, and 0.698 vs. 0.726, 0.678, and 0.704). Among the three joint models, the PET/CT joint model performed the best (training and testing sets AUC: 0.760 vs. 0.730). The further stratified analysis found that CT_RF had the best prediction effect for stage I-II lesions (training set and testing set AUC: 0.791 vs. 0.797), while PET/CT joint model had the best prediction effect for stage III-IV lesions (training and testing sets AUC: 0.722 vs. 0.723). CONCLUSIONS Combining with clinical parameters can improve the predictive performance of PET/CT radiomics model, especially for patients with advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Jianxiong Gao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Rong Niu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Yunmei Shi
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Zhenxing Jiang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xinyu Ge
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China.
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, 213003, China.
| |
Collapse
|