1
|
Zhou J, Li X, Demeke D, Dinh TA, Yang Y, Janowczyk AR, Zee J, Holzman L, Mariani L, Chakrabarty K, Barisoni L, Hodgin JB, Lafata KJ. Characterization of arteriosclerosis based on computer-aided measurements of intra-arterial thickness. J Med Imaging (Bellingham) 2024; 11:057501. [PMID: 39398866 PMCID: PMC11466048 DOI: 10.1117/1.jmi.11.5.057501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Our purpose is to develop a computer vision approach to quantify intra-arterial thickness on digital pathology images of kidney biopsies as a computational biomarker of arteriosclerosis. Approach The severity of the arteriosclerosis was scored (0 to 3) in 753 arteries from 33 trichrome-stained whole slide images (WSIs) of kidney biopsies, and the outer contours of the media, intima, and lumen were manually delineated by a renal pathologist. We then developed a multi-class deep learning (DL) framework for segmenting the different intra-arterial compartments (training dataset: 648 arteries from 24 WSIs; testing dataset: 105 arteries from 9 WSIs). Subsequently, we employed radial sampling and made measurements of media and intima thickness as a function of spatially encoded polar coordinates throughout the artery. Pathomic features were extracted from the measurements to collectively describe the arterial wall characteristics. The technique was first validated through numerical analysis of simulated arteries, with systematic deformations applied to study their effect on arterial thickness measurements. We then compared these computationally derived measurements with the pathologists' grading of arteriosclerosis. Results Numerical validation shows that our measurement technique adeptly captured the decreasing smoothness in the intima and media thickness as the deformation increases in the simulated arteries. Intra-arterial DL segmentations of media, intima, and lumen achieved Dice scores of 0.84, 0.78, and 0.86, respectively. Several significant associations were identified between arteriosclerosis grade and pathomic features using our technique (e.g., intima-media ratio average [ τ = 0.52 , p < 0.0001 ]) through Kendall's tau analysis. Conclusions We developed a computer vision approach to computationally characterize intra-arterial morphology on digital pathology images and demonstrate its feasibility as a potential computational biomarker of arteriosclerosis.
Collapse
Affiliation(s)
- Jin Zhou
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
| | - Xiang Li
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
| | - Dawit Demeke
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, United States
| | - Timothy A. Dinh
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, United States
| | - Yingbao Yang
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, United States
| | - Andrew R. Janowczyk
- Geneva University Hospitals, Department of Oncology, Division of Precision Oncology, Geneva, Switzerland
- Geneva University Hospitals, Department of Diagnostics, Division of Clinical Pathology, Geneva, Switzerland
- Emory University, Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Jarcy Zee
- University of Pennsylvania, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania, United States
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Lawrence Holzman
- University of Pennsylvania, Department of Medicine, Renal-Electrolyte and Hypertension Division, Philadelphia, Pennsylvania, United States
| | - Laura Mariani
- University of Michigan, Department of Internal Medicine, Division of Nephrology, Ann Arbor, Michigan, United States
| | - Krishnendu Chakrabarty
- Arizona State University, School of Electrical, Computer and Energy Engineering, Tempe, Arizona, United States
| | - Laura Barisoni
- Duke University, Division of Artificial Intelligence and Computational Pathology, Department of Pathology, Durham, North Carolina, United States
- Duke University, Division of Nephrology Department of Medicine, Durham, North Carolina, United States
| | - Jeffrey B. Hodgin
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, United States
| | - Kyle J. Lafata
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Division of Artificial Intelligence and Computational Pathology, Department of Pathology, Durham, North Carolina, United States
- Duke University, Department of Radiology, Durham, North Carolina, United States
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
| |
Collapse
|
2
|
Pandey S, Kutuk T, Abdalah MA, Stringfield O, Ravi H, Mills MN, Graham JA, Latifi K, Moreno WA, Ahmed KA, Raghunand N. Prediction of radiologic outcome-optimized dose plans and post-treatment magnetic resonance images: A proof-of-concept study in breast cancer brain metastases treated with stereotactic radiosurgery. Phys Imaging Radiat Oncol 2024; 31:100602. [PMID: 39040435 PMCID: PMC11261135 DOI: 10.1016/j.phro.2024.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background and purpose Information in multiparametric Magnetic Resonance (mpMR) images is relatable to voxel-level tumor response to Radiation Treatment (RT). We have investigated a deep learning framework to predict (i) post-treatment mpMR images from pre-treatment mpMR images and the dose map ("forward models"), and, (ii) the RT dose map that will produce prescribed changes within the Gross Tumor Volume (GTV) on post-treatment mpMR images ("inverse model"), in Breast Cancer Metastases to the Brain (BCMB) treated with Stereotactic Radiosurgery (SRS). Materials and methods Local outcomes, planning computed tomography (CT) images, dose maps, and pre-treatment and post-treatment Apparent Diffusion Coefficient of water (ADC) maps, T1-weighted unenhanced (T1w) and contrast-enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inversion Recovery (FLAIR) mpMR images were curated from 39 BCMB patients. mpMR images were co-registered to the planning CT and intensity-calibrated. A 2D pix2pix architecture was used to train 5 forward models (ADC, T2w, FLAIR, T1w, T1wCE) and 1 inverse model on 1940 slices from 18 BCMB patients, and tested on 437 slices from another 9 BCMB patients. Results Root Mean Square Percent Error (RMSPE) within the GTV between predicted and ground-truth post-RT images for the 5 forward models, in 136 test slices containing GTV, were (mean ± SD) 0.12 ± 0.044 (ADC), 0.14 ± 0.066 (T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 (FLAIR). RMSPE within the GTV on the same 136 test slices, between the predicted and ground-truth dose maps, was 0.37 ± 0.20 for the inverse model. Conclusions A deep learning-based approach for radiologic outcome-optimized dose planning in SRS of BCMB has been demonstrated.
Collapse
Affiliation(s)
- Shraddha Pandey
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Tugce Kutuk
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mahmoud A. Abdalah
- Quantitative Imaging Shared Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olya Stringfield
- Quantitative Imaging Shared Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Matthew N. Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jasmine A. Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Wilfrido A. Moreno
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Kamran A. Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Laudicella R, Comelli A, Schwyzer M, Stefano A, Konukoglu E, Messerli M, Baldari S, Eberli D, Burger IA. PSMA-positive prostatic volume prediction with deep learning based on T2-weighted MRI. LA RADIOLOGIA MEDICA 2024; 129:901-911. [PMID: 38700556 PMCID: PMC11168990 DOI: 10.1007/s11547-024-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024]
Abstract
PURPOSE High PSMA expression might be correlated with structural characteristics such as growth patterns on histopathology, not recognized by the human eye on MRI images. Deep structural image analysis might be able to detect such differences and therefore predict if a lesion would be PSMA positive. Therefore, we aimed to train a neural network based on PSMA PET/MRI scans to predict increased prostatic PSMA uptake based on the axial T2-weighted sequence alone. MATERIAL AND METHODS All patients undergoing simultaneous PSMA PET/MRI for PCa staging or biopsy guidance between April 2016 and December 2020 at our institution were selected. To increase the specificity of our model, the prostatic beds on PSMA PET scans were dichotomized in positive and negative regions using an SUV threshold greater than 4 to generate a PSMA PET map. Then, a C-ENet was trained on the T2 images of the training cohort to generate a predictive prostatic PSMA PET map. RESULTS One hundred and fifty-four PSMA PET/MRI scans were available (133 [68Ga]Ga-PSMA-11 and 21 [18F]PSMA-1007). Significant cancer was present in 127 of them. The whole dataset was divided into a training cohort (n = 124) and a test cohort (n = 30). The C-ENet was able to predict the PSMA PET map with a dice similarity coefficient of 69.5 ± 15.6%. CONCLUSION Increased prostatic PSMA uptake on PET might be estimated based on T2 MRI alone. Further investigation with larger cohorts and external validation is needed to assess whether PSMA uptake can be predicted accurately enough to help in the interpretation of mpMRI.
Collapse
Affiliation(s)
- Riccardo Laudicella
- Department of Nuclear Medicine, University Hospital Zürich, University of Zurich, Zurich, Switzerland.
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy.
- Ri.MED Foundation, Palermo, Italy.
| | | | - Moritz Schwyzer
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | | | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Daniel Eberli
- Department of Urology, University Hospital of Zürich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zürich, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Cantonal Hospital Baden, Baden, Switzerland
| |
Collapse
|
4
|
Xu K, Kang H. A Review of Machine Learning Approaches for Brain Positron Emission Tomography Data Analysis. Nucl Med Mol Imaging 2024; 58:203-212. [PMID: 38932757 PMCID: PMC11196571 DOI: 10.1007/s13139-024-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 06/28/2024] Open
Abstract
Positron emission tomography (PET) imaging has moved forward the development of medical diagnostics and research across various domains, including cardiology, neurology, infection detection, and oncology. The integration of machine learning (ML) algorithms into PET data analysis has further enhanced their capabilities of including disease diagnosis and classification, image segmentation, and quantitative analysis. ML algorithms empower researchers and clinicians to extract valuable insights from complex big PET datasets, which enabling automated pattern recognition, predictive health outcome modeling, and more efficient data analysis. This review explains the basic knowledge of PET imaging, statistical methods for PET image analysis, and challenges of PET data analysis. We also discussed the improvement of analysis capabilities by combining PET data with machine learning algorithms and the application of this combination in various aspects of PET image research. This review also highlights current trends and future directions in PET imaging, emphasizing the driving and critical role of machine learning and big PET image data analytics in improving diagnostic accuracy and personalized medical approaches. Integration between PET imaging will shape the future of medical diagnosis and research.
Collapse
Affiliation(s)
- Ke Xu
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1100, Nashville, TN 37203 USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1100, Nashville, TN 37203 USA
| |
Collapse
|
5
|
Stevens JB, Riley BA, Je J, Gao Y, Wang C, Mowery YM, Brizel DM, Yin FF, Liu JG, Lafata KJ. Radiomics on spatial-temporal manifolds via Fokker-Planck dynamics. Med Phys 2024; 51:3334-3347. [PMID: 38190505 DOI: 10.1002/mp.16905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Delta radiomics is a high-throughput computational technique used to describe quantitative changes in serial, time-series imaging by considering the relative change in radiomic features of images extracted at two distinct time points. Recent work has demonstrated a lack of prognostic signal of radiomic features extracted using this technique. We hypothesize that this lack of signal is due to the fundamental assumptions made when extracting features via delta radiomics, and that other methods should be investigated. PURPOSE The purpose of this work was to show a proof-of-concept of a new radiomics paradigm for sparse, time-series imaging data, where features are extracted from a spatial-temporal manifold modeling the time evolution between images, and to assess the prognostic value on patients with oropharyngeal cancer (OPC). METHODS To accomplish this, we developed an algorithm to mathematically describe the relationship between two images acquired at timet = 0 $t = 0$ andt > 0 $t > 0$ . These images serve as boundary conditions of a partial differential equation describing the transition from one image to the other. To solve this equation, we propagate the position and momentum of each voxel according to Fokker-Planck dynamics (i.e., a technique common in statistical mechanics). This transformation is driven by an underlying potential force uniquely determined by the equilibrium image. The solution generates a spatial-temporal manifold (3 spatial dimensions + time) from which we define dynamic radiomic features. First, our approach was numerically verified by stochastically sampling dynamic Gaussian processes of monotonically decreasing noise. The transformation from high to low noise was compared between our Fokker-Planck estimation and simulated ground-truth. To demonstrate feasibility and clinical impact, we applied our approach to 18F-FDG-PET images to estimate early metabolic response of patients (n = 57) undergoing definitive (chemo)radiation for OPC. Images were acquired pre-treatment and 2-weeks intra-treatment (after 20 Gy). Dynamic radiomic features capturing changes in texture and morphology were then extracted. Patients were partitioned into two groups based on similar dynamic radiomic feature expression via k-means clustering and compared by Kaplan-Meier analyses with log-rank tests (p < 0.05). These results were compared to conventional delta radiomics to test the added value of our approach. RESULTS Numerical results confirmed our technique can recover image noise characteristics given sparse input data as boundary conditions. Our technique was able to model tumor shrinkage and metabolic response. While no delta radiomics features proved prognostic, Kaplan-Meier analyses identified nine significant dynamic radiomic features. The most significant feature was Gray-Level-Size-Zone-Matrix gray-level variance (p = 0.011), which demonstrated prognostic improvement over its corresponding delta radiomic feature (p = 0.722). CONCLUSIONS We developed, verified, and demonstrated the prognostic value of a novel, physics-based radiomics approach over conventional delta radiomics via data assimilation of quantitative imaging and differential equations.
Collapse
Affiliation(s)
- Jack B Stevens
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| | - Breylon A Riley
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| | - Jihyeon Je
- Department of Electrical and Computer Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Yuan Gao
- Department of Mathematics, Purdue University, West Lafayette, Indiana, USA
| | - Chunhao Wang
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Radiation Oncology, UPMC Hillman Cancer Center/University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David M Brizel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jian-Guo Liu
- Department of Mathematics, Duke University, Durham, North Carolina, USA
- Department of Physics, Duke University, Durham, North Carolina, USA
| | - Kyle J Lafata
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
6
|
Yang Z, Hu Z, Ji H, Lafata K, Vaios E, Floyd S, Yin FF, Wang C. A neural ordinary differential equation model for visualizing deep neural network behaviors in multi-parametric MRI-based glioma segmentation. Med Phys 2023; 50:4825-4838. [PMID: 36840621 PMCID: PMC10440249 DOI: 10.1002/mp.16286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
PURPOSE To develop a neural ordinary differential equation (ODE) model for visualizing deep neural network behavior during multi-parametric MRI-based glioma segmentation as a method to enhance deep learning explainability. METHODS By hypothesizing that deep feature extraction can be modeled as a spatiotemporally continuous process, we implemented a novel deep learning model, Neural ODE, in which deep feature extraction was governed by an ODE parameterized by a neural network. The dynamics of (1) MR images after interactions with the deep neural network and (2) segmentation formation can thus be visualized after solving the ODE. An accumulative contribution curve (ACC) was designed to quantitatively evaluate each MR image's utilization by the deep neural network toward the final segmentation results. The proposed Neural ODE model was demonstrated using 369 glioma patients with a 4-modality multi-parametric MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. Three Neural ODE models were trained to segment enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The key MRI modalities with significant utilization by deep neural networks were identified based on ACC analysis. Segmentation results by deep neural networks using only the key MRI modalities were compared to those using all four MRI modalities in terms of Dice coefficient, accuracy, sensitivity, and specificity. RESULTS All Neural ODE models successfully illustrated image dynamics as expected. ACC analysis identified T1-Ce as the only key modality in ET and TC segmentations, while both FLAIR and T2 were key modalities in WT segmentation. Compared to the U-Net results using all four MRI modalities, the Dice coefficient of ET (0.784→0.775), TC (0.760→0.758), and WT (0.841→0.837) using the key modalities only had minimal differences without significance. Accuracy, sensitivity, and specificity results demonstrated the same patterns. CONCLUSION The Neural ODE model offers a new tool for optimizing the deep learning model inputs with enhanced explainability. The presented methodology can be generalized to other medical image-related deep-learning applications.
Collapse
Affiliation(s)
- Zhenyu Yang
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Zongsheng Hu
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Hangjie Ji
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
| | - Kyle Lafata
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Eugene Vaios
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Scott Floyd
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Fang-Fang Yin
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Chunhao Wang
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
7
|
Omobolaji Alabi R, Sjöblom A, Carpén T, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Application of artificial intelligence for overall survival risk stratification in oropharyngeal carcinoma: A validation of ProgTOOL. Int J Med Inform 2023; 175:105064. [PMID: 37094545 DOI: 10.1016/j.ijmedinf.2023.105064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND In recent years, there has been a surge in machine learning-based models for diagnosis and prognostication of outcomes in oncology. However, there are concerns relating to the model's reproducibility and generalizability to a separate patient cohort (i.e., external validation). OBJECTIVES This study primarily provides a validation study for a recently introduced and publicly available machine learning (ML) web-based prognostic tool (ProgTOOL) for overall survival risk stratification of oropharyngeal squamous cell carcinoma (OPSCC). Additionally, we reviewed the published studies that have utilized ML for outcome prognostication in OPSCC to examine how many of these models were externally validated, type of external validation, characteristics of the external dataset, and diagnostic performance characteristics on the internal validation (IV) and external validation (EV) datasets were extracted and compared. METHODS We used a total of 163 OPSCC patients obtained from the Helsinki University Hospital to externally validate the ProgTOOL for generalizability. In addition, PubMed, OvidMedline, Scopus, and Web of Science databases were systematically searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS The ProgTOOL produced a predictive performance of 86.5% balanced accuracy, Mathew's correlation coefficient of 0.78, Net Benefit (0.7) and Brier score (0.06) for overall survival stratification of OPSCC patients as either low-chance or high-chance. In addition, out of a total of 31 studies found to have used ML for the prognostication of outcomes in OPSCC, only seven (22.6%) reported a form of EV. Three studies (42.9%) each used either temporal EV or geographical EV while only one study (14.2%) used expert as a form of EV. Most of the studies reported a reduction in performance when externally validated. CONCLUSION The performance of the model in this validation study indicates that it may be generalized, therefore, bringing recommendations of the model for clinical evaluation closer to reality. However, the number of externally validated ML-based models for OPSCC is still relatively small. This significantly limits the transfer of these models for clinical evaluation and subsequently reduces the likelihood of the use of these models in daily clinical practice. As a gold standard, we recommend the use of geographical EV and validation studies to reveal biases and overfitting of these models. These recommendations are poised to facilitate the implementation of these models in clinical practice.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Anni Sjöblom
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Timo Carpén
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Niraula D, Cui S, Pakela J, Wei L, Luo Y, Ten Haken RK, El Naqa I. Current status and future developments in predicting outcomes in radiation oncology. Br J Radiol 2022; 95:20220239. [PMID: 35867841 PMCID: PMC9793488 DOI: 10.1259/bjr.20220239] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Advancements in data-driven technologies and the inclusion of information-rich multiomics features have significantly improved the performance of outcomes modeling in radiation oncology. For this current trend to be sustainable, challenges related to robust data modeling such as small sample size, low size to feature ratio, noisy data, as well as issues related to algorithmic modeling such as complexity, uncertainty, and interpretability, need to be mitigated if not resolved. Emerging computational technologies and new paradigms such as federated learning, human-in-the-loop, quantum computing, and novel interpretability methods show great potential in overcoming these challenges and bridging the gap towards precision outcome modeling in radiotherapy. Examples of these promising technologies will be presented and their potential role in improving outcome modeling will be discussed.
Collapse
Affiliation(s)
- Dipesh Niraula
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Sunan Cui
- Department of Radiation Oncology, Stanford Medicine, Stanford University, Stanford, USA
| | - Julia Pakela
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Yi Luo
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | | | - Issam El Naqa
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|