1
|
Rižner TL, Gjorgoska M. Steroid sulfatase and sulfotransferases in the estrogen and androgen action of gynecological cancers: current status and perspectives. Essays Biochem 2024:EBC20230096. [PMID: 38994718 DOI: 10.1042/ebc20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Sulfatase (STS) and sulfotransferases (SULT) have important role in the biosynthesis and action of steroid hormones. STS catalyzes the hydrolysis of estrone-sulfate (E1-S) and dehydroepiandrosterone-sulfate (DHEA-S), while sulfotransferases catalyze the reverse reaction and require 3-phosphoadenosine-5-phosphosulfate as a sulfate donor. These enzymes control the concentration of active estrogens and androgens in peripheral tissues. Aberant expression of STS and SULT genes has been found in both, benign hormone-dependent diseases and hormone-dependent cancers. The aim of this review is to present the current knowledge on the role of STS and SULT in gynecological cancers, endometrial (EC) and ovarian cancer (OC). EC is the most common and OC the most lethal gynecological cancer. These cancers primarily affect postmenopausal women and therefore rely on the local production of steroid hormones from inactive precursors, either DHEA-S or E1-S. Following cellular uptake by organic anion transporting polypeptides (OATP) or organic anion transporters (OAT), STS and SULT regulate the formation of active estrogens and androgens, thus disturbed balance between STS and SULT can contribute to the onset and progression of cancer. The importance of these enzymes in peripheral estrogen biosynthesis has long been recognized, and this review provides new data on the important role of STS and SULT in the formation and action of androgens, their regulation and inhibition, and their potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Gjorgoska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Dahmani C, Caron P, Simonyan D, Turcotte V, Grégoire J, Plante M, Guillemette C. Circulating adrenal 11-oxygenated androgens are associated with clinical outcome in endometrial cancer. Front Endocrinol (Lausanne) 2023; 14:1156680. [PMID: 37288302 PMCID: PMC10242140 DOI: 10.3389/fendo.2023.1156680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Context Recent evidence support that androgens play an important role in the etiology of endometrial cancer (EC). Adrenal-derived 11-oxygenated androgens are highly potent agonists of the androgen receptor (AR), comparable to testosterone (T) and dihydrotestosterone (DHT) that have not been studied in the context of EC. Methodology We studied a cohort of 272 newly diagnosed postmenopausal EC cases undergoing surgical treatment. Circulating concentrations of seven 11-oxygenated androgens including precursors, potent androgens and their metabolites were established in serum samples collected before and 1 month after surgery using a validated liquid chromatography tandem mass spectrometry method (LC-MS/MS). Free (unconjugated) and total (free + sulfate and glucuronide conjugates following enzymatic hydrolysis) were analyzed in relation to clinicopathological features, recurrence and disease-free survival (DFS). Results Levels of 11-oxygenated androgens were weakly correlated to those of canonical androgens such as testosterone (T) and dihydrotestosterone (DHT), with no evidence of their association with clinicopathological features. Levels of 11-oxygenated androgens declined after surgery but remained higher in overweight and obese compared to normal weight cases. Higher levels of preoperative free 11-ketoandrosterone (11KAST) were associated with an increased risk of recurrence (Hazard ratio (HR) of 2.99 (95%CI=1.09-8.18); P=0.03). Postoperative free 11β-hydroxyandrosterone (11OHAST) levels were adversely associated with recurrence and DFS (HR = 3.23 (1.11-9.40); P=0.03 and 3.27 (1.34-8.00); P=0.009, respectively). Conclusion 11-oxygenated androgen metabolites emerge as potential prognostic markers of EC.
Collapse
Affiliation(s)
- Cylia Dahmani
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center, Cancer Research Center (CRC) of Université Laval and Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Patrick Caron
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center, Cancer Research Center (CRC) of Université Laval and Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec Research Center, Québec, QC, Canada
| | - Véronique Turcotte
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center, Cancer Research Center (CRC) of Université Laval and Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Jean Grégoire
- Gynecologic Oncology Service, CHU de Québec, and Department of Obstetrics, Gynecology, Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie Plante
- Gynecologic Oncology Service, CHU de Québec, and Department of Obstetrics, Gynecology, Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center, Cancer Research Center (CRC) of Université Laval and Faculty of Pharmacy, Université Laval, Québec, QC, Canada
- Canada Research Chair in Pharmacogenomics, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Lv M, Yu J, Huang Y, Ma J, Xiang J, Wang Y, Li L, Zhang Z, Liao H. Androgen Signaling in Uterine Diseases: New Insights and New Targets. Biomolecules 2022; 12:1624. [PMID: 36358974 PMCID: PMC9687413 DOI: 10.3390/biom12111624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/06/2023] Open
Abstract
Common uterine diseases include endometriosis, uterine fibroids, endometrial polyps, endometrial hyperplasia, endometrial cancer, and endometrial dysfunction causing infertility. Patients with uterine diseases often suffer from abdominal pain, menorrhagia, infertility and other symptoms, which seriously impair their health and disturb their lives. Androgens play important roles in the normal physiological functions of the uterus and pathological progress of uterine diseases. Androgens in women are synthesized in the ovaries and adrenal glands. The action of androgens in the uterus is mainly mediated by its ligand androgen receptor (AR) that regulates transcription of the target genes. However, much less is known about the signaling pathways through which androgen functions in uterine diseases, and contradictory findings have been reported. This review summarizes and discusses the progress of research on androgens and the involvement of AR in uterine diseases. Future studies should focus on developing new therapeutic strategies that precisely target specific AR and their related signaling pathways in uterine diseases.
Collapse
Affiliation(s)
- Mu Lv
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Juanjuan Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China
| | - Jie Ma
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Xiang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yanqiu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai 200137, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| |
Collapse
|