1
|
Liang R, Hu C, Li H, Tang X. Research trends of glioma-related epilepsy: A bibliometric analysis from 2004 to 2023. J Cent Nerv Syst Dis 2024; 16:11795735241286653. [PMID: 39420955 PMCID: PMC11483774 DOI: 10.1177/11795735241286653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
Glioma-related epilepsy (GRE) is a hotspot in recent years and there remains many urgent unsolved issues. This study aimed to conduct bibliometric analysis on GRE research over the past 2 decades. We collected scientific outputs relating to GRE on Web of Science Core Collection (WoSCC) from 2004 to 2023 and conducted visual analysis using VOSviewer and Microsoft Excel. A total of 2697 publications were retrieved with an increasing trend over the past 20 years. The USA ranked first in publication number, total citation and H-index. Institut National de la Sante et de la Recherche Medicale (Inserm) was the institution with the most publications. In the field of GRE, core journals were Journal of Neurosurgery, Epilepsia and Neurology. Duffau, Hugues was the author with the most papers and total citations, and the highest H-index. Co-occurrence analysis revealed that the latest research focus of GRE were awake craniotomy, immunotherapy, cognitive impairment, and basic research on pathogenesis, with particular emphasis on the IDH1 mutation. This study intended to gain a deeper understanding of the current global GRE research and identify hotspots, as well as to provide theoretical reference for further studies.
Collapse
Affiliation(s)
| | | | - Haiyu Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Herbet G, Duffau H, Mandonnet E. Predictors of cognition after glioma surgery: connectotomy, structure-function phenotype, plasticity. Brain 2024; 147:2621-2635. [PMID: 38573324 DOI: 10.1093/brain/awae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Determining preoperatively the maximal extent of resection that would preserve cognitive functions is the core challenge of brain tumour surgery. Over the past decade, the methodological framework to achieve this goal has been thoroughly renewed: the population-level topographically-focused voxel-based lesion-symptom mapping has been progressively overshadowed by machine learning (ML) algorithmics, in which the problem is framed as predicting cognitive outcomes in a patient-specific manner from a typically large set of variables. However, the choice of these predictors is of utmost importance, as they should be both informative and parsimonious. In this perspective, we first introduce the concept of connectotomy: instead of parameterizing resection topography through the status (intact/resected) of a huge number of voxels (or parcels) paving the whole brain in the Cartesian 3D-space, the connectotomy models the resection in the connectivity space, by computing a handful number of networks disconnection indices, measuring how the structural connectivity sustaining each network of interest was hit by the resection. This connectivity-informed reduction of dimensionality is a necessary step for efficiently implementing ML tools, given the relatively small number of patient-examples in available training datasets. We further argue that two other major sources of interindividual variability must be considered to improve the accuracy with which outcomes are predicted: the underlying structure-function phenotype and neuroplasticity, for which we provide an in-depth review and propose new ways of determining relevant predictors. We finally discuss the benefits of our approach for precision surgery of glioma.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Praxiling lab, UMR5267 CNRS & Paul Valéry University, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Institut Universitaire de France, Paris 75000, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Team 'Plasticity of Central Nervous System, Stem Cells and Glial Tumors', U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier 34000, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, AP-HP, Paris 75010, France
- Frontlab, CNRS UMR 7225, INSERM U1127, Paris Brain Institute (ICM), Paris 75013, France
- Université de Paris Cité, UFR de médecine, Paris 75005, France
| |
Collapse
|
3
|
De Roeck L, Blommaert J, Dupont P, Sunaert S, Sleurs C, Lambrecht M. Brain network topology and its cognitive impact in adult glioma survivors. Sci Rep 2024; 14:12782. [PMID: 38834633 DOI: 10.1038/s41598-024-63716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024] Open
Abstract
Structural brain network topology can be altered in case of a brain tumor, due to both the tumor itself and its treatment. In this study, we explored the role of structural whole-brain and nodal network metrics and their association with cognitive functioning. Fifty WHO grade 2-3 adult glioma survivors (> 1-year post-therapy) and 50 matched healthy controls underwent a cognitive assessment, covering six cognitive domains. Raw cognitive assessment scores were transformed into w-scores, corrected for age and education. Furthermore, based on multi-shell diffusion-weighted MRI, whole-brain tractography was performed to create weighted graphs and to estimate whole-brain and nodal graph metrics. Hubs were defined based on nodal strength, betweenness centrality, clustering coefficient and shortest path length in healthy controls. Significant differences in these metrics between patients and controls were tested for the hub nodes (i.e. n = 12) and non-hub nodes (i.e. n = 30) in two mixed-design ANOVAs. Group differences in whole-brain graph measures were explored using Mann-Whitney U tests. Graph metrics that significantly differed were ultimately correlated with the cognitive domain-specific w-scores. Bonferroni correction was applied to correct for multiple testing. In survivors, the bilateral putamen were significantly less frequently observed as a hub (pbonf < 0.001). These nodes' assortativity values were positively correlated with attention (r(90) > 0.573, pbonf < 0.001), and proxy IQ (r(90) > 0.794, pbonf < 0.001). Attention and proxy IQ were significantly more often correlated with assortativity of hubs compared to non-hubs (pbonf < 0.001). Finally, the whole-brain graph measures of clustering coefficient (r = 0.685), global (r = 0.570) and local efficiency (r = 0.500) only correlated with proxy IQ (pbonf < 0.001). This study demonstrated potential reorganization of hubs in glioma survivors. Assortativity of these hubs was specifically associated with cognitive functioning, which could be important to consider in future modeling of cognitive outcomes and risk classification in glioma survivors.
Collapse
Affiliation(s)
- Laurien De Roeck
- Department of Radiotherapy and Oncology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Jeroen Blommaert
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Dupont
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte Sleurs
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Maarten Lambrecht
- Department of Radiotherapy and Oncology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Noll KR, Bradshaw M, Sheppard D, Wefel JS. Perioperative Neurocognitive Function in Glioma Surgery. Curr Oncol Rep 2024; 26:466-476. [PMID: 38573439 DOI: 10.1007/s11912-024-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of the recent literature regarding preoperative and postoperative neurocognitive functioning (NCF) in patients with glioma. Brief discussion also covers contemporary intraoperative brain mapping work, with a focus on potential influence of mapping upon NCF outcomes following awake surgery. RECENT FINDINGS Most patients with glioma exhibit preoperative NCF impairment, with severity varying by germ line and tumoral genetics, tumor grade, and lesion location, among other characteristics. Literature regarding postoperative NCF changes is mixed, though numerous studies indicate a majority of patients exhibit immediate and short-term worsening. This is often followed by recovery over several months; however, a substantial portion of patients harbor persisting declines. Decline appears related to surgically-induced structural and functional brain alterations, both local and distal to the tumor and resection cavity. Importantly, NCF decline may be mitigated to some extent by intraoperative brain mapping, including mapping of both language-mediated and nonverbal functions. Research regarding perioperative NCF in patients with glioma has flourished over recent years. While this has increased our understanding of contributors to NCF and risk of decline associated with surgical intervention, more work is needed to better preserve NCF throughout the disease course.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA.
| | - Mariana Bradshaw
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - David Sheppard
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Alhalabi OT, Dao Trong P, Kaes M, Jakobs M, Kessler T, Oehler H, König L, Eichkorn T, Sahm F, Debus J, von Deimling A, Wick W, Wick A, Krieg SM, Unterberg AW, Jungk C. Repeat surgery of recurrent glioma for molecularly informed treatment in the age of precision oncology: A risk-benefit analysis. J Neurooncol 2024; 167:245-255. [PMID: 38334907 PMCID: PMC11023957 DOI: 10.1007/s11060-024-04595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.
Collapse
Affiliation(s)
- Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Manuel Kaes
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Martin Jakobs
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Department of Neurosurgery, Division for Stereotactic Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Oehler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Siebenga FF, van der Weide HL, Gelmers F, Rakers SE, Kramer MCA, van der Hoorn A, Enting RH, Bosma I, Groen RJM, Jeltema HR, Wagemakers M, Spikman JM, Buunk AM. Emotion recognition in relation to tumor characteristics in patients with low-grade glioma. Neuro Oncol 2024; 26:528-537. [PMID: 37904541 PMCID: PMC10912004 DOI: 10.1093/neuonc/noad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Patients with low-grade gliomas (LGG) treated with surgery, generally function well and have a favorable prognosis. However, LGG can affect neurocognitive functioning. To date, little is known about social cognition (SC) in these patients, although impaired SC is related to social-behavioral problems and poor societal participation. Frontal brain areas are important for SC and LGG frequently have a frontal location. Therefore, the aim of the present study was to investigate whether emotion recognition, a key component of SC, was impaired, and related to general cognition, tumor location, laterality, tumor volume, and histopathological characteristics in patients with LGG, postsurgery, and before start of adjuvant therapy. METHODS A total of 121 patients with LGG were matched with 169 healthy controls (HC). Tumor location [including (frontal) subregions; insula, anterior cingulate cortex, lateral prefrontal cortex (LPFC), orbitofrontal-ventromedial PFC] and tumor volume were determined on MRI scans. Emotion recognition was measured with the Ekman 60 faces test of the Facial Expressions of Emotion-Stimuli and Tests (FEEST). RESULTS Patients with LGG performed significantly lower on the FEEST than HC, with 33.1% showing impairment compared to norm data. Emotion recognition was not significantly correlated to frontal tumor location, laterality, and histopathological characteristics, and significantly but weakly with general cognition and tumor volume. CONCLUSIONS Emotion recognition is impaired in patients with LGG but not (strongly) related to specific tumor characteristics or general cognition. Hence, measuring SC with individual neuropsychological assessment of these patients is crucial, irrespective of tumor characteristics, to inform clinicians about possible impairments, and consequently offer appropriate care.
Collapse
Affiliation(s)
- Femke F Siebenga
- Department of Neurology, Unit of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hiska L van der Weide
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floor Gelmers
- Department of Neurology, Unit of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra E Rakers
- Department of Neurology, Unit of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miranda C A Kramer
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roelien H Enting
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ingeborg Bosma
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rob J M Groen
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hanne-Rinck Jeltema
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen
| | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen
| | - Jacoba M Spikman
- Department of Neurology, Unit of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne M Buunk
- Department of Neurology, Unit of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Weiss Lucas C, Kochs S, Jost J, Loução R, Kocher M, Goldbrunner R, Wiewrodt D, Jonas K. Digital participation of brain tumour patients in the assessment and treatment of communication disorders. Front Psychol 2024; 14:1287747. [PMID: 38259531 PMCID: PMC10800882 DOI: 10.3389/fpsyg.2023.1287747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Communication deficits have a severe impact on our social interactions and health-related quality of life. Subtle communication deficits are frequently overlooked or neglected in brain tumour patients, due to insufficient diagnostics. Digital tools may represent a valuable adjunct to the conventional assessment or therapy setting but might not be readily suitable for every patient. Methods This article summarises results of three surveys on the readiness for telemedicine among (a) patients diagnosed with high-grade glioma, (b) matched controls, and (c) speech and language therapists. The respective surveys assessed the motivation for participation in telemedical assessments and supposed influencing factors, and the use potential of digital assessment and therapy technologies in daily routine, with a spotlight on brain tumour patients and the future prospects of respective telemedical interventions. Respondents included 56 high-grade glioma patients (age median: 59 years; 48% males), 73 propensity-score matched neurologically healthy controls who were instructed to imagine themselves with a severe disease, and 23 speech and language therapists (61% <35 years; all females). Results and discussion The vast majority of the interviewed high-grade glioma (HGG) patients was open to digitisation, felt well-equipped and sufficiently skilled. The factorial analysis showed that digital offers would be of particular interest for patients in reduced general health condition (p = 0.03) and those who live far from specialised treatment services (p = 0.03). The particular motivation of these subgroups seemed to outweigh the effects of age, equipment and internet skills, which were only significant in the control cohort. The therapists' survey demonstrated a broad consensus on the need for improving the therapy access of brain tumour patients (64%) and strengthening their respective digital participation (78%), although digitisation seems to have yet hardly entered the therapists' daily practise. In summary, the combined results of the surveys call for a joint effort to enhance the prerequisites for digital participation of patients with neurogenic communication disorders, particularly in the context of heavily burdened HGG patients with limited mobility.
Collapse
Affiliation(s)
- Carolin Weiss Lucas
- Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University and University Hospital of Cologne, Cologne, Germany
| | - Sophia Kochs
- Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University and University Hospital of Cologne, Cologne, Germany
| | - Johanna Jost
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Ricardo Loução
- Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University and University Hospital of Cologne, Cologne, Germany
- Centre for Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University and University Hospital of Cologne, Cologne, Germany
| | - Martin Kocher
- Centre for Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University and University Hospital of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University and University Hospital of Cologne, Cologne, Germany
| | - Dorothee Wiewrodt
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Kristina Jonas
- Department of Special Education and Rehabilitation, Faculty of Human Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Liouta E, Kalyvas AV, Komaitis S, Drosos E, Koutsarnakis C, García-Gómez JM, Juan-Albarracín J, Katsaros V, Kalamatianos T, Argyrakos T, Stranjalis G. Response to letter regarding "Assessing the association between preoperative neurocognitive status and IDH1 mutation status in high-grade gliomas: A deeper look into potential confounding variables.". Neurooncol Pract 2023; 10:597-598. [PMID: 38009118 PMCID: PMC10666807 DOI: 10.1093/nop/npad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023] Open
Affiliation(s)
- Evangelia Liouta
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| | - Aristotelis V Kalyvas
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Spyridon Komaitis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
| | - Evangelos Drosos
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
| | - Juan M García-Gómez
- Grupo de Informática Biomédica (IBIME), Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Javier Juan-Albarracín
- Grupo de Informática Biomédica (IBIME), Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Vasileios Katsaros
- Department of Radiology, General Anti-Cancer and Oncological Hospital of Athens “St. Savvas,”Athens, Greece
| | - Theodosis Kalamatianos
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| | | | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| |
Collapse
|
9
|
Frosina G. Radiotherapy of high-grade gliomas: dealing with a stalemate. Crit Rev Oncol Hematol 2023; 190:104110. [PMID: 37657520 DOI: 10.1016/j.critrevonc.2023.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
This article discusses the studies on radiotherapy of high-grade gliomas published between January 1, 2022, and June 30, 2022, with special reference to their molecular biology basis. The focus was on advances in radioresistance, radiosensitization and the toxicity of radiotherapy treatments. In the first half of 2022, several important advances have been made in understanding resistance mechanisms in high-grade gliomas. Furthermore, the development of several radiosensitization procedures for these deadly tumors, including studies with small molecule radiosensitizers, new fractionation protocols, and new immunostimulatory agents, has progressed in both the preclinical and clinical settings, reflecting the frantic research effort in the field. However, since 2005 our research efforts fail to produce significant improvements to treatment guidelines for high-grade gliomas. Possible reasons for this stalemate and measures to overcome it are discussed.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
10
|
Carstam L, Latini F, Solheim O, Bartek J, Pedersen LK, Zetterling M, Beniaminov S, Sjåvik K, Ryttlefors M, Jensdottir M, Rydenhag B, Smits A, Jakola AS. Long-term follow up of patients with WHO grade 2 oligodendroglioma. J Neurooncol 2023; 164:65-74. [PMID: 37603235 PMCID: PMC10462563 DOI: 10.1007/s11060-023-04368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023]
Abstract
PURPOSE Since the introduction of the molecular definition of oligodendrogliomas based on isocitrate dehydrogenase (IDH)-status and the 1p19q-codeletion, it has become increasingly evident how this glioma entity differs much from other diffuse lower grade gliomas and stands out with longer survival and often better responsiveness to adjuvant therapy. Therefore, apart from using a molecular oligodendroglioma definition, an extended follow-up time is necessary to understand the nature of this slow growing, yet malignant condition. The aim of this study was to describe the long-term course of the oligodendroglioma disease in a population-based setting and to determine which factors affect outcome in terms of survival. METHODS All adults with WHO-grade 2 oligodendrogliomas with known 1p19q-codeletion from five Scandinavian neurosurgical centers and with a follow-up time exceeding 5 years, were analyzed regarding survival and factors potentially affecting survival. RESULTS 126 patients diagnosed between 1998 and 2016 were identified. The median follow-up was 12.0 years, and the median survival was 17.8 years (95% CI 16.0-19.6). Factors associated with shorter survival in multivariable analysis were age (HR 1.05 per year; CI 1.02-1.08, p < 0.001), tumor diameter (HR 1.05 per millimeter; CI 1.02-1.08, p < 0.001) and poor preoperative functional status (KPS < 80) (HR 4.47; CI 1.70-11.78, p = 0.002). In our material, surgical strategy was not associated with survival. CONCLUSION Individuals with molecularly defined oligodendrogliomas demonstrate long survival, also in a population-based setting. This is important to consider for optimal timing of therapies that may cause long-term side effects. Advanced age, large tumors and poor function before surgery are predictors of shorter survival.
Collapse
Affiliation(s)
- Louise Carstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 41345, Göteborg, Sweden.
- Institution of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden.
| | - Francesco Latini
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jiri Bartek
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet and Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Lars K Pedersen
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
| | - Maria Zetterling
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | | | - Kristin Sjåvik
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
| | - Mats Ryttlefors
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Margret Jensdottir
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet and Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bertil Rydenhag
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 41345, Göteborg, Sweden
- Institution of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| | - Anja Smits
- Institution of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 41345, Göteborg, Sweden
- Institution of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| |
Collapse
|
11
|
Sleurs C, Zegers CML, Compter I, Dijkstra J, Anten MHME, Postma AA, Schijns OEMG, Hoeben A, Sitskoorn MM, De Baene W, De Roeck L, Sunaert S, Van Elmpt W, Lambrecht M, Eekers DBP. Neurocognition in adults with intracranial tumors: does location really matter? J Neurooncol 2022; 160:619-629. [PMID: 36346497 PMCID: PMC9758085 DOI: 10.1007/s11060-022-04181-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/22/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE As preservation of cognitive functioning increasingly becomes important in the light of ameliorated survival after intracranial tumor treatments, identification of eloquent brain areas would enable optimization of these treatments. METHODS This cohort study enrolled adult intracranial tumor patients who received neuropsychological assessments pre-irradiation, estimating processing speed, verbal fluency and memory. Anatomical magnetic resonance imaging scans were used for multivariate voxel-wise lesion-symptom predictions of the test scores (corrected for age, gender, educational level, histological subtype, surgery, and tumor volume). Potential effects of histological and molecular subtype and corresponding WHO grades on the risk of cognitive impairment were investigated using Chi square tests. P-values were adjusted for multiple comparisons (p < .001 and p < .05 for voxel- and cluster-level, resp.). RESULTS A cohort of 179 intracranial tumor patients was included [aged 19-85 years, median age (SD) = 58.46 (14.62), 50% females]. In this cohort, test-specific impairment was detected in 20-30% of patients. Higher WHO grade was associated with lower processing speed, cognitive flexibility and delayed memory in gliomas, while no acute surgery-effects were found. No grading, nor surgery effects were found in meningiomas. The voxel-wise analyses showed that tumor locations in left temporal areas and right temporo-parietal areas were related to verbal memory and processing speed, respectively. INTERPRETATION Patients with intracranial tumors affecting the left temporal areas and right temporo-parietal areas might specifically be vulnerable for lower verbal memory and processing speed. These specific patients at-risk might benefit from early-stage interventions. Furthermore, based on future validation studies, imaging-informed surgical and radiotherapy planning could further be improved.
Collapse
Affiliation(s)
- Charlotte Sleurs
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jeanette Dijkstra
- Department of Medical Psychology, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Monique H M E Anten
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | | | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wouter Van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
12
|
Kirkman MA, Day J, Gehring K, Zienius K, Grosshans D, Taphoorn M, Li J, Brown PD. Interventions for preventing and ameliorating cognitive deficits in adults treated with cranial irradiation. Cochrane Database Syst Rev 2022; 11:CD011335. [PMID: 36427235 PMCID: PMC9697842 DOI: 10.1002/14651858.cd011335.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cognitive deficits are common in people who have received cranial irradiation and have a serious impact on daily functioning and quality of life. The benefit of pharmacological and non-pharmacological treatment of cognitive deficits in this population is unclear. This is an updated version of the original Cochrane Review published in Issue 12, 2014. OBJECTIVES To assess the effectiveness of interventions for preventing or ameliorating cognitive deficits in adults treated with cranial irradiation. SEARCH METHODS For this review update we searched the Cochrane Register of Controlled Trials (CENTRAL), MEDLINE via Ovid, Embase via Ovid, and PsycInfo via Ovid to 12 September 2022. SELECTION CRITERIA We included randomised controlled (RCTs) trials that evaluated pharmacological or non-pharmacological interventions in cranial irradiated adults, with objective cognitive functioning as a primary or secondary outcome measure. DATA COLLECTION AND ANALYSIS Two review authors (MK, JD) independently extracted data from selected studies and carried out a risk of bias assessment. Cognitive function, fatigue and mood outcomes were reported. No data were pooled. MAIN RESULTS Eight studies met the inclusion criteria and were included in this updated review. Six were from the original version of the review, and two more were added when the search was updated. Nineteen further studies were assessed as part of this update but did not fulfil the inclusion criteria. Of the eight included studies, four studies investigated "prevention" of cognitive problems (during radiotherapy and follow-up) and four studies investigated "amelioration" (interventions to treat cognitive impairment as a late complication of radiotherapy). There were five pharmacological studies (two studies on prevention and three in amelioration) and three non-pharmacological studies (two on prevention and one in amelioration). Due to differences between studies in the interventions being evaluated, a meta-analysis was not possible. Studies in early radiotherapy treatment phase (five studies) Pharmacological studies in the "early radiotherapy treatment phase" were designed to prevent or ameliorate cognitive deficits and included drugs used in dementia (memantine) and fatigue (d-threo-methylphenidate hydrochloride). Non-pharmacological studies in the "early radiotherapy treatment phase" included a ketogenic diet and a two-week cognitive rehabilitation and problem-solving programme. In the memantine study, the primary cognitive outcome of memory at six months did not reach significance, but there was significant improvement in overall cognitive function compared to placebo, with similar adverse events across groups. The d-threo-methylphenidate hydrochloride study found no statistically significant difference between arms, with few adverse events. The study of a calorie-restricted ketogenic diet found no effect, although a lower than expected calorie intake in the control group complicates interpretation of the results. The study investigating the utility of a rehabilitation program did not carry out a statistical comparison of cognitive performance between groups. Studies in delayed radiation or late effect phase (four studies) The "amelioration" pharmacological studies to treat cognitive complications of radiotherapy included drugs used in dementia (donepezil) or psychostimulants (methylphenidate and modafinil). Non-pharmacological measures included cognitive rehabilitation and problem solving (Goal Management Training). These studies included patients with cognitive problems at entry who had "stable" brain cancer. The donepezil study did not find an improvement in the primary cognitive outcome of overall cognitive performance, but did find improvement in an individual test of memory, compared to placebo; adverse events were not reported. A study comparing methylphenidate with modafinil found improvements in cognitive function in both the methylphenidate and modafinil arms; few adverse events were reported. Another study comparing two different doses of modafinil combined treatment arms and found improvements across all cognitive tests, however, a number of adverse events were reported. Both studies were limited by a small sample size. The Goal Management Training study suggested a benefit of the intervention, a behavioural intervention that combined mindfulness and strategy training, on executive function and processing speed. There were a number of limitations across studies and few were without high risks of bias. AUTHORS' CONCLUSIONS In this update, limited additional evidence was found for the treatment or amelioration of cognitive deficits in adults treated with cranial irradiation. As concluded in the original review, there is supportive evidence that memantine may help prevent cognitive deficits for adults with brain metastases receiving cranial irradiation. There is supportive evidence that donepezil, methylphenidate and modafinil may have a role in treating cognitive deficits in adults with brain tumours who have been treated with cranial irradiation; patient withdrawal affected the statistical power of these studies. Further research that tries to minimise the withdrawal of consent, and subsequently reduce the requirement for imputation procedures, may offer a higher certainty of evidence. There is evidence from only a single small study to support non-pharmacological interventions in the amelioration of cognitive deficits. Further research is required.
Collapse
Affiliation(s)
- Matthew A Kirkman
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Julia Day
- Community Rehabilitation and Brain Injury Service (CRABIS), Strathbrock Partnership Centre, West Lothian, UK
| | - Karin Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Netherlands
| | - Karolis Zienius
- Edinburgh Centre for Neuro-Oncology (ECNO), Western General Hospital, Edinburgh, UK
| | - David Grosshans
- Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Martin Taphoorn
- Department of Neurology, Haaglanden Medical Center, PO Box 432, Netherlands
| | - Jing Li
- Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul D Brown
- Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|