1
|
Laurin BJ, Treffy R, Connelly JM, Straza M, Mueller WM, Krucoff MO. Mesenchymal-Type Genetic Mutations Are Likely Prerequisite for Glioblastoma Multiforme to Metastasize Outside the Central Nervous System: An Original Case Series and Systematic Review of the Literature. World Neurosurg 2024; 193:397-426. [PMID: 39419169 DOI: 10.1016/j.wneu.2024.09.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive and prevalent type of malignant brain tumor, yet it metastasizes outside the central nervous system (CNS) in only 0.4% of cases. Little is known about what enables this subset of GBMs to take root outside the CNS, but genetic mutations likely play a role. METHODS We conducted a PRISMA-compliant systematic review of metastatic GBM wherein we reviewed 3579 search results and 1080 abstracts, analyzing data from 139 studies and 211 unique patients. In addition, we describe 4 cases of patients with pathologically confirmed GBM metastases outside the CNS treated at our institution. RESULTS We found that metastases were discovered near previous surgical sites in at least 36.9% of cases. Other sites of metastasis included bone (47.9%), lung (25.6%), lymph nodes (25.1%), scalp (19.2%), and liver (14.2%). On average, metastases were diagnosed 12.1 months after the most recent resection, and the mean survival from discovery was 5.7 months. In our patients, primary GBM lesions showed mutations in NF1, TERT, TP53, CDK4, and RB1/PTEN genes. Unique to the metastatic lesions were amplifications in genes such as p53 and PDGFRA/KIT, as well as increased vimentin and Ki-67 expression. CONCLUSIONS There is strong evidence that GBMs acquire novel mutations to survive outside the CNS. In some cases, tumor cells likely mutate after seeding scalp tissue during surgery, and in others, they mutate and spread without surgery. Future studies and genetic profiling of primary and metastatic lesions may help uncover the mechanisms of spread.
Collapse
Affiliation(s)
- Bryce J Laurin
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Randall Treffy
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jennifer M Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Straza
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Wei S, Chang L, Zhong Y. The efficacy and adverse events of bevacizumab combined with temozolomide in the treatment of glioma: a systemic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2024; 11:1419038. [PMID: 39015784 PMCID: PMC11250252 DOI: 10.3389/fmed.2024.1419038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Objectives To assess the efficacy and adverse events of bevacizumab (BEV) combined with temozolomide (TMZ) in the treatment of glioma. Materials and methods Randomized controlled trials (RCT) involving BEV combined with TMZ in the treatment of glioma were searched using PubMed, Embase and Cochrane library, and a comprehensive meta-analysis was conducted. The primary outcomes were overall survival time (OS) and progression-free survival time (PFS), and the secondary outcome was adverse events. Researchers conducted literature screening, data extraction and quality assessment according to inclusion and exclusion criteria. RevMan 5.3 software was used for meta-analysis. Results A total of 8 prospective RCTs of 3,039 cases were included in the meta-analysis. Meta-analysis showed that compared with TMZ alone, BEV combined with TMZ could significantly improve PFS, OS and complete remission rate (CR). A total of 6 studies reported related adverse events, mainly including thrombocytopenia, neutropenia, leukopenia, anemia and fatigue. Combination therapy may have more adverse events but no serious consequences. Conclusion The combination of BEV and TMZ had a better therapeutic effect on glioblastoma, significantly prolonged the survival time of patients and improved the quality of life. However, some patients are afflicted with the adverse events of combination therapy, and subsequent studies should continue to conduct larger, multi-center RCTs to confirm the findings and explore in depth how to minimize and manage adverse events effectively.
Collapse
Affiliation(s)
- SiYao Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - LanYin Chang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Yuen CA, Bao S, Pekmezci M, Mo F, Kong XT. Pembrolizumab in an HIV-infected patient with glioblastoma. Immunotherapy 2024; 16:803-811. [PMID: 38889068 PMCID: PMC11457652 DOI: 10.1080/1750743x.2024.2362566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Persons living with human immunodeficiency virus (PLWH) carry increased risk for developing malignancies, including glioblastoma. Despite extensive investigations, both human immunodeficiency virus (HIV) and glioblastoma are incurable. Treatment for a patient with combined glioblastoma and HIV remains an unexplored need. Preliminary evidence suggests that immunotherapy may be effective for the simultaneous treatment of both HIV and cancer by reversing HIV latency and T cell exhaustion. We present a case of glioblastoma in a PLWH who was treated with pembrolizumab. Treatment was well tolerated and safe with a mixed response. Our patient did not develop any opportunistic infections, immune-related adverse events, or worsening of his immunodeficiency. To our knowledge, this is the first reported case of a PLWH and glioblastoma treated with immunotherapy.
Collapse
Affiliation(s)
- Carlen A Yuen
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine, CA 92868, USA
| | - Silin Bao
- Department of Internal Medicine, Neurosciences Division, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Fan Mo
- Department of Internal Medicine, Neurosciences Division, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Xiao-Tang Kong
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine, CA 92868, USA
| |
Collapse
|
4
|
Yuen CA, Pekmezci M, Bao S, Kong XT. Metastatic glioblastoma to the lungs: a case report and literature review. CNS Oncol 2024; 13:2351789. [PMID: 38864820 PMCID: PMC11172249 DOI: 10.1080/20450907.2024.2351789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Despite its infiltrative nature, extra-cranial glioblastoma metastases are rare. We present a case of a 63-year-old woman with metastatic glioblastoma in the lungs. Sarcomatous histology, a reported risk factor for disseminated disease, was found. Genomic alterations of TP53 mutation, TERT mutation, PTEN mutation, and +7/-10 were also uncovered. Early evidence suggests these molecular aberrations are common in metastatic glioblastoma. Treatment with third-line lenvatinib resulted in a mixed response. This case contributes to the growing body of evidence for the role of genomic alterations in predictive risk in metastatic glioblastoma. There remains an unmet need for treatment of metastatic glioblastoma.
Collapse
Affiliation(s)
- Carlen A Yuen
- Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA92868, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA94143, USA
| | - Silin Bao
- Department of Internal Medicine, Division of Neurosciences, Community Regional Medical Center, Fresno, CA93721, USA
| | - Xiao-Tang Kong
- Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA92868, USA
| |
Collapse
|
5
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Ge X, Yang Y, Wang W, Tian L, Zhang G, Tian Z, Xue X. Pediatric H3K27M‑mutant diffuse midline glioma with vertebral metastasis: A case report and literature review. Oncol Lett 2024; 27:48. [PMID: 38192660 PMCID: PMC10773191 DOI: 10.3892/ol.2023.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
H3K27M-mutant diffuse midline glioma (DMG) is a type of high-grade glial tumor, which occurs in the midline structure and develops mostly in children. Extraneural metastases (ENM) are exceedingly rare in patients with H3K27M-mutant DMG. A 9-year-old male patient presented with a headache, nausea and vomiting. Following magnetic resonance imaging and immunohistochemical molecular testing examination, the patient was diagnosed with H3K27M-mutant DMG and received chemoradiotherapy plus five cycles of chemotherapy with temozolomide intermittently as an adjuvant therapy. The treatment resulted in a slight reduction of the tumor volume. However, 2 months later, the patient was admitted to hospital with complaints of drooping of the mouth, and waist and back pain. Magnetic resonance imaging and positron-emission tomography-computed tomography revealed an unusual presentation with multiple vertebral metastases and craniospinal leptomeningeal dissemination. Following discussion between the members of a multidisciplinary medical team, the patient underwent one cycle of chemotherapy with cyclophosphamide, vincristine and cisplatin. However, the condition did not improve and the patient died 4 weeks after the diagnosis of ENM. The mechanisms underlying the development of these rare metastases remain unclear. The present case report provides insights into the clinical characteristics and potential metastasis mechanisms of this aggressive disease and may help to elucidate new pathways for the management of ENM.
Collapse
Affiliation(s)
- Xiaohui Ge
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yu Yang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhesen Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|