1
|
Kong L, Weng B, Cai Q, Ma L, Cao W, Chen Y, Qian L, Guo Y, Chen J, Wang H. Evaluating Neoadjuvant Immunochemotherapeutic Response for Bladder Carcinoma Using Amide Proton Transfer-Weighted MRI. Acad Radiol 2025:S1076-6332(24)00934-6. [PMID: 39794161 DOI: 10.1016/j.acra.2024.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
RATIONALE AND OBJECTIVES To investigate the feasibility of amide proton transfer-weighted (APTw) and diffusion-weighted MRI in evaluating the response of bladder cancer (BCa) to neoadjuvant immunochemotherapy. MATERIALS AND METHODS From June 2021 to July 2023, participants with pathologically confirmed BCa were prospectively recruited to undergo MRI examinations, including APTw and diffusion-weighted MRI before and after neoadjuvant immunochemotherapy. Histogram analysis features (mean, median, and entropy) were extracted from pre- and post-treatment APTw and apparent diffusion coefficient (ADC) maps, respectively. Participants were categorized into pCR (pathological complete response, no residual tumor) and non-pCR groups based on histologic evaluation of post-treatment cystectomy specimens. The diagnostic efficacy of parameters in predicting tumor responsiveness was evaluated by calculating the area under receiver operating characteristic curve (AUC). RESULTS Significant differences were found in several imaging biomarkers derived from pre-treatment APTw and diffusion-weighted MRI (P<0.05 for all). The baseline APTw mean values yielded the highest diagnostic performance, with an AUC of 0.85 (AUC: 0.75-0.93), for evaluating tumor responsiveness. For the pCR group, APTw values markedly decreased while ADC values noticeably increased at post-treatment MRI (P<0.05 for all). However, the parameter changes in non-pCR group were not significant (P>0.05 for all). CONCLUSION MRI parametrics derived from APTw and diffusion-weighted MRI can both serve as valuable noninvasive imaging biomarkers for evaluating the efficacy of immunochemotherapy and may be used to guide personalized precision therapy.
Collapse
Affiliation(s)
- Lingmin Kong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.)
| | - Bei Weng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.)
| | - Qian Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.)
| | - Ling Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.)
| | - Wenxin Cao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.)
| | - Yanling Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.)
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China (L.Q.)
| | - Yan Guo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.)
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (J.C.)
| | - Huanjun Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.).
| |
Collapse
|
2
|
Razzaghdoust A, Jafari A, Mahdavi A, Mofid B, Basiri A. Diffusion-weighted MRI-Derived ADC and tumor volume as predictive imaging markers for neoadjuvant chemotherapy response in muscle-invasive bladder cancer. BMC Med Imaging 2025; 25:3. [PMID: 39748277 PMCID: PMC11697954 DOI: 10.1186/s12880-024-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND This prospective study tested the hypothesis that the apparent diffusion coefficient (ADC) value and tumor volume (TV) measured in diffusion-weighted magnetic resonance imaging (DW-MRI) before, during, and after the treatment are quantitative imaging markers to assess tumor response in muscle-invasive bladder cancer (MIBC) patients undergoing neoadjuvant chemotherapy (NAC). METHODS Multi-parametric MRI was prospectively done for MIBC patients at 3 time points. Pre-treatment ADC value, pre-treatment TV, as well as, percent of changes (ΔADC%, and ΔTV%) in these parameters at mid- and post-treatment relative to baseline were calculated and compared between the patients with and without clinical complete response (CR). Also, further analysis was carried out based on the groups of patients with and without overall response (OR). Two different methods of ADC estimation including single-slice ADC measurement (ADCsingle-slice) and whole-lesion ADC measurement (ADCwhole-lesion) were used. RESULTS A total of 50 eligible patients were included in the analysis. Of these, 20 patients (40%) showed clinical CR to treatment, while 30 (60%) did not. Our results showed that although there was no significant difference between the two groups of patients with and without CR in terms of mid-treatment ΔADC% and mid-treatment ΔTV%, significant differences were observed in terms of the pre-treatment ADC (p < 0.01), pre-treatment TV (p < 0.001), post-treatment ΔADC% (p < 0.05), and post-treatment ΔTV% (p < 0.05). The results of the OR-based analysis were in line with the CR-based results. There was also a strong and significant correlation between ADCsingle-slice and ADCwhole-lesion measurements (r > 0.9, P < 0.001). CONCLUSION Pre-treatment ADC, pre-treatment TV, post-treatment ΔADC%, and post-treatment ΔTV% could be considered as promising quantitative imaging markers of tumor response in MIBC patients undergoing NAC. Moreover, mid-treatment ΔADC% and mid-treatment ΔTV% should not be used as predictors of tumor response in these patients. Further larger studies are required to confirm these results.
Collapse
Affiliation(s)
- Abolfazl Razzaghdoust
- Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anya Jafari
- Department of Radiation Oncology, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahdavi
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bahram Mofid
- Department of Radiation Oncology, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Basiri
- Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, No.103, Shahid Jafari St., Pasdaran Ave., Tehran, 1666677951, Iran.
| |
Collapse
|
3
|
Arita Y, Kwee TC, Akin O, Shigeta K, Paudyal R, Roest C, Ueda R, Lema-Dopico A, Nalavenkata S, Ruby L, Nissan N, Edo H, Yoshida S, Shukla-Dave A, Schwartz LH. Multiparametric MRI and artificial intelligence in predicting and monitoring treatment response in bladder cancer. Insights Imaging 2025; 16:7. [PMID: 39747744 PMCID: PMC11695553 DOI: 10.1186/s13244-024-01884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Bladder cancer is the 10th most common and 13th most deadly cancer worldwide, with urothelial carcinomas being the most common type. Distinguishing between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is essential due to significant differences in management and prognosis. MRI may play an important diagnostic role in this setting. The Vesical Imaging Reporting and Data System (VI-RADS), a multiparametric MRI (mpMRI)-based consensus reporting platform, allows for standardized preoperative muscle invasion assessment in BCa with proven diagnostic accuracy. However, post-treatment assessment using VI-RADS is challenging because of anatomical changes, especially in the interpretation of the muscle layer. MRI techniques that provide tumor tissue physiological information, including diffusion-weighted (DW)- and dynamic contrast-enhanced (DCE)-MRI, combined with derived quantitative imaging biomarkers (QIBs), may potentially overcome the limitations of BCa evaluation when predominantly focusing on anatomic changes at MRI, particularly in the therapy response setting. Delta-radiomics, which encompasses the assessment of changes (Δ) in image features extracted from mpMRI data, has the potential to monitor treatment response. In comparison to the current Response Evaluation Criteria in Solid Tumors (RECIST), QIBs and mpMRI-based radiomics, in combination with artificial intelligence (AI)-based image analysis, may potentially allow for earlier identification of therapy-induced tumor changes. This review provides an update on the potential of QIBs and mpMRI-based radiomics and discusses the future applications of AI in BCa management, particularly in assessing treatment response. CRITICAL RELEVANCE STATEMENT: Incorporating mpMRI-based quantitative imaging biomarkers, radiomics, and artificial intelligence into bladder cancer management has the potential to enhance treatment response assessment and prognosis prediction. KEY POINTS: Quantitative imaging biomarkers (QIBs) from mpMRI and radiomics can outperform RECIST for bladder cancer treatments. AI improves mpMRI segmentation and enhances radiomics feature extraction effectively. Predictive models integrate imaging biomarkers and clinical data using AI tools. Multicenter studies with strict criteria validate radiomics and QIBs clinically. Consistent mpMRI and AI applications need reliable validation in clinical practice.
Collapse
Affiliation(s)
- Yuki Arita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Thomas C Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Roest
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Alfonso Lema-Dopico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sunny Nalavenkata
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Ruby
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noam Nissan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiromi Edo
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Soichiro Yoshida
- Department of Urology, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence H Schwartz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Takeuchi M, Higaki A, Kojima Y, Ono K, Maruhisa T, Yokoyama T, Watanabe H, Yamamoto A, Tamada T. Comparative analysis of image quality and diagnostic performance among SS-EPI, MS-EPI, and rFOV DWI in bladder cancer. Jpn J Radiol 2024:10.1007/s11604-024-01694-1. [PMID: 39548050 DOI: 10.1007/s11604-024-01694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE To compare image quality and diagnostic performance among SS-EPI diffusion weighted imaging (DWI), multi-shot (MS) EPI DWI, and reduced field-of-view (rFOV) DWI for muscle-invasive bladder cancer (MIBC). MATERIALS AND METHODS This retrospective study included 73 patients with bladder cancer who underwent multiparametric MRI in our referral center between August 2020 and February 2023. Qualitative image assessment was performed in 73; and quantitative assessment was performed in 66 patients with maximum lesion diameter > 10 mm. The diagnostic performance of the imaging finding of muscle invasion was evaluated in 47 patients with pathological confirmation of MIBC. T2-weighted imaging, SS-EPI DWI, MS-EPI DWI, rFOV DWI, and dynamic contrast-enhanced imaging were acquired with 3 T-MRI. Qualitative image assessment was performed by three readers who rated anatomical distortion, clarity of bladder wall, and lesion conspicuity using a four-point scale. Quantitative assessment included calculation of SNR and CNR, and grading of the presence of muscle layer invasion according to the VI-RADS diagnostic criteria. Wilcoxon matched pairs signed rank test was used to compare qualitative and quantitative image quality. McNemar test and receiver-operating characteristic analysis were used to compare diagnostic performance. RESULTS Anatomical distortion was less in MS-EPI DWI, rFOV DWI, and SS-EPI DWI, in that order with significant difference. Clarity of bladder wall was greater for MS-EPI DWI, SS-EPI DWI, and rFOV DWI, in that order. There were significant differences between any two combinations of the three DWI types, except between SS-EPI DWI and MS-EPI in Reader 1. Lesion conspicuity, diagnostic performance, SNR and CNR were not significantly different among the three DWI types. CONCLUSIONS Among the three DWI sequences evaluated, MS-EPI DWI showed the least anatomical distortion and superior bladder wall delineation but no improvement in diagnostic performance for MIBC. MS-EPI DWI may be considered for additional imaging if SS-EPI DWI is of poor quality.
Collapse
Affiliation(s)
- Mitsuru Takeuchi
- Department of Radiology, Radiolonet Tokai, Nagoya, Japan.
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Atsushi Higaki
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yuichi Kojima
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Kentaro Ono
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takuma Maruhisa
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takatoshi Yokoyama
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroyuki Watanabe
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akira Yamamoto
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Tsutomu Tamada
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
5
|
Körner SK, Tolbod LP, Pedersen BG, Boellaard T, Milling RV, Brandt SB, Agerbæk M, Dyrskjøt L, Bouchelouche K, Jensen JB. [ 15O]H 2O PET/MRI for Assessment of Complete Response to Neoadjuvant or Induction Chemotherapy in Patients with Muscle-Invasive Bladder Cancer: A Pilot Study. J Clin Med 2024; 13:4652. [PMID: 39200797 PMCID: PMC11354727 DOI: 10.3390/jcm13164652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Accurate assessment of therapy response to chemotherapy could possibly offer a bladder-sparing approach in selected patients with localized muscle-invasive bladder cancer (MIBC). The aim of this study was to evaluate whether [15O]H2O PET/MRI can be used for assessment of complete local pathological response to preoperative chemotherapy in patients with MIBC. Methods: This prospective pilot study included 13 patients with MIBC treated with neoadjuvant or induction chemotherapy and subsequent radical cystectomy. Patients underwent a [15O]H2O PET/MRI scan before chemotherapy and another scan after chemotherapy before radical cystectomy. Volumes of interest were delineated on T2-weighted MRI and transferred to parametric images for dynamic analysis. Tumor blood flow (TBF) was estimated by [15O]H2O PET. Changes in TBF were compared with histopathology. The Wilcoxon matched-pairs signed-ranks test was used for comparing pre- and post-chemotherapy measurements. Results: Mean TBF decreased by 49%. Mean TBF in complete responders (ypT0N0/ypTis) was not significantly different from non-complete responders (≥ypT1) (p = 0.52). Conclusions: Despite a measurable decrease in TBF after chemotherapy treatment, we were not able to estimate a TBF threshold for identifying complete responders to chemotherapy for MIBC patients. Further studies are needed to elucidate the potential of [15O]H2O PET/MRI in assessing therapy response in MIBC.
Collapse
Affiliation(s)
- Stefanie Korsgaard Körner
- Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark (J.B.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Radiology, Regional Hospital Horsens, 8700 Horsens, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus, Denmark (K.B.)
| | - Bodil G. Pedersen
- Department of Radiology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Thierry Boellaard
- Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Rikke Vilsbøll Milling
- Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark (J.B.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Simone Buchardt Brandt
- Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark (J.B.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mads Agerbæk
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Lars Dyrskjøt
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Kirsten Bouchelouche
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus, Denmark (K.B.)
| | - Jørgen B. Jensen
- Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark (J.B.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
6
|
Akin O, Lema-Dopico A, Paudyal R, Konar AS, Chenevert TL, Malyarenko D, Hadjiiski L, Al-Ahmadie H, Goh AC, Bochner B, Rosenberg J, Schwartz LH, Shukla-Dave A. Multiparametric MRI in Era of Artificial Intelligence for Bladder Cancer Therapies. Cancers (Basel) 2023; 15:5468. [PMID: 38001728 PMCID: PMC10670574 DOI: 10.3390/cancers15225468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
This review focuses on the principles, applications, and performance of mpMRI for bladder imaging. Quantitative imaging biomarkers (QIBs) derived from mpMRI are increasingly used in oncological applications, including tumor staging, prognosis, and assessment of treatment response. To standardize mpMRI acquisition and interpretation, an expert panel developed the Vesical Imaging-Reporting and Data System (VI-RADS). Many studies confirm the standardization and high degree of inter-reader agreement to discriminate muscle invasiveness in bladder cancer, supporting VI-RADS implementation in routine clinical practice. The standard MRI sequences for VI-RADS scoring are anatomical imaging, including T2w images, and physiological imaging with diffusion-weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI). Physiological QIBs derived from analysis of DW- and DCE-MRI data and radiomic image features extracted from mpMRI images play an important role in bladder cancer. The current development of AI tools for analyzing mpMRI data and their potential impact on bladder imaging are surveyed. AI architectures are often implemented based on convolutional neural networks (CNNs), focusing on narrow/specific tasks. The application of AI can substantially impact bladder imaging clinical workflows; for example, manual tumor segmentation, which demands high time commitment and has inter-reader variability, can be replaced by an autosegmentation tool. The use of mpMRI and AI is projected to drive the field toward the personalized management of bladder cancer patients.
Collapse
Affiliation(s)
- Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alfonso Lema-Dopico
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | | | | | - Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lubomir Hadjiiski
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin C. Goh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bernard Bochner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Rosenberg
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lawrence H. Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| |
Collapse
|
7
|
Woo S, Becker AS, Das JP, Ghafoor S, Arita Y, Benfante N, Gangai N, Teo MY, Goh AC, Vargas HA. Evaluating residual tumor after neoadjuvant chemotherapy for muscle-invasive urothelial bladder cancer: diagnostic performance and outcomes using biparametric vs. multiparametric MRI. Cancer Imaging 2023; 23:110. [PMID: 37964386 PMCID: PMC10644594 DOI: 10.1186/s40644-023-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) before radical cystectomy is standard of care in patients with muscle-invasive bladder cancer (MIBC). Response assessment after NAC is important but suboptimal using CT. We assessed MRI without vs. with intravenous contrast (biparametric [BP] vs. multiparametric [MP]) for identifying residual disease on cystectomy and explored its prognostic role. METHODS Consecutive MIBC patients that underwent NAC, MRI, and cystectomy between January 2000-November 2022 were identified. Two radiologists reviewed BP-MRI (T2 + DWI) and MP-MRI (T2 + DWI + DCE) for residual tumor. Diagnostic performances were compared using receiver operating characteristic curve analysis. Kaplan-Meier curves and Cox proportional-hazards models were used to evaluate association with disease-free survival (DFS). RESULTS 61 patients (36 men and 25 women; median age 65 years, interquartile range 59-72) were included. After NAC, no residual disease was detected on pathology in 19 (31.1%) patients. BP-MRI was more accurate than MP-MRI for detecting residual disease after NAC: area under the curve = 0.75 (95% confidence interval (CI), 0.62-0.85) vs. 0.58 (95% CI, 0.45-0.70; p = 0.043). Sensitivity were identical (65.1%; 95% CI, 49.1-79.0) but specificity was higher in BP-MRI compared with MP-MRI for determining residual disease: 77.8% (95% CI, 52.4-93.6) vs. 38.9% (95% CI, 17.3-64.3), respectively. Positive BP-MRI and residual disease on pathology were both associated with worse DFS: hazard ratio (HR) = 4.01 (95% CI, 1.70-9.46; p = 0.002) and HR = 5.13 (95% CI, 2.66-17.13; p = 0.008), respectively. Concordance between MRI and pathology results was significantly associated with DFS. Concordant positive (MRI+/pathology+) patients showed worse DFS than concordant negative (MRI-/pathology-) patients (HR = 8.75, 95% CI, 2.02-37.82; p = 0.004) and compared to the discordant group (MRI+/pathology- or MRI-/pathology+) with HR = 3.48 (95% CI, 1.39-8.71; p = 0.014). CONCLUSION BP-MRI was more accurate than MP-MRI for identifying residual disease after NAC. A negative BP-MRI was associated with better outcomes, providing complementary information to pathological assessment of cystectomy specimens.
Collapse
Affiliation(s)
- Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA.
| | - Anton S Becker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Soleen Ghafoor
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, Zürich, CH-8091, Switzerland
| | - Yuki Arita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Nicole Benfante
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Natalie Gangai
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Min Yuen Teo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alvin C Goh
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Hebert A Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| |
Collapse
|
8
|
Zong R, Ma X, Shi Y, Geng L. The assessment of pathological response to neoadjuvant chemotherapy in muscle-invasive bladder cancer patients with DCE-MRI and DWI: a systematic review and meta-analysis. Br J Radiol 2023; 96:20230239. [PMID: 37660472 PMCID: PMC10546436 DOI: 10.1259/bjr.20230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE The purpose of this meta-analysis was to determine the value of dynamic contrast-enhanced-MRI (DCE-MRI) and diffusion-weighted imaging (DWI) in evaluating the pathological response of muscle invasive bladder cancer (MIBC) to neoadjuvant chemotherapy (NAC), and further indirectly compare the diagnostic performance of DCE-MRI and DWI. METHODS Literatures associated to DCE-MRI and DWI in the evaluation of pathological response of MIBC to NAC were searched from PubMed, Cochrane Library, web of science, and EMBASE databases. The quality assessment of diagnostic accuracy studies 2 tool was used to assess the quality of studies. Pooled sensitivity (SE), specificity (SP), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the receiver operating characteristic curves (AUC) with their 95% confidence intervals (CIs) were calculated to evaluate the diagnostic performance of DCE-MRI and DWI in predicting the pathological response to NAC in patients with MIBC. RESULTS There were 11 studies involved, 6 of which only underwent DCE- MRI examination, 4 of which only underwent DWI examination, and 1 of which underwent both DCE- MRI and DWI examination. The pooled SE, SP, PLR, NLR, DOR of DCE-MRI were 0.88 (95% CI: 0.78-0.93), 0.88 (95% CI: 0.67-0.96), 7.4 (95% CI: 2.3-24.2), 0.14 (95% CI: 0.07-0.27), and 53 (95% CI: 10-288), respectively. The pooled SE, SP, PLR, NLR, DOR of DWI were 0.83 (95% CI: 0.75-0.88), 0.88 (95% CI: 0.81-0.93), 7.1 (95% CI: 4.3-11.7), 0.20 (95% CI: 0.14-0.28), and 36 (95% CI:18-73), respectively. The AUCs of SROC curve for DCE-MRI and DWI were 0.93 (95% CI: 0.91-0.95) and 0.92 (95% CI: 0.89-0.94), respectively. There were no significant differences between DWI and DCE-MRI for SE, SP, and AUC. CONCLUSION This meta-analysis demonstrated high diagnostic performance of both DCE-MRI and DWI in predicting the pathological response to NAC in MIBC. DWI might be a potential substitute for DCE-MRI, with no significant difference in diagnostic performance between the two. However, caution should be taken when applying our results, as our results were based on indirect comparison. ADVANCES IN KNOWLEDGE No previous studies have comprehensively analysed the value of DCE-MRI and DWI in evaluating the pathological response to NAC in MIBC. According to the current study, both DCE-MRI and DWI yielded high diagnostic performance, with the AUCs of 0.93 and 0.92, respectively. Indirect comparison no significant difference in the diagnostic performanceof DCE-MRI and DWI.
Collapse
Affiliation(s)
- Ruilong Zong
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Xijuan Ma
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Yibing Shi
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Li Geng
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|