1
|
Szymczak B, Pegoraro A, De Marchi E, Grignolo M, Maciejewski B, Czarnecka J, Adinolfi E, Roszek K. Retinoic acid-induced alterations enhance eATP-mediated anti-cancer effects in glioma cells: Implications for P2X7 receptor variants as key players. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167611. [PMID: 39626856 DOI: 10.1016/j.bbadis.2024.167611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Retinoic acid (RA) is a small, lipophilic molecule that inhibits cell proliferation and induces differentiation through activation of a family of nuclear receptors (RARs). The therapeutic potential of RA in the treatment of glioma was first evaluated two decades ago, but these attempts were considered not conclusive. Based on the complexity of tumor microenvironment and the role of purinergic signals within TME, we aimed to support RA-induced alterations in glioma cells with extracellular ATP. Our experiments focused on defining the purinergic signaling dynamics of two different human glioma cell lines M059K and M059J subjected to RA-based differentiation protocol. The applied procedure caused considerable modulation in P2X7 receptor variants expression at the gene and protein level, and decrease in ecto-nucleotidase activity. Collectively, it led to the decrease in cell proliferation rate and migration, as well as boosted sensitivity to cytotoxic eATP influence. We confirmed that micromolar concentrations of ATP decreased cell viability by 40 and 20 % in RA-treated M059K and M059J cells, respectively. Moreover, the decrease in migration capability up to 60 % in the presence of 100 μM ATP was observed. Both effects were mediated by P2X7R activation and reversed in the presence of A740003 antagonist, confirming the role of P2X7 receptor. We postulate that retinoic acid-induced changes coupled with micromolar eATP could be effective as anti-cancer treatment affecting the purinergic signaling. The obtained results point out the role of P2X7R variants in influencing potential of glioma cells, as well as the possibility of using these isoforms as therapeutic targets.
Collapse
Affiliation(s)
- Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marianna Grignolo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Bartosz Maciejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
2
|
Bento CA, Arnaud-Sampaio VF, Glaser T, Adinolfi E, Coutinho-Silva R, Ulrich H, Lameu C. P2X7 receptor in macrophage polarization and its implications in neuroblastoma tumor behavior. Purinergic Signal 2024:10.1007/s11302-024-10051-w. [PMID: 39425818 DOI: 10.1007/s11302-024-10051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) exhibit antitumor or protumor responses related to inflammatory (or M1) and alternative (or M2) phenotypes, respectively. The P2X7 receptor plays a key role in macrophage polarization, influencing inflammation and immunosuppression. In this study, we investigated the role of the P2X7 receptor in TAMs. Using P2X7 receptor-deficient macrophages, we analyzed gene expression profiles and their implications for neuroblastoma invasion and chemoresistance. Our results showed that P2X7 receptor deficiency altered the expression of classical polarization markers, such as nitric oxide synthase 2 (Nos2) and tumor necrosis factor-α (Tnf), as well as alternative phenotype markers, including mannose receptor C-type 1 (Mrc1) and arginase 1 (Arg1). P2X7 deficiency also influenced the expression of the ectonucleotidases Entpd1 and Nt5e and other purinergic receptors, especially P2ry2, suggesting compensatory mechanisms involved in macrophage polarization. In particular, TAMs deficient in P2X7 showed a phenotype with characteristics intermideiate between resting macrophages (M0) and M1 polarization rather than the M2-type phenotype like and wild-type TAM macrophages. In addition, P2rx7-/- TAMs regulated the expression of P2X7 receptor isoforms in neuroblastoma cells, with downregulation of the P2X7 A and B isoforms leading to a decrease in chemotherapy-induced cell death. However, TAMs expressing P2X7 downregulated only the B isoform, suggesting that TAMs play a role in modulating tumor behavior through P2X7 receptor isoform regulation. Taken together, our data underscore the regulatory function of the P2X7 receptor in orchestrating alternative macrophage polarization and in the interplay between tumor cells and TAMs. These findings help to clarify the complex interplay of purinergic signaling in cancer progression and open up avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Carolina Adriane Bento
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa Fernandes Arnaud-Sampaio
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Talita Glaser
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Elena Adinolfi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudiana Lameu
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Togre NS, Mekala N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom S, Sriram U, Persidsky Y. Neuroinflammatory responses and blood-brain barrier injury in chronic alcohol exposure: role of purinergic P2 × 7 Receptor signaling. J Neuroinflammation 2024; 21:244. [PMID: 39342243 PMCID: PMC11439317 DOI: 10.1186/s12974-024-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.
Collapse
Affiliation(s)
- Namdev S Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka S Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nikhita Mogadala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Deborah Grove
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Kotnala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Pegoraro A, Grignolo M, Ruo L, Ricci L, Adinolfi E. P2X7 Variants in Pathophysiology. Int J Mol Sci 2024; 25:6673. [PMID: 38928378 PMCID: PMC11204217 DOI: 10.3390/ijms25126673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
P2X7 receptor activation by extracellular adenosine triphosphate (eATP) modulates different intracellular pathways, including pro-inflammatory and tumor-promoting cascades. ATP is released by cells and necrotic tissues during stressful conditions and accumulates mainly in the inflammatory and tumoral microenvironments. As a consequence, both the P2X7 blockade and agonism have been proposed as therapeutic strategies in phlogosis and cancer. Nevertheless, most studies have been carried out on the WT fully functional receptor variant. In recent years, the discovery of P2X7 variants derived by alternative splicing mechanisms or single-nucleotide substitutions gave rise to the investigation of these new P2X7 variants' roles in different processes and diseases. Here, we provide an overview of the literature covering the function of human P2X7 splice variants and polymorphisms in diverse pathophysiological contexts, paying particular attention to their role in oncological and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.G.); (L.R.); (L.R.)
| | | | | | | | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.G.); (L.R.); (L.R.)
| |
Collapse
|
5
|
Cancela MB, Dinardi M, Aschero R, Zugbi S, Chantada G, Baroni L, Schaiquevich P. The importance of basic and translational research in caring for children with malignant solid tumors in Latin America. Rev Panam Salud Publica 2024; 48:e48. [PMID: 38707777 PMCID: PMC11069327 DOI: 10.26633/rpsp.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 05/07/2024] Open
Abstract
Objective Basic and translational research in pediatric cancer are essential to improve patient care. To critically assess the developments achieved in these areas in Latin America, we systematically reviewed information published between 2013 and 2023. Methods Studies of basic and translational research performed by investigators in Latin America evaluating pediatric malignant solid and central nervous system tumors were retrieved from PubMed. Original articles published in English between 2013 and 2023 were included. Collaborations among Latin American authors or among Latin American authors working with researchers from other continents were also included. Studies were excluded if they focused only on adults or on basic research in tumor biology not specifically related to the tumor types analyzed in this review. Results A total of 550 articles were retrieved, but after removal of duplicates, 514 articles were included in the analysis, the majority of which were authored by researchers affiliated with institutions in Argentina, Brazil and Mexico. These countries also had the highest number of collaborations on original articles published with authors from Europe and North America. Argentina had the highest number of collaborations on original publications, with coauthors from Brazil and Uruguay. The median impact factor of the 244 journals in which articles were published was 3.5. The most commonly studied tumors were osteosarcomas, neuroblastomas and medulloblastomas; the most commonly studied areas were molecular analysis, tumor cell biology and biomarkers. Conclusions In Latin America, research in pediatric oncology is on the agenda, despite a notable disparity in publication rates and frequency of collaboration between countries. There is a need to strengthen scientific collaboration within Latin America and with countries from other continents to promote research and to develop novel treatment strategies that reflect the local needs of children in Latin America who have solid tumors and brain cancer.
Collapse
Affiliation(s)
- María Belen Cancela
- Unidad de Tratamientos InnovadoresHospital de Pediatría JP GarrahanBuenos AiresArgentinaUnidad de Tratamientos Innovadores, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Milagros Dinardi
- Unidad de Tratamientos InnovadoresHospital de Pediatría JP GarrahanBuenos AiresArgentinaUnidad de Tratamientos Innovadores, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Rosario Aschero
- Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpainPediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Santiago Zugbi
- Unidad de Tratamientos InnovadoresHospital de Pediatría JP GarrahanBuenos AiresArgentinaUnidad de Tratamientos Innovadores, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Guillermo Chantada
- Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpainPediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Lorena Baroni
- Servicio de Hematología-OncologíaHospital de Pediatría JP GarrahanBuenos AiresArgentinaServicio de Hematología-Oncología, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Unidad de Tratamientos InnovadoresHospital de Pediatría JP GarrahanBuenos AiresArgentinaUnidad de Tratamientos Innovadores, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| |
Collapse
|
6
|
Gao J, Pan H, Li J, Jiang J, Wang W. A peptide encoded by the circular form of the SHPRH gene induces apoptosis in neuroblastoma cells. PeerJ 2024; 12:e16806. [PMID: 38282862 PMCID: PMC10812589 DOI: 10.7717/peerj.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Background Circular RNAs (circRNAs) and their derived peptides represent largely unchartered areas in cellular biology, with many potential roles yet to be discovered. This study aimed to elucidate the role and molecular interactions of circSHPRH and its peptide derivative SHPRH-146aa in the pathogenesis of neuroblastoma (NB). Methods NB samples in the GSE102285 dataset were analyzed to measure circSHPRH expression, followed by in vitro experiments for validation. The role of SHPRH-146aa in NB cell proliferation, migration, and invasion was then examined, and luciferase activity assay was performed after SHPRH-146aa and RUNX1 transfection. Finally, the regulation of NB cell apoptosis by SHPRH-146aa combined with NFKBIA was tested. Results The GSE102285 dataset indicated overexpression of circSHPRH in NB samples, further supported by in vitro findings. Overexpression of circ-SHPRH and SHPRH-146aa inhibited proliferation, migration, and invasion of NB cells. A significant increase in apoptosis was observed, with upregulation of Caspase-3 and downregulation of Bcl-2. Furthermore, the peptide derivative SHPRH-146aa, derived from circSHPRH, suppressed NB cell malignancy traits, suggesting its role as a therapeutic target. A direct interaction between SHPRH-146aa and the transcription factor RUNX1 was identified, subsequently leading to increased NFKBIA expression. Notably, NFKBIA knockdown inhibited the pro-apoptotic effect of SHPRH-146aa on NB cells. Conclusion The study demonstrates that circ-SHPRH and SHPRH-146aa play significant roles in inhibiting the malignant progression of NB. They induce apoptosis primarily by modulating key apoptotic proteins Caspase-3 and Bcl-2, a process that appears to be regulated by NFKBIA. The SHPRH-146aa-RUNX1 interaction further elucidates a novel pathway in the regulation of apoptosis in NB. These findings indicate that circ-SHPRH and its derived peptide SHPRH-146aa could be potential therapeutic targets for NB treatment.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Pan
- Department of Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Department of Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Jiang
- Endoscopy Center, Minhang District Central Hospital of Fudan University, Shanghai, China
| | - Wenxian Wang
- Department of Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
8
|
Zheng H, Huang S, Zhang J, Zhang R, Wang J, Yuan J, Li A, Yang X, Zhang Z. C1M2: a universal algorithm for 3D instance segmentation, annotation, and quantification of irregular cells. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2415-2428. [PMID: 37243949 DOI: 10.1007/s11427-022-2327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 05/29/2023]
Abstract
Cell instance segmentation is a fundamental task for many biological applications, especially for packed cells in three-dimensional (3D) microscope images that can fully display cellular morphology. Image processing algorithms based on neural networks and feature engineering have enabled great progress in two-dimensional (2D) instance segmentation. However, current methods cannot achieve high segmentation accuracy for irregular cells in 3D images. In this study, we introduce a universal, morphology-based 3D instance segmentation algorithm called Crop Once Merge Twice (C1M2), which can segment cells from a wide range of image types and does not require nucleus images. C1M2 can be extended to quantify the fluorescence intensity of fluorescent proteins and antibodies and automatically annotate their expression levels in individual cells. Our results suggest that C1M2 can serve as a tissue cytometry for 3D histopathological assays by quantifying fluorescence intensity with spatial localization and morphological information.
Collapse
Affiliation(s)
- Hao Zheng
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Songlin Huang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jing Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ren Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Yuan
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Anan Li
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Yang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
Miyagi MYS, de Oliveira Faria R, de Souza GB, Lameu C, Tagami T, Ozeki T, Bezzon VDN, Yukuyama MN, Bou-Chacra NA, de Araujo GLB. Optimizing adjuvant inhaled chemotherapy: Synergistic enhancement in paclitaxel cytotoxicity by flubendazole nanocrystals in a cycle model approach. Int J Pharm 2023; 644:123324. [PMID: 37591475 DOI: 10.1016/j.ijpharm.2023.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Lung cancer is the leading cause of cancer-related death. In addition to new innovative approaches, practical strategies that improve the efficacy of already available drugs are urgently needed. In this study, an inhalable dry powder formulation is used to repurpose flubendazole, a poorly soluble anthelmintic drug with potential against a variety of cancer lineages. Flubendazole nanocrystals were obtained through nanoprecipitation, and dry powder was produced by spray drying. Through fractional factorial design, the spray drying parameters were optimized and the impact of formulation on aerolization properties was clarified. The loading limitations were clarified through response surface methodology, and a 15% flubendazole loading was feasible through the addition of 20% L-leucine, leading to a flubendazole particle size of 388.6 nm, median mass aerodynamic diameter of 2.9 μm, 50.3% FPF, emitted dose of 83.2% and triple the initial solubility. Although the cytotoxicity of this formulation in A549 cells was limited, the formulation showed a synergistic effect when associated with paclitaxel, leading to a surprising 1000-fold reduction in the IC50. Compared to 3 cycles of paclitaxel alone, a 3-cycle model combined treatment increased the threshold of cytotoxicity by 25% for the same dose. Our study suggests, for the first time, that orally inhaled flubendazole nanocrystals show high potential as adjuvants to increase cytotoxic agents' potency and reduce adverse effects.
Collapse
Affiliation(s)
- Mariana Yasue Saito Miyagi
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Rafael de Oliveira Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Batista de Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Vinícius Danilo Nonato Bezzon
- Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 786, Quatro Road, 35402-136 Ouro Preto, MG, Brazil
| | - Megumi Nishitani Yukuyama
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Nadia Araci Bou-Chacra
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Adinolfi E, De Marchi E, Grignolo M, Szymczak B, Pegoraro A. The P2X7 Receptor in Oncogenesis and Metastatic Dissemination: New Insights on Vesicular Release and Adenosinergic Crosstalk. Int J Mol Sci 2023; 24:13906. [PMID: 37762206 PMCID: PMC10531279 DOI: 10.3390/ijms241813906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The tumor niche is an environment rich in extracellular ATP (eATP) where purinergic receptors have essential roles in different cell subtypes, including cancer, immune, and stromal cells. Here, we give an overview of recent discoveries regarding the role of probably the best-characterized purinergic receptor in the tumor microenvironment: P2X7. We cover the activities of the P2X7 receptor and its human splice variants in solid and liquid cancer proliferation, dissemination, and crosstalk with immune and endothelial cells. Particular attention is paid to the P2X7-dependent release of microvesicles and exosomes, their content, including ATP and miRNAs, and, in general, P2X7-activated mechanisms favoring metastatic spread and niche conditioning. Moreover, the emerging role of P2X7 in influencing the adenosinergic axis, formed by the ectonucleotidases CD39 and CD73 and the adenosine receptor A2A in cancer, is analyzed. Finally, we cover how antitumor therapy responses can be influenced by or can change P2X7 expression and function. This converging evidence suggests that P2X7 is an attractive therapeutic target for oncological conditions.
Collapse
Affiliation(s)
- Elena Adinolfi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Elena De Marchi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Marianna Grignolo
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Anna Pegoraro
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| |
Collapse
|
11
|
Coutinho F, Guimarães LM, Seeger R, Paula J Santos A, Glaser T, Yamamoto D, Lacerda L, Arnaud-Sampaio V, Rossini CV, Rabelo I, Miranda de Medeiros N, Ramos Truzzi D, Aparecida Juliano M, Juliano L, Ulrich H, Lameu C. Bj-PRO-10c, as an allosteric regulator of argininosuccinate synthase, is a potential therapy for neuroblastoma metastasis. Toxicon 2023; 233:107228. [PMID: 37479190 DOI: 10.1016/j.toxicon.2023.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Cancer is a global public health issue. Neuroblastoma (NB) originates from any tissue of the sympathetic nervous system, and the most affected site is the abdomen. The adrenal gland is the primary site in 38% of cases. Approximately 50% of patients have metastatic disease at diagnosis, and bone marrow is often affected. Metastatic disease is characterized by the spreading of cancer cells that are frequently resistant to chemotherapy and radiotherapy from the primary tumor to other specific parts of the body and is responsible for 90% of cancer-related deaths. Increasing evidence has indicated that nitric oxide (NO) signaling is implicated in the pathophysiology of many types of cancer, particularly in tumorigenesis and cancer progression. However, the effect of NO on metastasis cannot be easily classified as prometastatic or antimetastatic. An understanding at the molecular level of the role of NO in cancer will have profound therapeutic implications for the diagnosis and treatment of disease. Here, the proline-rich decapeptide isolated from Bothrops jararaca venom (Bj-PRO-10c) that enhances and sustains the generation of NO was used to unravel the role of metabolic NO in steps of metastasis. Bj-PRO-10c showed an antimetastatic effect, mainly by interfering with actin cytoskeleton rearrangement, controlling cell proliferation, and decreasing the seeding efficiency of NB in metastatic niches. Therefore, we proposed that an approach for controlled NO induction with the right molecular strategies can hopefully inhibit metastasis and increase the lifespan of NB patients.
Collapse
Affiliation(s)
- Fernanda Coutinho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Lara Mf Guimarães
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo Seeger
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Ana Paula J Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Denise Yamamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Lucas Lacerda
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | - Caio Vt Rossini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Izadora Rabelo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | - Daniela Ramos Truzzi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
13
|
Zhou X, Wang X, Li N, Guo Y, Yang X, Lei Y. Therapy resistance in neuroblastoma: Mechanisms and reversal strategies. Front Pharmacol 2023; 14:1114295. [PMID: 36874032 PMCID: PMC9978534 DOI: 10.3389/fphar.2023.1114295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric solid tumors that threaten the health of children, accounting for about 15% of childhood cancer-related mortality in the United States. Currently, multiple therapies have been developed and applied in clinic to treat neuroblastoma including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, the resistance to therapies is inevitable following long-term treatment, leading to treatment failure and cancer relapse. Hence, to understand the mechanisms of therapy resistance and discover reversal strategies have become an urgent task. Recent studies have demonstrated numerous genetic alterations and dysfunctional pathways related to neuroblastoma resistance. These molecular signatures may be potential targets to combat refractory neuroblastoma. A number of novel interventions for neuroblastoma patients have been developed based on these targets. In this review, we focus on the complicated mechanisms of therapy resistance and the potential targets such as ATP-binding cassette transporters, long non-coding RNAs, microRNAs, autophagy, cancer stem cells, and extracellular vesicles. On this basis, we summarized recent studies on the reversal strategies to overcome therapy resistance of neuroblastoma such as targeting ATP-binding cassette transporters, MYCN gene, cancer stem cells, hypoxia, and autophagy. This review aims to provide novel insight in how to improve the therapy efficacy against resistant neuroblastoma, which may shed light on the future directions that would enhance the treatment outcomes and prolong the survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Xia Zhou
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China.,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaolin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|