1
|
Niedra H, Peculis R, Saksis R, Mandrika I, Vilisova S, Nazarovs J, Breiksa A, Gerina A, Earl J, Ruz-Caracuel I, Rosas MG, Pukitis A, Senterjakova N, Rovite V. Tumor and α-SMA-expressing stromal cells in pancreatic neuroendocrine tumors have a distinct RNA profile depending on tumor grade. Mol Oncol 2024. [PMID: 39245631 DOI: 10.1002/1878-0261.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Alpha-smooth muscle actin (α-SMA) expression in the stroma is linked to the presence of cancer-associated fibroblasts and is known to correlate with worse outcomes in various tumors. In this study, using a GeoMx digital spatial profiling approach, we characterized the gene expression of the tumor and α-SMA-expressing stromal cell compartments in pancreatic neuroendocrine tumors (PanNETs). The profiling was performed on tissues from eight retrospective cases (three grade 1, four grade 2, and one grade 3). Selected regions of interest were segmented geometrically based on tissue morphology and fluorescent signals from synaptophysin and α-SMA markers. The α-SMA-expressing stromal-cell-associated genes were involved in pathways of extracellular matrix modification, whereas, in tumor cells, the gene expression profiles were associated with pathways involved in cell proliferation. The comparison of gene expression profiles across all three PanNET grades revealed that the differences between grades are not only present at the level of the tumor but also in the α-SMA-expressing stromal cells. Furthermore, the tumor cells from regions with a rich presence of adjacent α-SMA-expressing stromal cells revealed an upregulation of matrix metalloproteinase-9 (MMP9) expression in grade 3 tumors. This study provides an in-depth characterization of gene expression profiles in α-SMA-expressing stromal and tumor cells, and outlines potential crosstalk mechanisms.
Collapse
Affiliation(s)
- Helvijs Niedra
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Raitis Peculis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Rihards Saksis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilona Mandrika
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Sofija Vilisova
- Oncology clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Jurijs Nazarovs
- Institute of Pathology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Pathology, Riga Stradins University, Latvia
| | - Austra Breiksa
- Institute of Pathology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Aija Gerina
- Oncology clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital. Ctra. Colmenar Viejo, CIBERONC, Madrid, Spain
| | - Ignacio Ruz-Caracuel
- Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital. Ctra. Colmenar Viejo, CIBERONC, Madrid, Spain
- Department of Pathology, Ramón y Cajal University Hospital. Ctra, Colmenar Viejo, Madrid, Spain
| | - Marta Gabriela Rosas
- Department of Pathology, Ramón y Cajal University Hospital. Ctra, Colmenar Viejo, Madrid, Spain
| | - Aldis Pukitis
- Centre of Gastroenterology, Hepatology and Nutrition Therapy, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Natalja Senterjakova
- Centre of Gastroenterology, Hepatology and Nutrition Therapy, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Vita Rovite
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
2
|
Cubiella T, Celada L, San-Juan-Guardado J, Rodríguez-Aguilar R, Suárez-Priede Á, Poch M, Dominguez F, Fernández-Vega I, Montero-Pavón P, Fraga MF, Nakatani Y, Takata S, Yachida S, Valdés N, Chiara MD. PCDHGC3 hypermethylation as a potential biomarker of intestinal neuroendocrine carcinomas. J Pathol 2024; 263:418-428. [PMID: 38795318 DOI: 10.1002/path.6291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 05/27/2024]
Abstract
Neuroendocrine neoplasms (NENs) encompass tumors arising from neuroendocrine cells in various organs, including the gastrointestinal tract, pancreas, adrenal gland, and paraganglia. Despite advancements, accurately predicting the aggressiveness of gastroenteropancreatic (GEP) NENs based solely on pathological data remains challenging, thereby limiting optimal clinical management. Our previous research unveiled a crucial link between hypermethylation of the protocadherin PCDHGC3 gene and neuroendocrine tumors originating from the paraganglia and adrenal medulla. This epigenetic alteration was associated with increased metastatic potential and succinate dehydrogenase complex (SDH) dysfunction. Expanding upon this discovery, the current study explored PCDHGC3 gene methylation within the context of GEP-NENs in a cohort comprising 34 cases. We uncovered promoter hypermethylation of PCDHGC3 in 29% of GEP-NENs, with a significantly higher prevalence in gastrointestinal (GI) neuroendocrine carcinomas (NECs) compared with both pancreatic (Pan) NECs and neuroendocrine tumors (NETs) of GI and Pan origin. Importantly, these findings were validated in one of the largest multi-center GEP-NEN cohorts. Mechanistic analysis revealed that PCDHGC3 hypermethylation was not associated with SDH mutations or protein loss, indicating an SDH-independent epigenetic mechanism. Clinically, PCDHGC3 hypermethylation emerged as a significant prognostic factor, correlating with reduced overall survival rates in both patient cohorts. Significantly, whereas PCDHGC3 hypermethylation exhibited a strong correlation with TP53 somatic mutations, a hallmark of NEC, its predictive value surpassed that of TP53 mutations, with an area under the curve (AUC) of 0.95 (95% CI 0.83-1.0) for discriminating GI-NECs from GI-NETs, highlighting its superior predictive performance. In conclusion, our findings position PCDHGC3 methylation status as a promising molecular biomarker for effectively stratifying patients with GI-NENs. This discovery has the potential to advance patient care by enabling more precise risk assessments and tailored treatment strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tamara Cubiella
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Lucía Celada
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Jaime San-Juan-Guardado
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | | | - Álvaro Suárez-Priede
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - María Poch
- Department of Pathology, Hospital Universitario de Cabueñes, Gijón, Spain
| | | | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pedro Montero-Pavón
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mario F Fraga
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
| | - Yoichiro Nakatani
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - So Takata
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nuria Valdés
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Hospital Universitario Cruces, Bizkaia, Spain
- Biobizkaia Health Research Institute, Bizkaia, Spain
- CIBERDEM (Network of Biomedical Research in Diabetes), Madrid, Spain
| | - María-Dolores Chiara
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
3
|
Kartik A, Armstrong VL, Stucky CC, Wasif N, Fong ZV. Contemporary Approaches to the Surgical Management of Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2024; 16:1501. [PMID: 38672582 PMCID: PMC11048062 DOI: 10.3390/cancers16081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of pancreatic neuroendocrine tumors (PNETs) is on the rise primarily due to the increasing use of cross-sectional imaging. Most of these incidentally detected lesions are non-functional PNETs with a small proportion of lesions being hormone-secreting, functional neoplasms. With recent advances in surgical approaches and systemic therapies, the management of PNETs have undergone a paradigm shift towards a more individualized approach. In this manuscript, we review the histologic classification and diagnostic approaches to both functional and non-functional PNETs. Additionally, we detail multidisciplinary approaches and surgical considerations tailored to the tumor's biology, location, and functionality based on recent evidence. We also discuss the complexities of metastatic disease, exploring liver-directed therapies and the evolving landscape of minimally invasive surgical techniques.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Ven Fong
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| |
Collapse
|
4
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
5
|
Fazio N, La Salvia A. Precision medicine in gastroenteropancreatic neuroendocrine neoplasms: Where are we in 2023? Best Pract Res Clin Endocrinol Metab 2023; 37:101794. [PMID: 37414651 DOI: 10.1016/j.beem.2023.101794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Precision medicine describes a target-related approach to tailoring diagnosis and treatment of the individual patient. While this personalized approach is revoluzionizing many areas of oncology, it is quite late in the field of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs), in which there are few molecular alterations to be therapeutically targeted. We critically reviewed the current evidence about precision medicine in GEP NENs, focusing on potential clinically relevant actionable targets for GEP NENs, such as the mTOR pathway, MGMT, hypoxia markers, RET, DLL-3, and some general agnostic targets. We analysed the main investigational approaches with solid and liquid biopsies. Furthermore, we reviewed a model of precision medicine more specific for NENs that is the theragnostic use of radionuclides. Overall, currently no true predictive factors for therapy have been validated so far in GEP NENs, and the personalized approach is based more on clinical thinking within a NEN-dedicated multidisciplinary team. However, there is a robust background to suppose that precision medicine, with the theragnostic model will yield new insights in this context soon.
Collapse
Affiliation(s)
- Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, Milan, Italy.
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome, Italy
| |
Collapse
|