1
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
2
|
Huang X, Zhong H, Cai Y. LncRNA MIR100HG Promotes Cell Proliferation in Nasopharyngeal Carcinoma by Targeting miR-136-5p/IL-6 Axis. Mol Biotechnol 2024; 66:1279-1289. [PMID: 38278928 DOI: 10.1007/s12033-023-01028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
Nasopharyngeal carcinoma (NPC) features high mortality and poor prognosis. Additionally, long non-coding RNAs (lncRNAs) play a significant role in developing NPC and other types of cancer. But the functional mechanism of MIR100HG in NPC remains unclear. The long non-coding RNA MIR100HG messenger RNA (mRNA) expression was thoroughly evaluated in NPC tumors and adjacent tissues using quantitative polymerase chain reaction (qPCR). Furthermore, we employed Kaplan-Meier analysis to compare the expression of MIR100HG with survival outcomes. The CCK8 test was utilized to investigate the impact of the lncRNA MIR100HG/miR-136-5p/IL-6 axis on cell proliferation in NPC. The study's findings indicated overexpression of the lncRNA MIR100HG in both NPC tumors and cell lines. This upregulation was associated with a poorer outcome in individuals with NPC. When lncRNA MIR100HG was knocked down in vitro, NPC cell proliferation was inhibited, resulting in tumor suppression. In certain oncogenic capacities, the lncRNA MIR100HG functions as a competitive endogenous RNA for miR-136-5p, hence impeding the inhibitory effect of miR-136-5p on its target gene, IL-6. In summary, the findings of the present investigation suggested that lncRNA MIR100HG exhibits promising characteristics as a potential indicator for the prognosis and diagnosis of NPC.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Huaping Zhong
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Yunxiang Cai
- Department of Otolaryngology Head and Neck Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
3
|
Min S, Zhang L, Zhang L, Liu F, Liu M. LncRNA MIR100HG affects the proliferation and metastasis of lung cancer cells through mediating the microRNA-5590-3p/DCBLD2 axis. Immun Inflamm Dis 2024; 12:e1223. [PMID: 38602284 PMCID: PMC11007817 DOI: 10.1002/iid3.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE The aim of this paper is to investigate the effect of long noncoding RNA (lncRNA) MIR100HG on the proliferation and metastasis of lung cancer cells by mediating the microRNA (miR)-5590-3p/DCBLD2 axis. METHODS RNA levels of MIR100HG, miR-5590-3p, and DCBLD2 in lung cancer tissues and cells were detected by quantitative reverse-transcription polymerase chain reaction, and protein level was assessed by Western blot. Effects of MIR100HG or miR-5590-3p on proliferation, migration, and invasion of lung cancer cells were detected by Cell Counting Kit-8, colony formation, and Transwell assays. Luciferase reporter assay and RNA-immunoprecipitation assay confirmed the target relationship between miR-5590-3p and MIR100HG or DCBLD2. RESULTS MIR100HG and DCBLD2 were highly expressed, while miR-5590-3p was lowly expressed in lung cancer tissues and cells. Silencing MIR100HG or upregulating miR-5590-3p impeded lung cancer cell proliferation, migration, and invasion. MIR100HG could up-regulate DCBLD2 by sponging miR-5590-3p. Downregulation of miR-5590-3p partly overturned the suppressive effect of silencing MIR100HG on lung cancer cell proliferation and metastasis, and overexpression of DCBLD2 also reversed the effect of overexpression of miR-5590-3p on lung cancer cell proliferation and metastasis. CONCLUSION LncRNA MIR100HG promotes lung cancer progression by targeting and negatively regulating DCBLD2 through binding with miR-5590-3p.
Collapse
Affiliation(s)
- Shengping Min
- Department of Microbiology and Parasitology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Linxiang Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Fangfang Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Miao Liu
- Department of Microbiology and Parasitology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
4
|
Fustaino V, Papoff G, Ruberti F, Ruberti G. Co-Expression Network Analysis Unveiled lncRNA-mRNA Links Correlated to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance and/or Intermediate Epithelial-to-Mesenchymal Transition Phenotypes in a Human Non-Small Cell Lung Cancer Cellular Model System. Int J Mol Sci 2024; 25:3863. [PMID: 38612674 PMCID: PMC11011530 DOI: 10.3390/ijms25073863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
We investigated mRNA-lncRNA co-expression patterns in a cellular model system of non-small cell lung cancer (NSCLC) sensitive and resistant to the epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) erlotinib/gefitinib. The aim of this study was to unveil insights into the complex mechanisms of NSCLC targeted therapy resistance and epithelial-to-mesenchymal transition (EMT). Genome-wide RNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs and lncRNAs. Functional enrichment analysis and identification of lncRNAs were conducted on modules associated with the EGFR-TKI response and/or intermediate EMT phenotypes. We constructed lncRNA-mRNA co-expression networks and identified key modules and their enriched biological functions. Processes enriched in the selected modules included RHO (A, B, C) GTPase and regulatory signaling pathways, apoptosis, inflammatory and interleukin signaling pathways, cell adhesion, cell migration, cell and extracellular matrix organization, metabolism, and lipid metabolism. Interestingly, several lncRNAs, already shown to be dysregulated in cancer, are connected to a small number of mRNAs, and several lncRNAs are interlinked with each other in the co-expression network.
Collapse
Affiliation(s)
- Valentina Fustaino
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Campus Adriano Buzzati Traverso, Via E. Ramarini 32, 00015 Monterotondo (Roma), Italy; (G.P.); (F.R.)
| | | | | | | |
Collapse
|
5
|
Martinez de Estibariz I, Jakjimovska A, Illarregi U, Martin-Guerrero I, Gutiérrez-Camino A, Lopez-Lopez E, Bilbao-Aldaiturriaga N. The Role of the Dysregulation of Long Non-Coding and Circular RNA Expression in Medulloblastoma: A Systematic Review. Cancers (Basel) 2023; 15:4686. [PMID: 37835380 PMCID: PMC10571996 DOI: 10.3390/cancers15194686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. Although recent multi-omic studies have led to advances in MB classification, there is still room for improvement with regard to treatment response and survival. Therefore, identification of new and less invasive biomarkers is needed to refine the diagnostic process and to develop more personalized treatment strategies. In this context, non-coding RNAs (ncRNAs) could be useful biomarkers for MB. In this article, we reviewed the role of two types of ncRNAs, long non-coding (lncRNAs) and circular RNAs (circRNAs), as biomarkers for the diagnosis, subgroup classification, and prognosis of MB. We also reviewed potential candidates with specific functions and mechanisms of action in the disease. We performed a search in PubMed and Scopus using the terms ("long non coding RNAs" OR "lncRNAs") and ("circular RNAs" OR "circRNAs") AND "medulloblastoma" to identify biomarker discovery or functional studies evaluating the effects of these ncRNAs in MB. A total of 26 articles met the inclusion criteria. Among the lncRNAs, the tumorigenic effects of the upregulated lnc-IRX3-80 and lnc-LRRC47-78 were the most studied in MB. Among the circRNAs, the upregulation of circSKA3 and its functional impact in MB cell lines were the most consistent results, so this circRNA could be considered a potential biomarker in MB. Additional validation is required for many deregulated lncRNAs and circRNAs; therefore, further studies are warranted.
Collapse
Affiliation(s)
- Ivan Martinez de Estibariz
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (I.M.d.E.); (U.I.); (I.M.-G.)
| | - Anastasija Jakjimovska
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (I.M.d.E.); (U.I.); (I.M.-G.)
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (I.M.d.E.); (U.I.); (I.M.-G.)
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Angela Gutiérrez-Camino
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Elixabet Lopez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Nerea Bilbao-Aldaiturriaga
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| |
Collapse
|
6
|
Palcau AC, Brandi R, Mehterov NH, Botti C, Blandino G, Pulito C. Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment. Cancers (Basel) 2023; 15:4181. [PMID: 37627209 PMCID: PMC10453179 DOI: 10.3390/cancers15164181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is one of the most frequent causes of cancer death among women worldwide. In particular, triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype because it is characterized by the absence of molecular targets, thus making it an orphan type of malignancy. The discovery of new molecular druggable targets is mandatory to improve treatment success. In that context, non-coding RNAs represent an opportunity for modulation of cancer. They are RNA molecules with apparently no protein coding potential, which have been already demonstrated to play pivotal roles within cells, being involved in different processes, such as proliferation, cell cycle regulation, apoptosis, migration, and diseases, including cancer. Accordingly, they could be used as targets for future TNBC personalized therapy. Moreover, the peculiar characteristics of non-coding RNAs make them reliable biomarkers to monitor cancer treatment, thus, to monitor recurrence or chemoresistance, which are the most challenging aspects in TNBC. In the present review, we focused on the oncogenic or oncosuppressor role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) mostly involved in TNBC, highlighting their mode of action and depicting their potential role as a biomarker and/or as targets of new non-coding RNA-based therapeutics.
Collapse
Affiliation(s)
- Alina Catalina Palcau
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Renata Brandi
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Nikolay Hristov Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Claudio Botti
- Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| |
Collapse
|
7
|
Liang H, Xiang L, Wu H, Liu Y, Tian W, Zeng J. Anoikis-related long non-coding RNA signatures to predict prognosis and small molecular drug response in cervical cancer. Front Pharmacol 2023; 14:1135626. [PMID: 37021052 PMCID: PMC10067583 DOI: 10.3389/fphar.2023.1135626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Cervical cancer (CC) is a major health threat to females, and distal metastasis is common in patients with advanced CC. Anoikis is necessary for the development of distal metastases. Understanding the mechanisms associated with anoikis in CC is essential to improve its survival rate. Methods: The expression matrix of long non-coding RNAs (lncRNAs) from cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients was extracted from The Cancer Genome Atlas (TCGA), and highly relevant anoikis-related lncRNAs (ARLs) were identified by the single sample gene set enrichment analysis (ssGSEA) method. ARLs-related molecular subtypes were discerned based on prognosis-related ARLs. ARLs-related prognostic risk score (APR_Score) was calculated and risk model was constructed using LASSO COX and COX models. In addition, we also assessed immune cell activity in the immune microenvironment (TME) for both subtypes and APR_Score groups. A nomogram was utilized for predicting improved clinical outcome. Finally, this study also discussed the potential of ARLs-related signatures in predicting response to immunotherapy and small molecular drugs. Results: Three ARLs-related subtypes were identified from TCGA-CESC (AC1, AC2, and AC3), with AC3 patients having the highest ARG scores, higher angiogenesis scores, and the worst prognosis. AC3 had lower immune cell scores in TME but higher immune checkpoint gene expression and higher potential for immune escape. Next, we constructed a prognostic risk model consisting of 7-ARLs. The APR_Score exhibited a greater robustness as an independent prognostic indicator in predicting prognosis, and the nomogram was a valuable tool for survival prediction. ARLs-related signatures emerged as a potential novel indicator for immunotherapy and small molecular drug selection. Conclusion: We firstly constructed novel ARLs-related signatures capable of predicting prognosis and offered novel ideas for therapy response in CC patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lan Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Tian
- Department of General Surgery, The Second Affiliated Hospital of Tianjin, University of Traditional Chinese Medicine, Tianjin, China
| | - Jianhua Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Singh DD, Lee HJ, Yadav DK. Recent Clinical Advances on Long Non-Coding RNAs in Triple-Negative Breast Cancer. Cells 2023; 12:cells12040674. [PMID: 36831341 PMCID: PMC9955037 DOI: 10.3390/cells12040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Various investigations are being conducted to overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner in cells and tissues and are involved in TNBC progression and development. lncRNAs could be used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC. Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance. Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early diagnosis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
- Correspondence: (H.-J.L.); (D.K.Y.)
| | | |
Collapse
|
9
|
Ren L, Yang X, Wang W, Lin H, Huang G, Liu Z, Pan J, Mao X. A cuproptosis-related LncRNA signature: Integrated analysis associated with biochemical recurrence and immune landscape in prostate cancer. Front Genet 2023; 14:1096783. [PMID: 36911392 PMCID: PMC9999016 DOI: 10.3389/fgene.2023.1096783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
Background: As a new form of regulated cell death, cuproptosis differs profoundly from apoptosis, ferroptosis, pyroptosis, and necroptosis. The correlation between cuproptosis and long non-coding RNAs (lncRNAs) has been increasingly studied recently. In this study, a novel cuproptosis-related lncRNA prognostic signature was developed to investigate biochemical recurrence (BCR) and tumor immune landscape in prostate cancer (PCa). Methods and Materials: The transcriptome data and clinicopathologic information of PCa patients were downloaded from The Cancer Genome Atlas (TCGA). Pearson's correlation analysis was applied to identify lncRNAs associated with cuproptosis. Based on Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a cuproptosis-related lncRNA prognostic model (risk score) to predict the BCR of PCa patients. Additionally, we also constructed a nomogram with the risk score and clinicopathologic features. The biological function, tumor mutation burden (TMB), immune cell infiltration, expression levels of immune checkpoint genes, and anti-cancer drug sensitivity were investigated. Results: We constructed and validated the cuproptosis-related lncRNA signature prognostic model (risk score) by six crlncRNAs. All patients were divided into the low- and high-risk groups based on the median risk score. The Kaplan-Meier (KM) survival analysis revealed that the high-risk group had shorter BCR-free survival (BCRFS). The risk score has been proven to be an independent prognostic factor of BCR in PCa patients. In addition, a nomogram of risk scores and clinicopathologic features was established and demonstrated an excellent predictive capability of BCR. The ROC curves further validated that this nomogram had higher accuracy of predicting the BCR compared to other clinicopathologic features. We also found that the high-risk group had higher TMB levels and more infiltrated immune cells. Furthermore, patients with high TMB in the high-risk group were inclined to have the shortest BCRFS. Finally, patients in the high-risk group were more susceptible to docetaxel, gefitinib, methotrexate, paclitaxel, and vinblastine. Conclusion: The novel crlncRNA signature prognostic model shows a greatly prognostic prediction value of BCR for PCa patients, extends our thought on the association of cuproptosis and PCa, and provides novel insights into individual-based treatment strategies for PCa.
Collapse
Affiliation(s)
- Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xu Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Guankai Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zixiong Liu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jincheng Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|