1
|
Azimi M, Cho S, Bozkurt E, McDonough E, Kisakol B, Matveeva A, Salvucci M, Dussmann H, McDade S, Firat C, Urganci N, Shia J, Longley DB, Ginty F, Prehn JH. Spatial effects of infiltrating T cells on neighbouring cancer cells and prognosis in stage III CRC patients. J Pathol 2024; 264:148-159. [PMID: 39092716 DOI: 10.1002/path.6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single-cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil (5FU)-based chemotherapy. Images underwent segmentation for tumour, stroma, and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell-T-cell interactions at single-cell level. In our discovery cohort (Memorial Sloan Kettering samples), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (Huntsville Clearview Cancer Center samples) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between the percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (discovery cohort: p = 0.07; validation cohort: p = 0.19). We next utilised our region-based nearest neighbour approach to determine the spatial relationships between cytotoxic T cells, helper T cells, and cancer cell clusters. In both cohorts, we found that shorter distance between cytotoxic T cells, T helper cells, and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (discovery cohort: p = 0.01; validation cohort: p = 0.003). © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Elizabeth McDonough
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Simon McDade
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Canan Firat
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Nil Urganci
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Jinru Shia
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Daniel B Longley
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Jochen Hm Prehn
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
2
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
3
|
Matsumoto M, Rokunohe D, Sasaki T, Matsuzaki Y, Nakano H, Mizukami H, Akasaka E, Sawamura D. Upregulated expression of glucose transporter isoform 1 in invasive and metastatic extramammary Paget's disease. Exp Ther Med 2024; 27:228. [PMID: 38596658 PMCID: PMC11002819 DOI: 10.3892/etm.2024.12516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024] Open
Abstract
Glucose transporter isoform 1 (GLUT1), which is upregulated in a variety of malignant tumors, facilitates cellular glucose uptake to boost rapid tumor growth and progression. In several types of cancer, inhibition of GLUT1 suppresses tumor proliferation and metastasis, indicating that GLUT1 is a potential target of anticancer therapy. The present study performed immunohistochemistry to analyze GLUT1 expression levels in 51 patients with extramammary Paget's disease (EMPD), including 23 with only intraepidermal lesions and 28 with dermal-invasive lesions. Of the 28 patients with dermal invasion, nine had available samples of lymph node metastasis. GLUT1 staining scores were significantly higher in dermal-invasive (P<0.0001) and metastatic lesions (P=0.0008) compared with in intraepidermal lesions. GLUT1 is upregulated during the transition from preinvasive to invasive or metastatic tumor in EMPD. Moreover, GLUT1 staining scores were statistically higher in intraepidermal tumor cells of dermal-invasive EMPD compared with tumor cells of only in situ EMPD (P=0.0338). GLUT1 is upregulated even during the preinvasive phase in patients with invasive EMPD, suggesting that GLUT1 immunostaining can predict the risk of dermal invasion. The present study provides novel evidence to pursue in vitro and in vivo studies to confirm that upregulated expression of GLUT1 enhances tumor aggressiveness in EMPD.
Collapse
Affiliation(s)
- Mika Matsumoto
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Daiki Rokunohe
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yasushi Matsuzaki
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hajime Nakano
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Eijiro Akasaka
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
4
|
Azimi M, Cho S, Bozkurt E, McDonough E, Kisakol B, Matveeva A, Salvucci M, Dussmann H, McDade S, Firat C, Urganci N, Shia J, Longley DB, Ginty F, Prehn JHM. Spatial Effects of Infiltrating T cells on Neighbouring Cancer Cells and Prognosis in Stage III CRC patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577720. [PMID: 38352309 PMCID: PMC10862776 DOI: 10.1101/2024.01.30.577720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks, as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil-based chemotherapy. Images underwent segmentation for tumour, stroma and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell - T cell interactions at single-cell level. In our discovery cohort (MSK), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (HV) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (Discovery cohort: p = 0.07, Validation cohort: p = 0.19). We next utilized our region-based nearest neighbourhood approach to determine the spatial relationships between cytotoxic T cells, helper T cells and cancer cell clusters. In the both cohorts, we found that lower distance between cytotoxic T cells, T helper cells and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (Discovery cohort: p = 0.01, Validation cohort: p = 0.003).
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Elizabeth McDonough
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Simon McDade
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | | | | | - Jinru Shia
- Memorial Sloan Kettering Cancer Centre, NY
| | - Daniel B Longley
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| |
Collapse
|