1
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG, Fenta MD. Comprehensive review of drug resistance in mammalian cancer stem cells: implications for cancer therapy. Cancer Cell Int 2024; 24:406. [PMID: 39695669 DOI: 10.1186/s12935-024-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer remains a significant global challenge, and despite the numerous strategies developed to advance cancer therapy, an effective cure for metastatic cancer remains elusive. A major hurdle in treatment success is the ability of cancer cells, particularly cancer stem cells (CSCs), to resist therapy. These CSCs possess unique abilities, including self-renewal, differentiation, and repair, which drive tumor progression and chemotherapy resistance. The resilience of CSCs is linked to certain signaling pathways. Tumors with pathway-dependent CSCs often develop genetic resistance, whereas those with pathway-independent CSCs undergo epigenetic changes that affect gene regulation. CSCs can evade cytotoxic drugs, radiation, and apoptosis by increasing drug efflux transporter activity and activating survival mechanisms. Future research should prioritize the identification of new biomarkers and signaling molecules to better understand drug resistance. The use of cutting-edge approaches, such as bioinformatics, genomics, proteomics, and nanotechnology, offers potential solutions to this challenge. Key strategies include developing targeted therapies, employing nanocarriers for precise drug delivery, and focusing on CSC-targeted pathways such as the Wnt, Notch, and Hedgehog pathways. Additionally, investigating multitarget inhibitors, immunotherapy, and nanodrug delivery systems is critical for overcoming drug resistance in cancer cells.
Collapse
Affiliation(s)
- Bemrew Admassu Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | - Tirunesh Tsegaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayew Demessie
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Kalkidan Getnet
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Belete Bitew
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnakew Mulaw Beirhun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
3
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
4
|
Ammons DT, Hopkins LS, Cronise KE, Kurihara J, Regan DP, Dow S. Single-cell RNA sequencing reveals the cellular and molecular heterogeneity of treatment-naïve primary osteosarcoma in dogs. Commun Biol 2024; 7:496. [PMID: 38658617 PMCID: PMC11043452 DOI: 10.1038/s42003-024-06182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41 transcriptomically distinct cell types including the characterization of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell mediated immunity. Furthermore, we completed cross-species cell type gene signature homology analysis and found a high degree of similarity between human and canine OS. The data presented here act as a roadmap of canine OS which can be applied to advance translational immuno-oncology research.
Collapse
Affiliation(s)
- Dylan T Ammons
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Leone S Hopkins
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kathryn E Cronise
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jade Kurihara
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven Dow
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Balar PC, Apostolopoulos V, Chavda VP. A new era of immune therapeutics for pancreatic cancer: Monoclonal antibodies paving the way. Eur J Pharmacol 2024; 969:176451. [PMID: 38408598 DOI: 10.1016/j.ejphar.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma, remains a devastating disease with a dismal prognosis and limited survival rates. Despite various drug treatments and regimens showing promise in managing the disease, the clinical outcomes have not significantly improved. Immunotherapy however, has become a forefront area in pancreatic cancer treatment. This approach comprises a range of agents, including small molecule drugs, antibodies, combination therapies, and vaccines. In the last 5-8 years, there has been an upsurge of research into the use of monoclonal antibodies to block receptors on cancer or immune cells, revolutionising cancer treatment and management. Several targets have been identified and studied, with the most encouraging noted in relation to checkpoint markers, namely, antibodies targeting anti-programmed cell death 1 (PD-1) and its receptor PD-L1. Herein, we present the clinical developments in immunotherapy in the last 5 years especially those which have been tested in humans against pancreatic cancer.
Collapse
Affiliation(s)
- Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Werribee Campus, Melbourne, VIC, 3030, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India.
| |
Collapse
|
6
|
Cao JW, Lake J, Impastato R, Chow L, Perez L, Chubb L, Kurihara J, Verneris MR, Dow S. Targeting osteosarcoma with canine B7-H3 CAR T cells and impact of CXCR2 Co-expression on functional activity. Cancer Immunol Immunother 2024; 73:77. [PMID: 38554158 PMCID: PMC10981605 DOI: 10.1007/s00262-024-03642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/25/2024] [Indexed: 04/01/2024]
Abstract
The use of large animal spontaneous models of solid cancers, such as dogs with osteosarcoma (OS), can help develop new cancer immunotherapy approaches, including chimeric antigen receptor (CAR) T cells. The goal of the present study was to generate canine CAR T cells targeting the B7-H3 (CD276) co-stimulatory molecule overexpressed by several solid cancers, including OS in both humans and dogs, and to assess their ability to recognize B7-H3 expressed by canine OS cell lines or by canine tumors in xenograft models. A second objective was to determine whether a novel dual CAR that expressed a chemokine receptor together with the B7-H3 CAR improved the activity of the canine CAR T cells. Therefore, in the studies reported here we examined B7-H3 expression by canine OS tumors, evaluated target engagement by canine B7-H3 CAR T cells in vitro, and compared the relative effectiveness of B7-H3 CAR T cells versus B7-H3-CXCR2 dual CAR T cells in canine xenograft models. We found that most canine OS tumors expressed B7-H3; whereas, levels were undetectable on normal dog tissues. Both B7-H3 CAR T cells demonstrated activation and OS-specific target killing in vitro, but there was significantly greater cytokine production by B7-H3-CXCR2 CAR T cells. In canine OS xenograft models, little anti-tumor activity was generated by B7-H3 CAR T cells; whereas, B7-H3-CXCR2 CAR T cells significantly inhibited tumor growth, inducing complete tumor elimination in most treated mice. These findings indicated therefore that addition of a chemokine receptor could significantly improve the anti-tumor activity of canine B7-H3 CAR T cells, and that evaluation of this new dual CAR construct in dogs with primary or metastatic OS is warranted since such studies could provide a critical and realistic validation of the chemokine receptor concept.
Collapse
Affiliation(s)
- Jennifer W Cao
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Jessica Lake
- Department of Pediatrics, Center for Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower 12800 E. 19th Ave. Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Renata Impastato
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luisanny Perez
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laura Chubb
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jade Kurihara
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael R Verneris
- Department of Pediatrics, Center for Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower 12800 E. 19th Ave. Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA.
| | - Steven Dow
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
7
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
8
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
9
|
Nishibata T, Amino N, Tanaka-Kado R, Tsujimoto S, Kawashima T, Konagai S, Suzuki T, Takeuchi M. Blockade of EP4 by ASP7657 Modulates Myeloid Cell Differentiation In Vivo and Enhances the Antitumor Effect of Radiotherapy. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7133726. [PMID: 38058393 PMCID: PMC10697779 DOI: 10.1155/2023/7133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
The tumor microenvironment (TME) is thought to influence the antitumor efficacy of immuno-oncology agents through various products of both tumor and stromal cells. One immune-suppressive factor is prostaglandin E2 (PGE2), a lipid mediator whose biosynthesis is regulated by ubiquitously expressed cyclooxygenase- (COX-) 1 and inducible COX-2. By activating its receptors, PGE2 induces immune suppression to modulate differentiation of myeloid cells into myeloid-derived suppressor cells (MDSCs) rather than dendritic cells (DCs). Pharmacological blockade of prostaglandin E receptor 4 (EP4) causes a decrease in MDSCs, reprogramming of macrophage polarization, and increase in tumor-infiltrated T cells, leading to enhancement of antitumor immunity in preclinical models. Here, we report the effects of the highly potent EP4 antagonist ASP7657 on the DC population in tumor and antitumor immune activation in an immunocompetent mouse tumor model. Oral administration of ASP7657 inhibited tumor growth, which was accompanied by an increase in intratumor DC and CD8+ T cell populations and a decrease in the M-MDSC population in a CT26 immunocompetent mouse model. The antitumor activity of ASP7657 was dependent on CD8+ T cells and enhanced when combined with an antiprogrammed cell death-1 (PD-1) antibody. Notably, ASP7657 also significantly enhanced the antitumor efficacy of radiotherapy in an anti-PD-1 antibody refractory model. These results indicate that the therapeutic potential of ASP7657 arises via upregulation of DCs and subsequent CD8+ T cell activation in addition to suppression of MDSCs in mouse models and that combining EP4 antagonists with radiotherapy or an anti-PD-1 antibody can improve antitumor efficacy.
Collapse
Affiliation(s)
- Toshihide Nishibata
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Nobuaki Amino
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ruriko Tanaka-Kado
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Susumu Tsujimoto
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tomoko Kawashima
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Satoshi Konagai
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tomoyuki Suzuki
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masahiro Takeuchi
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
10
|
Ammons D, Hopkins L, Cronise K, Kurihara J, Regan D, Dow S. Single-cell RNA sequencing reveals the cellular and molecular heterogeneity of treatment-naïve primary osteosarcoma in dogs. RESEARCH SQUARE 2023:rs.3.rs-3232360. [PMID: 37609233 PMCID: PMC10441479 DOI: 10.21203/rs.3.rs-3232360/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME) that has proven to be refractory to immunotherapies. Thus, there is a need to better define the complexity of the OS TME. To address this need, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 30 distinct immune cell types, 9 unique tumor populations, 1 cluster of fibroblasts, and 1 cluster of endothelial cells. Independent reclustering of major cell types revealed the presence of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 transcriptomically distinct macrophage/monocyte populations. Cell-cell interaction inference analysis predicted that mregDCs and tumor-associated macrophages (TAMs) play key roles in modulating T cell mediate immunity. Furthermore, we used publicly available human OS scRNA-seq data to complete a cross-species cell type gene signature homology analysis. The analysis revealed a high degree of cell type gene signature homology between species, suggesting the cellular composition of OS is largely conserved between humans and dogs. Our findings provide key new insights into the biology of canine OS and highlight the conserved features of OS across species. Generally, the data presented here acts as a cellular and molecular roadmap of canine OS which can be applied to advance the translational immuno-oncology research field.
Collapse
|