1
|
Namakshenas P, Crezee J, Tuynman JB, Tanis PJ, Oei AL, Kok HP. Computational Evaluation of Improved HIPEC Drug Delivery Kinetics via Bevacizumab-Induced Vascular Normalization. Pharmaceutics 2025; 17:155. [PMID: 40006522 PMCID: PMC11859678 DOI: 10.3390/pharmaceutics17020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Oxaliplatin-based hyperthermic intraperitoneal chemotherapy (HIPEC) using the original 30 min protocol has shown limited benefits in patients with peritoneal metastasis of colorectal cancer (PMCRC), likely due to the short duration, which limits drug penetration into tumor nodules. Bevacizumab, an antiangiogenic antibody that modifies the tumor microenvironment, may improve drug delivery during HIPEC. This in silico study evaluates the availability of oxaliplatin within tumor nodules when HIPEC is performed after bevacizumab treatment. Methods: Using a computational fluid dynamics (CFD) model of HIPEC, the temperature and oxaliplatin distribution within the rat abdomen were calculated, followed by a model of drug transport within tumor nodules located at various sites in the peritoneum. The vascular normalization effect of the bevacizumab treatment was incorporated by adjusting the biophysical parameters of the tumor nodules. The effective penetration depth values, including the thermal enhancement ratio of cytotoxicity, were then compared between HIPEC alone and HIPEC combined with the bevacizumab treatment. Results: After bevacizumab treatments at doses of 0.5 mg/kg and 5 mg/kg, the oxaliplatin availability increased by up to 20% and 45% when HIPEC was performed during the vascular normalization phase, with the penetration depth increasing by 1.5-fold and 2.3-fold, respectively. Tumors with lower collagen densities and larger vascular pore sizes showed higher oxaliplatin enhancement after the combined treatment. Bevacizumab also enabled a reduction in the oxaliplatin dose (up to half at 5 mg/kg bevacizumab) while maintaining effective drug levels in the tumor nodules, potentially reducing systemic toxicity. Conclusions: These findings suggest that administering oxaliplatin-based HIPEC during bevacizumab-induced vascular normalization could significantly improve drug penetration and enhance treatment efficacy.
Collapse
Affiliation(s)
- Pouya Namakshenas
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.C.); (A.L.O.); (H.P.K.)
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, 1105 AZ Amsterdam, The Netherlands; (J.B.T.); (P.J.T.)
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.C.); (A.L.O.); (H.P.K.)
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, 1105 AZ Amsterdam, The Netherlands; (J.B.T.); (P.J.T.)
| | - Jurriaan B. Tuynman
- Cancer Center Amsterdam, Treatment and Quality of Life, 1105 AZ Amsterdam, The Netherlands; (J.B.T.); (P.J.T.)
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Pieter J. Tanis
- Cancer Center Amsterdam, Treatment and Quality of Life, 1105 AZ Amsterdam, The Netherlands; (J.B.T.); (P.J.T.)
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Arlene L. Oei
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.C.); (A.L.O.); (H.P.K.)
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), 1105 AZ Amsterdam, The Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.C.); (A.L.O.); (H.P.K.)
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, 1105 AZ Amsterdam, The Netherlands; (J.B.T.); (P.J.T.)
| |
Collapse
|
3
|
Bootsma S, Dings MPG, Kesselaar J, Helderman RFCPA, van Megesen K, Constantinides A, Moreno LF, Stelloo E, Scutigliani EM, Bokan B, Torang A, van Hooff SR, Zwijnenburg DA, Wouters VM, van de Vlasakker VCJ, Galanos LJK, Nijman LE, Logiantara A, Veenstra VL, Schlingemann S, van Piggelen S, van der Wel N, Krawczyk PM, Platteeuw JJ, Tuynman JB, de Hingh IH, Klomp JPG, Oubrie A, Snaebjornsson P, Medema JP, Oei AL, Kranenburg O, Elbers CC, Lenos KJ, Vermeulen L, Bijlsma MF. Exploiting a subtype-specific mitochondrial vulnerability for successful treatment of colorectal peritoneal metastases. Cell Rep Med 2024; 5:101523. [PMID: 38670098 PMCID: PMC11148637 DOI: 10.1016/j.xcrm.2024.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/22/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Peritoneal metastases (PMs) from colorectal cancer (CRC) respond poorly to treatment and are associated with unfavorable prognosis. For example, the addition of hyperthermic intraperitoneal chemotherapy (HIPEC) to cytoreductive surgery in resectable patients shows limited benefit, and novel treatments are urgently needed. The majority of CRC-PMs represent the CMS4 molecular subtype of CRC, and here we queried the vulnerabilities of this subtype in pharmacogenomic databases to identify novel therapies. This reveals the copper ionophore elesclomol (ES) as highly effective against CRC-PMs. ES exhibits rapid cytotoxicity against CMS4 cells by targeting mitochondria. We find that a markedly reduced mitochondrial content in CMS4 cells explains their vulnerability to ES. ES demonstrates efficacy in preclinical models of PMs, including CRC-PMs and ovarian cancer organoids, mouse models, and a HIPEC rat model of PMs. The above proposes ES as a promising candidate for the local treatment of CRC-PMs, with broader implications for other PM-prone cancers.
Collapse
Affiliation(s)
- Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Mark P G Dings
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Job Kesselaar
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Roxan F C P A Helderman
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, the Netherlands
| | - Kyah van Megesen
- Laboratory of Translational Oncology, UMC Utrecht Cancer Center, Utrecht, the Netherlands
| | | | - Leandro Ferreira Moreno
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Ellen Stelloo
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Enzo M Scutigliani
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Amsterdam, the Netherlands
| | - Bella Bokan
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, the Netherlands
| | - Arezo Torang
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Sander R van Hooff
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Valérie M Wouters
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | | | | | - Lisanne E Nijman
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Adrian Logiantara
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Veronique L Veenstra
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Sophie Schlingemann
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Sterre van Piggelen
- Laboratory of Translational Oncology, UMC Utrecht Cancer Center, Utrecht, the Netherlands
| | - Nicole van der Wel
- Amsterdam UMC Location University of Amsterdam, Electron Microscopy Center, Amsterdam, the Netherlands
| | - Przemek M Krawczyk
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Amsterdam, the Netherlands
| | | | - Jurriaan B Tuynman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Ignace H de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, the Netherlands; GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | | | | - Petur Snaebjornsson
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Arlene L Oei
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, the Netherlands
| | - Onno Kranenburg
- Laboratory of Translational Oncology, UMC Utrecht Cancer Center, Utrecht, the Netherlands
| | - Clara C Elbers
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Kristiaan J Lenos
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Smith HG, Nilsson PJ, Shogan BD, Harji D, Gambacorta MA, Romano A, Brandl A, Qvortrup C. Neoadjuvant treatment of colorectal cancer: comprehensive review. BJS Open 2024; 8:zrae038. [PMID: 38747103 PMCID: PMC11094476 DOI: 10.1093/bjsopen/zrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Neoadjuvant therapy has an established role in the treatment of patients with colorectal cancer. However, its role continues to evolve due to both advances in the available treatment modalities, and refinements in the indications for neoadjuvant treatment and subsequent surgery. METHODS A narrative review of the most recent relevant literature was conducted. RESULTS Short-course radiotherapy and long-course chemoradiotherapy have an established role in improving local but not systemic disease control in patients with rectal cancer. Total neoadjuvant therapy offers advantages over short-course radiotherapy and long-course chemoradiotherapy, not only in terms of increased local response but also in reducing the risk of systemic relapses. Non-operative management is increasingly preferred to surgery in patients with rectal cancer and clinical complete responses but is still associated with some negative impacts on functional outcomes. Neoadjuvant chemotherapy may be of some benefit in patients with locally advanced colon cancer with proficient mismatch repair, although patient selection is a major challenge. Neoadjuvant immunotherapy in patients with deficient mismatch repair cancers in the colon or rectum is altering the treatment paradigm for these patients. CONCLUSION Neoadjuvant treatments for patients with colon or rectal cancers continue to evolve, increasing the complexity of decision-making for patients and clinicians alike. This review describes the current guidance and most recent developments.
Collapse
Affiliation(s)
- Henry G Smith
- Abdominalcenter K, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Per J Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Dept. of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin D Shogan
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Deena Harji
- Department of Colorectal Surgery, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche, Universita Cattolica del Sacro Cuore, Rome, Italy
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Andreas Brandl
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Camilla Qvortrup
- Department of Oncology, Rigshospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|