1
|
Torrisi F, Cammarata FP, Bravatà V, Calvaruso M, Alberghina C, Pavone AM, Petringa G, Cirrone GAP, Denaro S, Gervasi A, D'Aprile S, Vicario N, Scifoni E, Pisciotta P, Russo G, Parenti R. Physiopathological effects of entrance versus distal spread-out Bragg peak on mouse spinal cord neurons. Sci Rep 2025; 15:2134. [PMID: 39820768 DOI: 10.1038/s41598-024-84902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Recent investigations into radiation-induced side effects have focused on understanding the physiopathological consequences of irradiation on late-responding tissues like the spinal cord, which can lead to chronic progressive myelopathy. Proton therapy, an advanced radiation treatment, aims to minimize damage to healthy tissues through precise dose deposition. However, challenges remain, particularly regarding the variation in dose distribution, characterized by maximum deposition at the end of the proton range, known as the distal fall-off of a spread-out Bragg peak. This variation is critical for nearby organs at risk. In this preliminary study, we evaluated the effects of proton irradiation on the neuronal cell population in mouse spinal cord by comparing two positions of the particle range dose deposition profile. We irradiated the spinal cords at the entrance and the distal edge of the spread-out Bragg peak with a single proton dose. Results showed changes in the expression of synaptophysin, a presynaptic protein crucial for synaptic plasticity. Our findings suggest that examining early radiation-induced physiopathological effects on late-responding tissues can provide valuable insights into neuronal plasticity, informing clinical treatment planning for proton beam positioning.
Collapse
Affiliation(s)
- Filippo Torrisi
- Department of Medicine and Surgery, Kore University of Enna, 94100, Enna, Italy
| | - Francesco Paolo Cammarata
- Institute of Bioimaging and Complex Biological Systems, National Research Council, 90015, Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, 95123, Catania, Italy.
| | - Valentina Bravatà
- Institute of Bioimaging and Complex Biological Systems, National Research Council, 90015, Cefalù, Italy
| | - Marco Calvaruso
- Institute of Bioimaging and Complex Biological Systems, National Research Council, 90015, Cefalù, Italy
| | - Cristiana Alberghina
- Institute of Bioimaging and Complex Biological Systems, National Research Council, 90015, Cefalù, Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | - Anna Maria Pavone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | | | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Anna Gervasi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Emanuele Scifoni
- National Institute for Nuclear Physics, Trento Institute for Fundamental Physics and Applications, 38123, Trento, Italy
| | - Pietro Pisciotta
- Department of Radiation Oncology, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Giorgio Russo
- Institute of Bioimaging and Complex Biological Systems, National Research Council, 90015, Cefalù, Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
2
|
Akolawala Q, Accardo A. Engineered Cell Microenvironments: A Benchmark Tool for Radiobiology. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39813590 DOI: 10.1021/acsami.4c20455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The development of engineered cell microenvironments for fundamental cell mechanobiology, in vitro disease modeling, and tissue engineering applications increased exponentially during the last two decades. In such context, in vitro radiobiology is a field of research aiming at understanding the effects of ionizing radiation (e.g., X-rays/photons, high-speed electrons, and high-speed protons) on biological (cancerous) tissues and cells, in particular in terms of DNA damage leading to cell death. Herein, the perspective provides a comparative assessment overview of scaffold-free, scaffold-based, and organ-on-a-chip models for radiobiology, highlighting opportunities, limitations, and future pathways to improve the currently existing approaches toward personalized cancer medicine.
Collapse
Affiliation(s)
- Qais Akolawala
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- Holland Proton Therapy Center (HollandPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
3
|
Isaksson LJ, Mastroleo F, Vincini MG, Marvaso G, Zaffaroni M, Gola M, Mazzola GC, Bergamaschi L, Gaito S, Alongi F, Doyen J, Fossati P, Haustermans K, Høyer M, Langendijk JA, Matute R, Orlandi E, Schwarz M, Troost EGC, Vondracek V, La Torre D, Curigliano G, Petralia G, Orecchia R, Alterio D, Jereczek-Fossa BA. The emerging role of Artificial Intelligence in proton therapy: A review. Crit Rev Oncol Hematol 2024; 204:104485. [PMID: 39233128 DOI: 10.1016/j.critrevonc.2024.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024] Open
Abstract
Artificial intelligence (AI) has made a tremendous impact in the space of healthcare, and proton therapy is not an exception. Proton therapy has witnessed growing popularity in oncology over recent decades, and researchers are increasingly looking to develop AI and machine learning tools to aid in various steps of the treatment planning and delivery processes. This review delves into the emergent role of AI in proton therapy, evaluating its development, advantages, intended clinical contexts, and areas of application. Through the analysis of 76 studies, we aim to underscore the importance of AI applications in advancing proton therapy and to highlight their prospective influence on clinical practices.
Collapse
Affiliation(s)
- Lars Johannes Isaksson
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy.
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy.
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn 10-082, Poland
| | - Giovanni Carlo Mazzola
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Luca Bergamaschi
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Simona Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester M20 4BX, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester Manchester M13 9PL, UK
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria, 37024 Negrar-Verona, Italy & DSMC, University of Brescia, Brescia, Italy
| | - Jerome Doyen
- Centre Antoine-Lacassagne, University of Côte d'Azur, Nice 06189, France; University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice (IRCAN), 06189 Nice, France, Centre Antoine Lacassagne, Nice 06189, France
| | - Piero Fossati
- EBG MedAustron GmbH, Marie-Curie-Str. 5, Wiener Neustadt 2700, Austria; Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, 3500, Austria
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Morten Høyer
- Aarhus University (AU), Nordre Ringgade 1, Aarhus C 8000, Denmark
| | - Johannes Albertus Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Raùl Matute
- Centro de Protonterapia Quironsalud, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Schwarz
- Radiation Oncology Department, University of Washington, Seattle, WA 98109, USA
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01309, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01307, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01309, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden 01328, Germany
| | - Vladimir Vondracek
- Proton Therapy Centre Czech, Prague, Czech Republic and Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University Prague, Kladno, Czech Republic
| | - Davide La Torre
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; SKEMA Business School, Université Côte d'Azur, Sophia Antipolis, France
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan 20141, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; Division of Radiology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| |
Collapse
|
4
|
Skelton K, Gorayski P, Penfold S, Murray A, Hamilton D, Yeo A, Jessop S, Hwang E, Dass J, Le H. Australian Particle Therapy Clinical Quality Registry (ASPIRE) protocol (TROG 21.12): a multicentre prospective study on patients with rare tumours, treated with radiation therapy. BMJ Open 2024; 14:e083044. [PMID: 39609005 PMCID: PMC11603720 DOI: 10.1136/bmjopen-2023-083044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION In 2020, the Australian Medical Services Advisory Committee (MSAC) recommended new proton beam therapy (PBT) item numbers be added to the Medicare Benefits Schedule. During the MSAC 1638 application process, MSAC recognised the uncertainties inherent in the cost-utility modelling of PBT. To address these uncertainties, MSAC proposed the establishment of a national registry with the intention to gather evidence to validate the claim of PBT's superior toxicity outcomes and cost-effectiveness compared with conventional photon radiation therapy. METHODS AND ANALYSIS The Australian Particle Therapy Clinical Quality Registry is a prospective, observational, longitudinal registry collecting national data on paediatric, adolescent young adult and adult patients with rare tumours receiving any form of radiation therapy for a defined group of diseases, specified by the MSAC 1638 Public Summary Document. Eligible patients undergoing radiation therapy at participating institutions will be provided with information about the registry, including the opt-out procedure. The registry has no enrolment cap and will persist either indefinitely or until the conclusion of the study.The study design was informed by the Australian Metadata Online Repository and contains a core set of minimum data elements. Representing baseline participant demographics, assessment, diagnosis and treatment; incorporating radiation and systemic therapies, with a specific focus on long-term follow-up, treatment toxicities and specific organ-at-risk testing. ETHICS AND DISSEMINATION There will be no identifying data used in any reports or presentations of data. Additionally, all identifiable data will be safeguarded according to standard practices and available only to the host institution submitting the data to the registry. Aggregated data for the purposes of research will be stripped of identifiers. The registry has been approved under the National Mutual Agreement by the Central Adelaide Local Health Network Human Research Ethics Committee-HREC: 2021/HRE00394. TRIAL REGISTRATION NUMBER Australian and New Zealand Clinical Trials Registry (ANZCTR): ACTRN12622000026729p.
Collapse
Affiliation(s)
- Kelly Skelton
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute Limited, Adelaide, South Australia, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Peter Gorayski
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute Limited, Adelaide, South Australia, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Scott Penfold
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute Limited, Adelaide, South Australia, Australia
- Department of Physics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Amber Murray
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute Limited, Adelaide, South Australia, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Daniel Hamilton
- Methods in Evidence Synthesis Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adam Yeo
- Department Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sophie Jessop
- Michael Rice Centre for Haematology and Oncology, Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia
| | - Eunji Hwang
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Sydney, New South Wales, Australia
- Institute of Medical Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Joshua Dass
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Hien Le
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute Limited, Adelaide, South Australia, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Yang S, Yao Y, Wang H, Huang H. A Comparative Study of Neutron Shielding Performance in Al-Based Composites Reinforced with Various Boron-Containing Particles for Radiotherapy: A Monte Carlo Simulation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1696. [PMID: 39513776 PMCID: PMC11547794 DOI: 10.3390/nano14211696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
This study aimed to assess and compare the shielding performance of boron-containing materials for neutrons generated in proton therapy and used in boron neutron capture therapy (BNCT). Five composites, including AlB2, Al-B4C, Al-TiB2, Al-BN, and Al-TiB2-BN, were selected as shielding materials, with concrete used as a benchmark. The mass fraction of boron compounds in these materials ranged from 10% to 50%. The Monte Carlo toolkit Geant4 was employed to calculate shielding parameters, including neutron ambient dose equivalent, dose values, and macroscopic cross-section. Results indicated that, compared to concrete, these boron-containing materials more effectively absorb thermal neutrons. When the boron compound exceeds 30 wt.%, these materials exhibit better shielding performance than concrete of the same thickness for neutrons generated by protons. For a given material, its shielding capability increases with boron content. Among the five materials when the material thickness and boron compound content are the same, the shielding performance for neutrons generated by protons, from best to worst, is as follows: Al-TiB2, Al-B4C, AlB2, Al-TiB2-BN, and Al-BN. For BNCT, the shielding performance from best to worst is in the following order: Al-B4C, AlB2, Al-TiB2, Al-TiB2-BN, and Al-BN. The results of this study provide references and guidelines for the selection and optimization of neutron shielding materials in proton therapy and BNCT facilities.
Collapse
Affiliation(s)
- Shiyan Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China; (S.Y.)
- Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - Yupeng Yao
- Department of Radiation Oncology, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Hanlong Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China; (S.Y.)
| | - Hai Huang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China; (S.Y.)
| |
Collapse
|
6
|
Ahmadi Ganjeh Z, Zapien-Campos B, Traneus E, Both S, Dendooven P. RayStation/GATE Monte Carlo simulation framework for verification of proton therapy based on the 12N imaging. Phys Med Biol 2024; 69:195007. [PMID: 39299264 DOI: 10.1088/1361-6560/ad7d5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Objective.12N, having a half-life of 11 ms, is a highly effective positron emitter that can potentially provide near real-time feedback in proton therapy. There is currently no framework for comparing and validating positron emission imaging of12N. This work describes the development and validation of a Monte Carlo (MC) framework to calculate the images of12N, as well as long-lived isotopes, originating from activation by protons.Approach. The available dual-panel Biograph mCT PET scanner was modeled in GATE and validated by comparing the simulated sensitivity map with the measured one. The distributions of12N and long-lived isotopes were calculated by RayStation and used as the input of GATE simulations. The RayStation/GATE combination was verified using proton beam irradiations of homogeneous phantoms. A 120 MeV pulsed pencil beam with 108protons per pulse was used. Two-dimensional images were created from the GATE output and compared with the images based on the measurements and the 1D longitudinal projection of the full 2D image was used to calculate the12N activity range.Main results. The simulated sensitivity in the center of the FoV (5.44%) agrees well with the measured one (5.41%). The simulated and measured 2D sensitivity maps agree in good detail. The relative difference between the measured and simulated positron activity range for both12N and long-lived isotopes is less than 1%. The broadening of the12N images relative to those of the longer-lived isotopes can be understood in terms of the large positron range of12N.Significance. We developed and validated a MC framework based on RayStation/GATE to support the in-beam PET method for quality assurance of proton therapy. The inclusion of the very short-lived isotope12N makes the framework useful for developing near real-time verification. This represents a significant step towards translating12N real-time in vivo verification to the clinic.
Collapse
Affiliation(s)
- Zahra Ahmadi Ganjeh
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Brian Zapien-Campos
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Dendooven
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Sampaio F, Langegård U, de Alva PM, Flores S, Nystrand C, Fransson P, Ohlsson-Nevo E, Kristensen I, Sjövall K, Feldman I, Ahlberg K. Cost-effectiveness of proton beam therapy vs. conventional radiotherapy for patients with brain tumors in Sweden: results from a non-randomized prospective multicenter study. COST EFFECTIVENESS AND RESOURCE ALLOCATION 2024; 22:66. [PMID: 39272105 PMCID: PMC11396687 DOI: 10.1186/s12962-024-00577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND This study assessed the cost-effectiveness of proton beam therapy (PBT) compared to conventional radiotherapy (CRT) for treating patients with brain tumors in Sweden. METHODS Data from a longitudinal non-randomized study performed between 2015 and 2020 was used, and included adult patients with brain tumors, followed during treatment and through a one-year follow-up. Clinical and demographic data were sourced from the longitudinal study and linked to Swedish national registers to get information on healthcare resource use. A cost-utility framework was used to evaluate the cost-effectiveness of PBT vs. CRT. Patients in PBT group (n = 310) were matched with patients in CRT group (n = 40) on relevant observables using propensity score matching with replacement. Costs were estimated from a healthcare perspective and included costs related to inpatient and specialized outpatient care, and prescribed medications. The health outcome was quality-adjusted life-years (QALYs), derived from the EORTC-QLQ-C30. Generalized linear models (GLM) and two-part models were used to estimate differences in costs and QALYs. RESULTS PBT yielded higher total costs, 14,639 US$, than CRT, 13,308 US$, with a difference of 1,372 US$ (95% CI, -4,914-7,659) over a 58 weeks' time horizon. Further, PBT resulted in non-significantly lower QALYs, 0.746 compared to CRT, 0.774, with a difference of -0.049 (95% CI, -0.195-0.097). The probability of PBT being cost-effective was < 30% at any willingness to pay. CONCLUSIONS These results suggest that PBT cannot be considered a cost-effective treatment for brain tumours, compared to CRT. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Filipa Sampaio
- Department of Public Health and Caring Sciences (IFV), Uppsala University, BMC, Husargatan 3, Uppsala, 751 22, Sweden.
| | - Ulrica Langegård
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Patricio Martínez de Alva
- Department of Public Health and Caring Sciences (IFV), Uppsala University, BMC, Husargatan 3, Uppsala, 751 22, Sweden
| | - Sergio Flores
- Department of Public Health and Caring Sciences (IFV), Uppsala University, BMC, Husargatan 3, Uppsala, 751 22, Sweden
| | - Camilla Nystrand
- Department of Public Health and Caring Sciences (IFV), Uppsala University, BMC, Husargatan 3, Uppsala, 751 22, Sweden
| | - Per Fransson
- Department of Nursing, Umeå University, Umeå, Sweden
| | - Emma Ohlsson-Nevo
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ingrid Kristensen
- Department of Hematology, Oncology and Radiation Physics, Lund University Hospital, Lund, Sweden
- Department of Clinical Sciences, Oncology and Pathology, Lund University, Lund, Sweden
| | - Katarina Sjövall
- Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden
| | - Inna Feldman
- Department of Public Health and Caring Sciences (IFV), Uppsala University, BMC, Husargatan 3, Uppsala, 751 22, Sweden
| | - Karin Ahlberg
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Corrales-García EM, Aristu-Mendioroz JJ, Castro-Novais J, Matute-Martín R, Learra-Martínez MC, Delgado-López PD. Current state of proton therapy for tumors of the central nervous system in Spain: physical bases, indications, controversies and perspectives. Clin Transl Oncol 2024:10.1007/s12094-024-03624-z. [PMID: 39207674 DOI: 10.1007/s12094-024-03624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
The unique biophysical properties of proton therapy (PT), regarding the precise dose distribution, a remarkable better sparing of surrounding normal tissues, and the decreasing costs have promoted the spread of this technique worldwide. In Spain, eleven new PT centers, added to the currently two in function, are expected to be available in the near future. Indications for PT are currently evolving. The suitability of PT in central nervous system tumors of the adult population has been extrapolated from the favorable experience in children and adolescents. Given the lack of appropriate randomized trials, controversies remain regarding its use in lower grade tumors, re-irradiation, and other clinical scenarios in which an a priori dose distribution benefit is expected compared to photon-based radiotherapy. PT is a reasonable option in many brain and spinal tumors associating long life expectancy, in which cognitive decline, and the appearance of radiation-induced neoplasms can be minimized.Estado actual de la terapia con protones en los tumores del sistema nervioso central en España: bases físicas, indicaciones, controversias y perspectivas.
Collapse
Affiliation(s)
| | | | - Juan Castro-Novais
- Servicio de Radiofísica y Protección Radiológica, Centro de Protonterapia. Hospital Universitario Quironsalud, Madrid, Spain
| | - Raúl Matute-Martín
- Servicio Oncología Radioterápica, Centro de Protonterapia, Hospital Quironsalud, Madrid, Spain
| | - María Concepción Learra-Martínez
- Comisión de Protonterapia de La Comunidad de Castilla y LeónServicio de Atención Hospitalaria y CoordinaciónDirección Técnica de Asistencia SanitariaDirección General de Asistencia Sanitaria y HumanizaciónGerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Pedro David Delgado-López
- Servicio de Neurocirugía, Hospital Universitario de Burgos, Avda Islas Baleares 3, 09006, Burgos, Spain.
| |
Collapse
|
9
|
Xing JL, Stea B. Molecular mechanisms of sensitivity and resistance to radiotherapy. Clin Exp Metastasis 2024; 41:517-524. [PMID: 38231337 DOI: 10.1007/s10585-023-10260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
The molecular mechanisms underlying sensitivity and resistance to radiotherapy is an area of active investigation and discovery as its clinical applications have the potential to improve cancer patients' outcomes. In addition to the traditional pathways of radiation biology, our knowledge now includes molecular pathways of radiation sensitivity and resistance which have provided insights into potential targets for enhancing radiotherapy efficacy. Sensitivity to radiotherapy is influenced by the intricate interplay of various molecular mechanisms involved in DNA damage repair, apoptosis, cellular senescence, and epigenetics. Translationally, there have been several successful applications of this new knowledge into the clinic, such as biomarkers for improved response to chemo-radiation. New therapies to modify radiation response, such as the poly (ADP-ribose) polymerase (PARP) inhibitors, derived from research on DNA repair pathways leading to radiotherapy resistance, are being used clinically. In addition, p53-mediated pathways are critical for DNA damage related apoptosis, cellular senescence, and cell cycle arrest. As the understanding of genetic markers, molecular profiling, molecular imaging, and functional assays improve, these advances once translated clinically, will help propel modern radiation therapy towards more precise and individualized practices.
Collapse
Affiliation(s)
- Jessica L Xing
- Department of Radiation Oncology, University of Arizona, 3838 North Campbell Avenue, Tucson, AZ, 85719, USA
| | - Baldassarre Stea
- Department of Radiation Oncology, University of Arizona, 3838 North Campbell Avenue, Tucson, AZ, 85719, USA.
| |
Collapse
|
10
|
Pazdrowski J, Gornowicz-Porowska J, Kaźmierska J, Krajka-Kuźniak V, Polanska A, Masternak M, Szewczyk M, Golusiński W, Danczak-Pazdrowska A. Radiation-induced skin injury in the head and neck region: pathogenesis, clinics, prevention, treatment considerations and proposal for management algorithm. Rep Pract Oncol Radiother 2024; 29:373-390. [PMID: 39144266 PMCID: PMC11321788 DOI: 10.5603/rpor.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/16/2024] [Indexed: 08/16/2024] Open
Abstract
Worldwide increase of head and neck cancers ranks these malignancies among top causes of cancer in human population. Radiation induced skin injury (RISI) is one of the major side effects of radiotherapy (RT). Skin of the neck is exposed to radiation due to necessity of therapeutic or prophylactic (elective) irradiation of neck lymph nodes and target organs, including the larynx and hypopharynx. The location of the neck exposes these regions of the skin to various additional exposomes such as ultraviolet radiation (UVR), pollution and cigarette smoke. There are many controversies or inconsistencies regarding RISI, from molecular aspects and therapy to terminology. There is lack of high-quality and large-sample studies in both forms of RISI: acute (aRISI) and chronic (cRISI). Finally, no gold standards in the management of aRISI and cRISI have been established yet. In this article, the authors discuss the pathogenesis, clinical picture, prevention and clinical interventions and present a proposed treatment algorithm.
Collapse
Affiliation(s)
- Jakub Pazdrowski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Kaźmierska
- Department of Radiotherapy, Poznan University of Medical Sciences, Poznan, Poland
- Radiotherapy and Oncology, Greater Poland Cancer Centre, Poznan, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Polanska
- Department of Dermatology and Venereology Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Mateusz Szewczyk
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
11
|
Wei W, Li Z, Xiao Q, Wang G, He H, Luo D, Chen L, Li J, Zhang X, Qin T, Song Y, Li G, Bai S. Quantifying dose uncertainties resulting from cardiorespiratory motion in intensity-modulated proton therapy for cardiac stereotactic body radiotherapy. Front Oncol 2024; 14:1399589. [PMID: 39040445 PMCID: PMC11260676 DOI: 10.3389/fonc.2024.1399589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Background Cardiac stereotactic body radiotherapy (CSBRT) with photons efficaciously and safely treats cardiovascular arrhythmias. Proton therapy, with its unique physical and radiobiological properties, can offer advantages over traditional photon-based therapies in certain clinical scenarios, particularly pediatric tumors and those in anatomically challenging areas. However, dose uncertainties induced by cardiorespiratory motion are unknown. Objective This study investigated the effect of cardiorespiratory motion on intensity-modulated proton therapy (IMPT) and the effectiveness of motion-encompassing methods. Methods We retrospectively included 12 patients with refractory arrhythmia who underwent CSBRT with four-dimensional computed tomography (4DCT) and 4D cardiac CT (4DcCT). Proton plans were simulated using an IBA accelerator based on the 4D average CT. The prescription was 25 Gy in a single fraction, with all plans normalized to ensure that 95% of the target volume received the prescribed dose. 4D dose reconstruction was performed to generate 4D accumulated and dynamic doses. Furthermore, dose uncertainties due to the interplay effect of the substrate target and organs at risk (OARs) were assessed. The differences between internal organs at risk volume (IRV) and OARreal (manually contoured on average CT) were compared. In 4D dynamic dose, meeting prescription requirements entails V25 and D95 reaching 95% and 25 Gy, respectively. Results The 4D dynamic dose significantly differed from the 3D static dose. The mean V25 and D95 were 89.23% and 24.69 Gy, respectively, in 4DCT and 94.35% and 24.99 Gy, respectively, in 4DcCT. Eleven patients in 4DCT and six in 4DcCT failed to meet the prescription requirements. Critical organs showed varying dose increases. All metrics, except for Dmean and D50, significantly changed in 4DCT; in 4DcCT, only D50 remained unchanged with regards to the target dose uncertainties induced by the interplay effect. The interplay effect was only significant for the Dmax values of several OARs. Generally, respiratory motion caused a more pronounced interplay effect than cardiac pulsation. Neither IRV nor OARreal effectively evaluated the dose discrepancies of the OARs. Conclusions Complex cardiorespiratory motion can introduce dose uncertainties during IMPT. Motion-encompassing techniques may mitigate but cannot entirely compensate for the dose discrepancies. Individualized 4D dose assessments are recommended to verify the effectiveness and safety of CSBRT.
Collapse
Affiliation(s)
- Weige Wei
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibin Li
- Department of Radiotherapy & Oncology, The First Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyu Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haiping He
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dashuang Luo
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Zhang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Taolin Qin
- Department of Medical Physics, Brown University, Providence, RI, United States
| | - Ying Song
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangjun Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Pachler KS, Lauwers I, Verkaik NS, Rovituso M, van der Wal E, Mast H, Jonker BP, Sewnaik A, Hardillo JA, Keereweer S, Monserez D, Kremer B, Koppes S, van den Bosch TPP, Verduijn GM, Petit S, Sørensen BS, van Gent DC, Capala ME. Development of an Ex Vivo Functional Assay for Prediction of Irradiation Related Toxicity in Healthy Oral Mucosa Tissue. Int J Mol Sci 2024; 25:7157. [PMID: 39000262 PMCID: PMC11241643 DOI: 10.3390/ijms25137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Radiotherapy in the head-and-neck area is one of the main curative treatment options. However, this comes at the cost of varying levels of normal tissue toxicity, affecting up to 80% of patients. Mucositis can cause pain, weight loss and treatment delays, leading to worse outcomes and a decreased quality of life. Therefore, there is an urgent need for an approach to predicting normal mucosal responses in patients prior to treatment. We here describe an assay to detect irradiation responses in healthy oral mucosa tissue. Mucosa specimens from the oral cavity were obtained after surgical resection, cut into thin slices, irradiated and cultured for three days. Seven samples were irradiated with X-ray, and three additional samples were irradiated with both X-ray and protons. Healthy oral mucosa tissue slices maintained normal morphology and viability for three days. We measured a dose-dependent response to X-ray irradiation and compared X-ray and proton irradiation in the same mucosa sample using standardized automated image analysis. Furthermore, increased levels of inflammation-inducing factors-major drivers of mucositis development-could be detected after irradiation. This model can be utilized for investigating mechanistic aspects of mucositis development and can be developed into an assay to predict radiation-induced toxicity in normal mucosa.
Collapse
Affiliation(s)
- Katrin S. Pachler
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Iris Lauwers
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Nicole S. Verkaik
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Marta Rovituso
- Holland Proton Therapy Centre (HPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Ernst van der Wal
- Holland Proton Therapy Centre (HPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Hetty Mast
- Department of Oral and Maxillofacial Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Brend P. Jonker
- Department of Oral and Maxillofacial Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Aniel Sewnaik
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Jose A. Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Dominiek Monserez
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Sjors Koppes
- Department of Pathology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | | | - Gerda M. Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Steven Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Brita S. Sørensen
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Experimental Clinical Oncology, Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000 Aarhus, Denmark
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Marta E. Capala
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
13
|
Fatima H, Abbas P, Alshehri SM. Balancing Innovation and Patient Care in Breast Cancer: Integrating Hypofractionated Proton Therapy With Breast Reconstruction Outcomes. Cureus 2024; 16:e58056. [PMID: 38738134 PMCID: PMC11088419 DOI: 10.7759/cureus.58056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
This review aims to assess the application of hypofractionated proton therapy in breast cancer reconstruction, analyzing its advantages, challenges, and broader implications for patient care. The goal is to comprehensively understand how this innovative approach can be integrated into breast cancer treatment. Proton therapy exhibits superior target coverage and safety, reducing radiation-induced complications and sparing critical organs, but skin toxicity outcomes differ from photon therapy. Tissue expanders are vital in breast reconstruction, employing innovative planning for positive long-term outcomes and highlighting the importance of balancing cancer treatment effectiveness with cosmetic outcomes. Hypofractionated proton therapy and breast cancer reconstruction present promising innovations with notable advantages in target coverage and organ sparing. However, variations in skin toxicity outcomes and the need for a careful balance between treatment effectiveness and cosmetic outcomes underscore ongoing challenges. Future directions should focus on refining treatment protocols, optimizing patient selection criteria, and integrating emerging technologies to enhance therapeutic outcomes while minimizing adverse effects.
Collapse
Affiliation(s)
- Hadia Fatima
- Radiation Oncology Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, SAU
| | - Paras Abbas
- Oncology Department, Atomic Energy Cancer Hospital, Nuclear Medicine Oncology and Radiotherapy Institute, Islamabad, PAK
| | - Salem M Alshehri
- Radiation Oncology Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, SAU
| |
Collapse
|
14
|
Thwaites DI, Prokopovich DA, Garrett RF, Haworth A, Rosenfeld A, Ahern V. The rationale for a carbon ion radiation therapy facility in Australia. J Med Radiat Sci 2024; 71 Suppl 2:59-76. [PMID: 38061984 PMCID: PMC11011608 DOI: 10.1002/jmrs.744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/17/2023] [Indexed: 04/13/2024] Open
Abstract
Australia has taken a collaborative nationally networked approach to achieve particle therapy capability. This supports the under-construction proton therapy facility in Adelaide, other potential proton centres and an under-evaluation proposal for a hybrid carbon ion and proton centre in western Sydney. A wide-ranging overview is presented of the rationale for carbon ion radiation therapy, applying observations to the case for an Australian facility and to the clinical and research potential from such a national centre.
Collapse
Affiliation(s)
- David I. Thwaites
- Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
- Radiotherapy Research Group, Institute of Medical ResearchSt James's Hospital and University of LeedsLeedsUK
| | | | - Richard F. Garrett
- Australian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
| | - Annette Haworth
- Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, School of PhysicsUniversity of WollongongSydneyNew South WalesAustralia
| | - Verity Ahern
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
- Westmead Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
15
|
Sener U, Webb M, Breen WG, Neth BJ, Laack NN, Routman D, Brown PD, Mahajan A, Frechette K, Dudek AZ, Markovic SN, Block MS, McWilliams RR, Dimou A, Kottschade LA, Montane HN, Kizilbash SH, Campian JL. Proton Craniospinal Irradiation with Immunotherapy in Two Patients with Leptomeningeal Disease from Melanoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:1-6. [PMID: 38327758 PMCID: PMC10846635 DOI: 10.36401/jipo-23-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/12/2024] [Indexed: 02/09/2024]
Abstract
Introduction Proton craniospinal irradiation (pCSI) is a treatment option for leptomeningeal disease (LMD), which permits whole neuroaxis treatment while minimizing toxicity. Despite this, patients inevitably experience progression. Adding systemic therapy to pCSI may improve outcomes. Methods In this single-institution retrospective case series, we present the feasibility of treatment with pCSI (30Gy, 10 fractions) and an immune checkpoint inhibitor (ICI) in two sequential patients with LMD from melanoma. Results The first patient developed LMD related to BRAF V600E-mutant melanoma after prior ICI and BRAF-targeted therapy. After pCSI with concurrent nivolumab, the addition of relatlimab, and BRAF-targeted therapy, he remained alive 7 months after LMD diagnosis despite central nervous system progression. The second patient developed LMD related to BRAF-wildtype melanoma after up-front ICI. He received pCSI with concurrent ipilimumab and nivolumab, then nivolumab maintenance. Though therapy was held for ICI hepatitis, the patient remained progression-free 5 months after LMD diagnosis. Conclusion Adding an ICI to pCSI is feasible for patients with LMD and demonstrates a tolerable toxicity profile. While prospective evaluation is ultimately warranted, pCSI with ICI may confer survival benefits, even after prior ICI.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Mason Webb
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Kelsey Frechette
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
John A, O'Sullivan H, Popat S. Updates in Management of Malignant Pleural Mesothelioma. Curr Treat Options Oncol 2023; 24:1758-1789. [PMID: 37975977 DOI: 10.1007/s11864-023-01148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
OPINION STATEMENT Malignant pleural mesothelioma (MPM) is an aggressive asbestos-associated thoracic malignancy that is usually incurable. As demonstrated in the landmark MARS2 trial, surgical resection does not improve survival outcomes and its role in managing MPM is limited. Whilst platinum-pemetrexed chemotherapy in combination with bevacizumab was the standard first-line approach for unresectable disease, landmark phase 3 trials have now established the role of immune checkpoint inhibitors (CPIs) in the upfront management of unresectable disease: either nivolumab-ipilimumab or carboplatin-pemetrexed-pembrolizumab. Patient selection for optimal strategy remains an ongoing question. For relapsed disease novel genomic-based therapies targeting a range of aberrations including losses of the tumour suppressor genes BAP1, CDKN2A and NF2, are being evaluated. Nonetheless, the future of MPM therapeutics holds promise. Here we overview current treatment strategies in the management of MPM.
Collapse
Affiliation(s)
- Alexius John
- The Lung Unit, The Royal Marsden Hospital, London, UK.
| | - Hazel O'Sullivan
- The Lung Unit, The Royal Marsden Hospital, London, UK
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Sanjay Popat
- The Lung Unit, The Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| |
Collapse
|
17
|
Jin Y, Shimizu S, Li Y, Yao Y, Liu X, Si H, Sakurai H, Xiao W. Proton therapy (PT) combined with concurrent chemotherapy for locally advanced non-small cell lung cancer with negative driver genes. Radiat Oncol 2023; 18:189. [PMID: 37974211 PMCID: PMC10652584 DOI: 10.1186/s13014-023-02372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE To discuss the optimal treatment modality for inoperable locally advanced Non-Small Cell Lung Cancer patients with poor physical status, impaired cardio-pulmonary function, and negative driver genes, and provide clinical evidence. MATERIALS AND METHODS Retrospective analysis of 62 cases of locally advanced non-small cell lung cancer patients with negative driver genes treated at Tsukuba University Hospital(Japan) and Qingdao University Affiliated Hospital(China).The former received proton therapy with concurrent chemotherapy, referred to as the proton group, with 25 cases included; while the latter underwent X-ray therapy with concurrent chemoradiotherapy followed by 1 year of sequential immunomodulatory maintenance therapy, referred to as the X-ray group, with 37 cases included.The treatment response and adverse reactions were assessed using RECIST v1.1 criteria and CTCAE v3.0, and radiotherapy planning and evaluation of organs at risk were performed using the CB-CHOP method.All data were subjected to statistical analysis using GraphPad Prism v9.0, with a T-test using P < 0.05 considered statistically significant. RESULTS (1)Target dose distribution: compared to the X-ray group, the proton group exhibited smaller CTV and field sizes, with a more pronounced bragg peak.(2)Organs at risk dose: When comparing the proton group to the X-ray group, lung doses (V5, V20, MLD) and heart doses (V40, Dmax) were lower, with statistical significance (P < 0.05), while spinal cord and esophagus doses showed no significant differences between the two groups (P > 0.05).(3)Treatment-related toxicities: The incidence of grade 3 or higher adverse events in the proton group and X-ray group was 28.6% and 4.2%, respectively, with a statistically significant difference (P < 0.05). In terms of the types of adverse events, the proton group primarily experienced esophagitis and pneumonia, while the X-ray group primarily experienced pneumonia, esophagitis, and myocarditis. Both groups did not experience radiation myelitis or esophagotracheal fistula.(4)Efficacy evaluation: The RR in the proton group and X-ray group was 68.1% and 70.2%, respectively (P > 0.05), and the DCR was 92.2% and 86.4%, respectively (P > 0.05), indicating no significant difference in short-term efficacy between the two treatment modalities.(5)Survival status: The PFS in the proton group and X-ray group was 31.6 ± 3.5 months (95% CI: 24.7 ~ 38.5) and 24.9 ± 1.55 months (95% CI: 21.9 ~ 27.9), respectively (P > 0.05), while the OS was 51.6 ± 4.62 months (95% CI: 42.5 ~ 60.7) and 33.1 ± 1.99 months (95% CI: 29.2 ~ 37.1), respectively (P < 0.05).According to the annual-specific analysis, the PFS rates for the first to third years in both groups were as follows: 100%, 56.1% and 32.5% for the proton group vs. 100%, 54.3% and 26.3% for the X-ray group. No statistical differences were observed at each time point (P > 0.05).The OS rates for the first to third years in both groups were as follows: 100%, 88.2%, 76.4% for the proton group vs. 100%, 91.4%, 46.3% for the X-ray group. There was no significant difference in the first to second years (P > 0.05), but the third year showed a significant difference (P < 0.05). Survival curve graphs also depicted a similar trend. CONCLUSION There were no significant statistical differences observed between the two groups in terms of PFS and OS within the first two years. However, the proton group demonstrated a clear advantage over the X-ray group in terms of adverse reactions and OS in the third year. This suggests a more suitable treatment modality and clinical evidence for populations with frail health, compromised cardio-pulmonary function, post-COVID-19 sequelae, and underlying comorbidities.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Shosei Shimizu
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Radiotherapy, YIZHOU Cancer Hospital, Qingdao, China
| | - Yinuo Li
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yuan Yao
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Xiguang Liu
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongzong Si
- School of Public Health, Qingdao University, Qingdao, China
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Japan.
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
18
|
Kneepkens E, Wolfs C, Wanders RG, Traneus E, Eekers D, Verhaegen F. Shoot-through proton FLASH irradiation lowers linear energy transfer in organs at risk for neurological tumors and is robust against density variations. Phys Med Biol 2023; 68:215020. [PMID: 37820687 DOI: 10.1088/1361-6560/ad0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Objective. The goal of the study was to test the hypothesis that shoot-through FLASH proton beams would lead to lower dose-averaged LET (LETD) values in critical organs, while providing at least equal normal tissue sparing as clinical proton therapy plans.Approach. For five neurological tumor patients, pencil beam scanning (PBS) shoot-through plans were made, using the maximum energy of 227 MeV and assuming a hypothetical FLASH protective factor (FPF) of 1.5. The effect of different FPF ranging from 1.2 to 1.8 on the clinical goals were also considered. LETDwas calculated for the clinical plan and the shoot-through plan, applying a 2 Gy total dose threshold (RayStation 8 A/9B and 9A-IonRPG). Robust evaluation was performed considering density uncertainty (±3% throughout entire volume).Main results.Clinical plans showed large LETDvariations compared to shoot-through plans and the maximum LETDin OAR is 1.2-8 times lower for the latter. Although less conformal, shoot-through plans met the same clinical goals as the clinical plans, for FLASH protection factors above 1.4. The FLASH shoot-through plans were more robust to density uncertainties with a maximum OAR D2%increase of 0.6 Gy versus 5.7 Gy in the clinical plans.Significance.Shoot-through proton FLASH beams avoid uncertainties in LETDdistributions and proton range, provide adequate target coverage, meet planning constraints and are robust to density variations.
Collapse
Affiliation(s)
- Esther Kneepkens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cecile Wolfs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Roel-Germ Wanders
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erik Traneus
- RaySearch Laboratories AB, SE-103 65, Stockholm, Sweden
| | - Danielle Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
19
|
Lin B, Fan M, Niu T, Liang Y, Xu H, Tang W, Du X. Key changes in the future clinical application of ultra-high dose rate radiotherapy. Front Oncol 2023; 13:1244488. [PMID: 37941555 PMCID: PMC10628486 DOI: 10.3389/fonc.2023.1244488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Ultra-high dose rate radiotherapy (FLASH-RT) is an external beam radiotherapy strategy that uses an extremely high dose rate (≥40 Gy/s). Compared with conventional dose rate radiotherapy (≤0.1 Gy/s), the main advantage of FLASH-RT is that it can reduce damage of organs at risk surrounding the cancer and retain the anti-tumor effect. An important feature of FLASH-RT is that an extremely high dose rate leads to an extremely short treatment time; therefore, in clinical applications, the steps of radiotherapy may need to be adjusted. In this review, we discuss the selection of indications, simulations, target delineation, selection of radiotherapy technologies, and treatment plan evaluation for FLASH-RT to provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Mi Fan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tingting Niu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuwen Liang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haonan Xu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaobo Du
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| |
Collapse
|
20
|
Benzazon N, Colnot J, de Kermenguy F, Achkar S, de Vathaire F, Deutsch E, Robert C, Diallo I. Analytical models for external photon beam radiotherapy out-of-field dose calculation: a scoping review. Front Oncol 2023; 13:1197079. [PMID: 37228501 PMCID: PMC10203488 DOI: 10.3389/fonc.2023.1197079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of scientific evidence indicates that exposure to low dose ionizing radiation (< 2 Gy) is associated with a higher risk of developing radio-induced cancer. Additionally, it has been shown to have significant impacts on both innate and adaptive immune responses. As a result, the evaluation of the low doses inevitably delivered outside the treatment fields (out-of-field dose) in photon radiotherapy is a topic that is regaining interest at a pivotal moment in radiotherapy. In this work, we proposed a scoping review in order to identify evidence of strengths and limitations of available analytical models for out-of-field dose calculation in external photon beam radiotherapy for the purpose of implementation in clinical routine. Papers published between 1988 and 2022 proposing a novel analytical model that estimated at least one component of the out-of-field dose for photon external radiotherapy were included. Models focusing on electrons, protons and Monte-Carlo methods were excluded. The methodological quality and potential limitations of each model were analyzed to assess their generalizability. Twenty-one published papers were selected for analysis, of which 14 proposed multi-compartment models, demonstrating that research efforts are directed towards an increasingly detailed description of the underlying physical phenomena. Our synthesis revealed great inhomogeneities in practices, in particular in the acquisition of experimental data and the standardization of measurements, in the choice of metrics used for the evaluation of model performance and even in the definition of regions considered out-of-the-field, which makes quantitative comparisons impossible. We therefore propose to clarify some key concepts. The analytical methods do not seem to be easily suitable for massive use in clinical routine, due to the inevitable cumbersome nature of their implementation. Currently, there is no consensus on a mathematical formalism that comprehensively describes the out-of-field dose in external photon radiotherapy, partly due to the complex interactions between a large number of influencing factors. Out-of-field dose calculation models based on neural networks could be promising tools to overcome these limitations and thus favor a transfer to the clinic, but the lack of sufficiently large and heterogeneous data sets is the main obstacle.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- THERYQ, PMB-Alcen, Peynier, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|