1
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
2
|
Xu Y, Chen Y, Yang Q, Lu Y, Zhou R, Liu H, Tu Y, Shao L. Novel plasma microRNA expression features in diagnostic use for Epstein-Barr virus-associated febrile diseases. Heliyon 2024; 10:e26810. [PMID: 38444478 PMCID: PMC10912469 DOI: 10.1016/j.heliyon.2024.e26810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Background Epstein-Barr virus (EBV) is widely infected in humans and causes various diseases. Among them, microRNAs of EBV play a key role in the progression of EBV-associated febrile diseases. There're few specific indicators for rapid differential diagnosis of various febrile diseases associated with EBV, and the lack of more reliable screening methods with high diagnostic utility has led to spaces for improvement in the accurate diagnosis and efficient treatment of relevant patients, making EBV infection a complicated clinical problem. With recent advances in plasma microRNA testing, the apparent presence of EBV microRNAs in plasma can help screen for EBV infection. The gene networks targeted by these microRNAs can also indicate potential biomarkers of EBV-associated febrile diseases. This study aimed to identify some novel miRNAs as potential biomarkers for early diagnosis of respectively EBV-associated febrile diseases. Materials and methods A total of 110 participants were recruited for this task. First, we performed high-throughput sequencing and preliminary PCR validation of differentially expressed miRNAs in 15 participants with EBV-associated fever (divided into common EBV carriers), infectious mononucleosis (IM) and chronic active EBV infection (CAEBV), EBV-associated Hemophagocytic Lymphohistiocytosis group (EBV-HLH), and 3 healthy individuals. After a comprehensive analysis, 10 miRNAs with abnormal expression were screened, and then qRT-PCR was performed in the rest of 95 participants to detect the validation of miRNAs expression in plasma samples. Thereafter, we further investigated their potential for clinical application in EBV-related febrile diseases by using a combination of Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Protein-protein interaction network analysis. Results Through identification and detailed analysis of the obtained data, we found significant differences in the expression of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in blood samples from patients with different EBV-related febrile diseases. We found that the expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in plasma are indicative of determining different disease types of EBV-related febrile diseases, while EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets. Conclusion The expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p suggest that they may be used as transcriptional features for early differential diagnosis of EBV-related febrile diseases, and EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets.
Collapse
Affiliation(s)
- YiFei Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Ying Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Qingluan Yang
- Department of Infectious Diseases, National Medical Center for InfectiousDiseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety EmergencyResponse, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yuxiang Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Rui Zhou
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Haohua Liu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Yanjie Tu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, National Medical Center for InfectiousDiseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety EmergencyResponse, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
3
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|