1
|
Guo X, Wang RS, Zhang ZL, Zhang HW, Wang SC, Zhang S, Wu YN, Li YJ, Yuan J. Effect of fermentation on the constituents in the branches and leaves of Taxus media and non-small cell lung cancer. Front Pharmacol 2024; 15:1449498. [PMID: 39508039 PMCID: PMC11538029 DOI: 10.3389/fphar.2024.1449498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Non-small cell lung cancer (NSCLC) is a prominent lung cancer disease worldwide. Currently, commonly used methods, such as surgery and radiotherapy, have significant side effects. Traditional Chinese medicine (TCM) has become a research hotspot because of its safe and effective characteristics. The branches and leaves of Taxus media are abundant in antitumor active compounds, and there has been no research conducted as yet regarding its anti-lung cancer molecular mechanism. Objective The aim of this study is to investigate the antitumor activity of two samples before and after fermentation of T. media, and to research the molecular mechanism of its inhibitory effect on NSCLC. Methods The chemical composition of pre-fermentation T. media (TM) and post-fermentation T. media qu (TMQ) were investigated using UHPLC-Q-Qrbitrap HRMS and high-performance liquid chromatography (HPLC). The anti-lung cancer activities of TM and TMQ were compared using an A549-induced tumor mouse model. An enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin (H&E) staining, immunohistochemistry, and immunofluorescence were used to determine the of TMQ mechanism of action. Results The results indicated that TM and TMQ contained 83 compounds, consisting primarily of flavonoids, organic acids, and taxanes. Both taxanes and flavonoids in TMQ were higher than that in TM. Both TM and TMQ effectively inhibited the tumor growth in non-small cell lung cancer (NSCLC), and the inhibition rate was greater in TMQ (57.24%) than in TM (49.62%). TMQ administration downregulated the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and the glutathione (GSH) level and upregulated interferon-γ (IFN-γ), reactive oxygen species (ROS), and malondialdehyde (MDA) levels in the serum of tumor mice. TMQ treatment also increased the protein expression of Bax, Caspase-3, and Beclin-1 in tumor tissues. In contrast, the bcl-2, PI3K, Ki67, ULK1, and mTOR protein levels were suppressed by TMQ. Protein assay analyses reemphasized the superior antitumor effect of TMQ over TM. These cumulative findings demonstrated that the mechanism of action of TMQ was closely related to the activation of transcriptional misregulation in the cancer pathway that inhibited the cholinergic synaptic, AMPK, and PI3K/Akt/mTOR signaling pathways. Conclusion This study demonstrated that fermentation increased the active ingredient contents and antitumor effects of T. media. In addition, post-fermentation TMQ was superior to TM as a herbal medicine for NSCLC treatment.
Collapse
Affiliation(s)
- Xing Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Rui-Sheng Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen-Ling Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, China
- Henan Engineering Technology Research Center for Integrated Traditional Chinese Medicine Production, Zhengzhou, China
- Henan Engineering Research Center of Traditional Chinese Medicine Characteristic Processing Technology, Zhengzhou, China
| | - Hong-Wei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Sheng-Chao Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuai Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya-Ning Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya-Jing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jun Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Shi Y, Yang J, Tian T, Li S, Xie Y. Exploring the potential role of microbiota and metabolites in acute exacerbation of chronic obstructive pulmonary disease. Front Microbiol 2024; 15:1487393. [PMID: 39483760 PMCID: PMC11526122 DOI: 10.3389/fmicb.2024.1487393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
The acute exacerbation of chronic obstructive pulmonary disease seriously affects the respiratory system function and quality of life of patients. This study employed 16S rRNA sequencing and metabolomics techniques to analyze the respiratory microbiota and serum metabolites of COPD and AECOPD patients. The results showed that the microbial diversity in the respiratory tract of AECOPD patients was significantly lower than that of COPD patients, and the relative abundance of Bacteroidetes, Prevotella and Neisseria in the respiratory tract of AECOPD patients was significantly lower than that of COPD patients. However, the relative abundance of Haemophilus_D, Veillonella_A and Pseudomonas_E, in AECOPD patients was significantly higher than that of COPD patients, and the ability of respiratory microbiota in AECOPD patients to participate in alanine metabolism was significantly lower than that of COPD patients. Metabolome results further revealed that the serum alanine levels in AECOPD patients were significantly lower than those in COPD patients, and these differential metabolites were mainly involved in linoleic acid metabolism, protein digestion and absorption and regulation of lipolysis in adipocytes. In summary, the structural characteristics of respiratory microbiota in COPD and AECOPD patients are different from those in healthy populations, and their microbiota diversity decreases and microbial community structure and function will also undergo changes when acute exacerbations occur. In addition, the predicted microbial community function and metabolomics results indicate that the onset of AECOPD is mainly related to energy and amino acid metabolism disorders, especially alanine metabolism.
Collapse
Affiliation(s)
- Yanmin Shi
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan International Joint Laboratory of Evidence-based Evaluation for Respiratory Diseases, Henan Province Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianya Yang
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan International Joint Laboratory of Evidence-based Evaluation for Respiratory Diseases, Henan Province Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Tian
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suyun Li
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan International Joint Laboratory of Evidence-based Evaluation for Respiratory Diseases, Henan Province Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Xie
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan International Joint Laboratory of Evidence-based Evaluation for Respiratory Diseases, Henan Province Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
de Medeiros JP, Rodrigues SA, Sakumoto K, Ruiz SP, Faria MGI, Gonçalves JE, Piau Junior R, Glamočlija J, Soković M, Gonçalves DD, Mandim F, Barros L, Gazim ZC. Bioactives of the essential oil from the leaves of Eugenia pyriformis Cambess (Myrtaceae) on the effects of tobacco. Front Pharmacol 2024; 15:1415659. [PMID: 38910894 PMCID: PMC11190337 DOI: 10.3389/fphar.2024.1415659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Lung cancer is the most commonly diagnosed and the main cause of cancer death, usually related to cigarette smoking. Furthermore, the microbiota of people exposed to cigarette smoke can be modified, making it difficult to eliminate opportunistic microorganisms. The leaves of Eugenia pyriformis are a by-product of fruit production and, to date, there have been no studies addressing the antiproliferative, anti-inflammatory, and antimicrobial activities. Objective Investigate the antimicrobial, Nitric Oxide (NO)-production inhibition, and antiproliferative activities of the essential oil from E. pyriformis leaves and its possible effect on the treatment and prevention of damage caused by tobacco. Methods The essential oil (EO) was obtained by hydrodistillation (3 h). Its chemical composition was investigated by GC-MS. It was proposed to investigate antiproliferative activity against human tumor cell lines, namely, breast adenocarcinoma (MCF-7), lung (NCI-H460), cervical (HeLa), and hepatocellular (HepG2) carcinomas. A non-tumor primary culture from pig liver (PLP2) was also tested. The EO capacity to inhibit nitric oxide (NO) production was evaluated by a lipopolysaccharide stimulated murine macrophage cell line. Antibacterial and antifungal activities against opportunistic pathogens were investigated against seven strains of bacteria and eight fungi. Results The results indicated the presence of 23 compounds in the essential oil, the majority were spathulenol (45.63%) and β-caryophyllene oxide (12.72%). Leaf EO provided 50% inhibition of nitric oxide production at a concentration of 92.04 µg mL-1. The EO also demonstrated antiproliferative activity against all human tumor cell lines studied, with GI50 values comprised between 270.86 and 337.25 µg mL-1. The essential oil showed antimicrobial potential against the bacteria Listeria monocytogenes (Murray et al.) Pirie (NCTC 7973) and Salmonella Typhimurium ATCC 13311 (MIC 1870 µg mL-1) and fungi Aspergillus versicolor ATCC 11730, Aspergillus ochraceus ATCC 12066, Penicillium ochrochloron ATCC 90288, Penicillium verrucosum var. cyclopium (Westling) Samson, Stolk & Hadlok (food isolate) (MIC 1870 µg mL-1) and Trichoderma viride Pers. IAM 5061 (1,400 µg mL-1). Conclusion The demonstrated anti-inflammatory, antiproliferative, and antimicrobial activities in the leaves of E. pyriformis can add value to the production chain of this plant, being a possible option for preventing and combating cancer, including lung cancer.
Collapse
Affiliation(s)
| | - Selma Alves Rodrigues
- Graduate Program in Animal Science With Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Karina Sakumoto
- Graduate Program in Medicinal and Phytotherapeutic Plants in Primary Care, Universidade Paranaense, Umuarama, Brazil
| | - Suelen Pereira Ruiz
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense, Umuarama, Brazil
| | | | - José Eduardo Gonçalves
- Graduate Program in Clean Technologies, UniCesumar, Maringá, Brazil
- Cesumar Institute of Science, Technology and Innovation (ICETI), Maringá, Brazil
| | - Ranulfo Piau Junior
- Graduate Program in Animal Science With Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Jasmina Glamočlija
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Daniela Dib Gonçalves
- Graduate Program in Animal Science With Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
- Graduate Program in Medicinal and Phytotherapeutic Plants in Primary Care, Universidade Paranaense, Umuarama, Brazil
| | - Filipa Mandim
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Lillian Barros
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Zilda Cristiani Gazim
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense, Umuarama, Brazil
- Graduate Program in Animal Science With Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| |
Collapse
|
4
|
Wang Y, Zhou Y, Huang Y, Li X, Zhang J, Gao Y, Qin F, Fu H, Wang S, Niu A, Guo R. Analyzing the characteristics of respiratory microbiota after the placement of an airway stent for malignant central airway obstruction. Microbiol Spectr 2024; 12:e0347223. [PMID: 38747599 PMCID: PMC11237529 DOI: 10.1128/spectrum.03472-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Malignant central airway stenosis is treated with airway stent placement, but post-placement microbial characteristics remain unclear. We studied microbial features in 60 patients post-stent placement, focusing on changes during granulation tissue proliferation. Samples were collected before stent (N = 29), after stent on day 3 (N = 20), and after granulation tissue formation (AS-GTF, N = 43). Metagenomic sequencing showed significant respiratory tract microbiota changes with granulation tissue. The microbiota composition, dominated by Actinobacteria, Firmicutes, and Proteobacteria, was similar among the groups. At the species level, the AS-GTF group exhibited significant differences, with Peptostreptococcus stomatis and Achromobacter xylosoxidans enriched. Analysis based on tracheoesophageal fistula presence identified Tannerella forsythia and Stenotrophomonas maltophilia as the main differential species, enriched in the fistula subgroup. Viral and fungal detection showed Human gammaherpesvirus 4 and Candida albicans as the main species, respectively. These findings highlight microbiota changes after stent placement, potentially associated with granulation tissue proliferation, informing stent placement therapy and anti-infective treatment optimization. IMPORTANCE Malignant central airway stenosis is a life-threatening condition that can be effectively treated with airway stent placement. However, despite its clinical importance, the microbial characteristics of the respiratory tract following stent insertion remain poorly understood. This study addresses this gap by investigating the microbial features in patients with malignant central airway stenosis after stent placement, with a specific focus on microbial changes during granulation tissue proliferation. The findings reveal significant alterations in the diversity and structure of the respiratory tract microbiota following the placement of malignant central airway stents. Notably, certain bacterial species, including Peptostreptococcus stomatis and Achromobacter xylosoxidans, exhibit distinct patterns in the after-stent granulation tissue formation group. Additionally, the presence of tracheoesophageal fistula further influences the microbial composition. These insights provide valuable references for optimizing stent placement therapy and enhancing clinical anti-infective strategies.
Collapse
Affiliation(s)
- Yue Wang
- Graduate School of North China University of Technology, Tangshan, China
| | - Yunzhi Zhou
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Yan Huang
- Department of Respiratory and Critical Care Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xiaoli Li
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Jieli Zhang
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Yongping Gao
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Fang Qin
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Huaixiu Fu
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Shufang Wang
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Anan Niu
- Graduate School of North China University of Technology, Tangshan, China
| | - Ruinan Guo
- Graduate School of North China University of Technology, Tangshan, China
| |
Collapse
|
5
|
Bano Y, Shrivastava A, Shukla P, Chaudhary AA, Khan SUD, Khan S. The implication of microbiome in lungs cancer: mechanisms and strategies of cancer growth, diagnosis and therapy. Crit Rev Microbiol 2024:1-25. [PMID: 38556797 DOI: 10.1080/1040841x.2024.2324864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
Available evidence illustrates that microbiome is a promising target for the study of growth, diagnosis and therapy of various types of cancer. Lung cancer is a leading cause of cancer death worldwide. The relationship of microbiota and their products with diverse pathologic conditions has been getting large attention. The novel research suggests that the microbiome plays an important role in the growth and progression of lung cancer. The lung microbiome plays a crucial role in maintaining mucosal immunity and synchronizing the stability between tolerance and inflammation. Alteration in microbiome is identified as a critical player in the progression of lung cancer and negatively impacts the patient. Studies suggest that healthy microbiome is essential for effective therapy. Various clinical trials and research are focusing on enhancing the treatment efficacy by altering the microbiome. The regulation of microbiota will provide innovative and promising treatment strategies for the maintenance of host homeostasis and the prevention of lung cancer in lung cancer patients. In the current review article, we presented the latest progress about the involvement of microbiome in the growth and diagnosis of lung cancer. Furthermore, we also assessed the therapeutic status of the microbiome for the management and treatment of lung cancer.
Collapse
Affiliation(s)
- Yasmin Bano
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
| | - Abhinav Shrivastava
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
| | - Piyush Shukla
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Bilaspur, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
6
|
Reddy RM, Lagisetty K, Lin J, Chang AC, Achreja A, Ramnath N, Nagrath D, Dickson R, Weinberg F. Comprehensive sampling of the lung microbiome in early-stage non-small cell lung cancer. JTCVS OPEN 2024; 17:260-268. [PMID: 38420555 PMCID: PMC10897652 DOI: 10.1016/j.xjon.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 03/02/2024]
Abstract
Objectives Data are scarce on whether the composition of the lung microbiome (extending from the nasopharynx to the peripheral lung tissue) varies according to histology or grade of non-small cell lung cancer. We hypothesized that the composition of the lung microbiome would vary according to the histology and the grade of non-small cell lung cancer. Methods We collected naso-oral and central lobar (cancer affected, ipsilateral unaffected, and contralateral unaffected) bronchoalveolar lavage fluid and brushing samples from patients with clinical early-stage lung cancer between July 2018 and February 2020 at a single academic center. We performed bacterial 16S rRNA sequencing and then compared clinical and pathologic findings with microbiome signatures. Results Samples were collected from 28 patients. Microbial composition in affected lobes displayed unique enrichment of oropharyngeal bacterial species that was significantly different compared with that from the unaffected contralateral lobes; patients with chronic obstructive pulmonary disease had similar diversity to those without chronic obstructive pulmonary disease (P = .1312). The lung microbiome diversity in patients with adenocarcinoma was similar to those with squamous cell cancer (P = .27). There were no differences in diversity or composition in the unaffected lobes of patients with adenocarcinoma versus squamous cell cancer. There was a trend toward lower lung microbial diversity in poorly differentiated adenocarcinomas compared with well-differentiated adenocarcinomas (P = .08). Conclusions The lung microbiota differs between cancer affected and unaffected lobes in the same patient. Furthermore, poorly differentiated lung cancers were associated with lower microbial diversity. Larger studies will be required to confirm these findings.
Collapse
Affiliation(s)
- Rishindra M. Reddy
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Kiran Lagisetty
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Jules Lin
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Andrew C. Chang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Abhinav Achreja
- Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Nithya Ramnath
- Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Deepak Nagrath
- Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Robert Dickson
- Pulmonary/Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Frank Weinberg
- Hematology/Oncology, Department of Internal Medicine, University of Illinois-Chicago, Chicago, Ill
| |
Collapse
|
7
|
Souza VGP, Forder A, Pewarchuk ME, Telkar N, de Araujo RP, Stewart GL, Vieira J, Reis PP, Lam WL. The Complex Role of the Microbiome in Non-Small Cell Lung Cancer Development and Progression. Cells 2023; 12:2801. [PMID: 38132121 PMCID: PMC10741843 DOI: 10.3390/cells12242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araujo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Juliana Vieira
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
8
|
Mazumder MHH, Gandhi J, Majumder N, Wang L, Cumming RI, Stradtman S, Velayutham M, Hathaway QA, Shannahan J, Hu G, Nurkiewicz TR, Tighe RM, Kelley EE, Hussain S. Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone. Part Fibre Toxicol 2023; 20:15. [PMID: 37085867 PMCID: PMC10122302 DOI: 10.1186/s12989-023-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.
Collapse
Affiliation(s)
- Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Jasleen Gandhi
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Nairrita Majumder
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Lei Wang
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Robert Ian Cumming
- Department of Medicine, Duke University Medical Center, Durham, NC, 2927, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Murugesan Velayutham
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Quincy A Hathaway
- Heart and Vascular Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gangqing Hu
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, 2927, USA
| | - Eric E Kelley
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
9
|
Zhou Z, Shen D, Wang K, Liu J, Li M, Win-Shwe TT, Nagaoka K, Li C. Pulmonary microbiota intervention alleviates fine particulate matter-induced lung inflammation in broilers. J Anim Sci 2023; 101:skad207. [PMID: 37341706 PMCID: PMC10390102 DOI: 10.1093/jas/skad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023] Open
Abstract
Fine particulate matter (PM2.5) released during the livestock industry endangers the respiratory health of animals. Our previous findings suggested that broilers exposed to PM2.5 exhibited lung inflammation and changes in the pulmonary microbiome. Therefore, this study was to investigate whether the pulmonary microbiota plays a causal role in the pathogenesis of PM2.5-induced lung inflammation. We first used antibiotics to establish a pulmonary microbiota intervention broiler model, which showed a significantly reduced total bacterial load in the lungs without affecting the microbiota composition or structure. Based on it, 45 AA broilers of similar body weight were randomly assigned to three groups: control (CON), PM2.5 (PM), and pulmonary microbiota intervention (ABX-PM). From 21 d of age, broilers in the ABX-PM group were intratracheally instilled with antibiotics once a day for 3 d. Meanwhile, broilers in the other two groups were simultaneously instilled with sterile saline. On 24 and 26 d of age, broilers in the PM and ABX-PM groups were intratracheally instilled with PM2.5 suspension to induce lung inflammation, and broilers in the CON group were simultaneously instilled with sterile saline. The lung histomorphology, inflammatory cytokines' expression levels, lung microbiome, and microbial growth conditions were analyzed to determine the effect of the pulmonary microbiota on PM2.5-induced lung inflammation. Broilers in the PM group showed lung histological injury, while broilers in the ABX-PM group had normal lung histomorphology. Furthermore, microbiota intervention significantly reduced mRNA expression levels of interleukin-1β, tumor necrosis factor-α, interleukin-6, interleukin-8, toll-like receptor 4 and nuclear factor kappa-B. PM2.5 induced significant changes in the β diversity and structure of the pulmonary microbiota in the PM group. However, no significant changes in microbiota structure were observed in the ABX-PM group. Moreover, the relative abundance of Enterococcus cecorum in the PM group was significantly higher than that in the CON and ABX-PM groups. And sterile bronchoalveolar lavage fluid from the PM group significantly promoted the growth of E. cecorum, indicating that PM2.5 altered the microbiota's growth condition. In conclusion, pulmonary microbiota can affect PM2.5-induced lung inflammation in broilers. PM2.5 can alter the bacterial growth environment and promote dysbiosis, potentially exacerbating inflammation.
Collapse
Affiliation(s)
- Zilin Zhou
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dan Shen
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Wang
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junze Liu
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyang Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tin-Tin Win-Shwe
- Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Chunmei Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|