1
|
Shirey KA, Lai W, Sunday ME, Cuttitta F, Blanco JCG, Vogel SN. Novel neuroendocrine role of γ-aminobutyric acid and gastrin-releasing peptide in the host response to influenza infection. Mucosal Immunol 2023; 16:302-311. [PMID: 36965691 PMCID: PMC10330014 DOI: 10.1016/j.mucimm.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Gastrin-releasing peptide (GRP), an evolutionarily conserved neuropeptide, significantly contributes to influenza-induced lethality and inflammation in rodent models. Because GRP is produced by pulmonary neuroendocrine cells (PNECs) in response to γ-aminobutyric acid (GABA), we hypothesized that influenza infection promotes GABA release from PNECs that activate GABAB receptors on PNECs to secrete GRP. Oxidative stress was increased in the lungs of influenza A/PR/8/34 (PR8)-infected mice, as well as serum glutamate decarboxylase 1, the enzyme that converts L-glutamic acid into GABA. The therapeutic administration of saclofen, a GABAB receptor antagonist, protected PR8-infected mice, reduced lung proinflammatory gene expression of C-C chemokine receptor type 2 (Ccr2), cluster of differentiation 68 (Cd68), and Toll like receptor 4 (Tlr4) and decreased the levels of GRP and high-mobility group box 1 (HMGB1) in sera. Conversely, baclofen, a GABAB receptor agonist, significantly increased the lethality and inflammatory responses. The GRP antagonist, NSC77427, as well as the GABAB antagonist, saclofen, blunted the PR8-induced monocyte infiltration into the lung. Together, these data provide the first report of neuroregulatory control of influenza-induced disease.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Mary E Sunday
- Duke University Medical Center, Durham, North Carolina, USA
| | - Frank Cuttitta
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Shirey KA, Blanco JCG, Vogel SN. Targeting TLR4 Signaling to Blunt Viral-Mediated Acute Lung Injury. Front Immunol 2021; 12:705080. [PMID: 34282358 PMCID: PMC8285366 DOI: 10.3389/fimmu.2021.705080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Respiratory viral infections have been a long-standing global burden ranging from seasonal recurrences to the unexpected pandemics. The yearly hospitalizations from seasonal viruses such as influenza can fluctuate greatly depending on the circulating strain(s) and the congruency with the predicted strains used for the yearly vaccine formulation, which often are not predicted accurately. While antiviral agents are available against influenza, efficacy is limited due to a temporal disconnect between the time of infection and symptom development and viral resistance. Uncontrolled, influenza infections can lead to a severe inflammatory response initiated by pathogen-associated molecular patterns (PAMPs) or host-derived danger-associated molecular patterns (DAMPs) that ultimately signal through pattern recognition receptors (PRRs). Overall, these pathogen-host interactions result in a local cytokine storm leading to acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS) with concomitant systemic involvement and more severe, life threatening consequences. In addition to traditional antiviral treatments, blocking the host's innate immune response may provide a more viable approach to combat these infectious pathogens. The SARS-CoV-2 pandemic illustrates a critical need for novel treatments to counteract the ALI and ARDS that has caused the deaths of millions worldwide. This review will examine how antagonizing TLR4 signaling has been effective experimentally in ameliorating ALI and lethal infection in challenge models triggered not only by influenza, but also by other ALI-inducing viruses.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
3
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
4
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
6
|
Voynow JA, Fisher K, Sunday ME, Cotten CM, Hamvas A, Hendricks-Muñoz KD, Poindexter BB, Pryhuber GS, Ren CL, Ryan RM, Sharp JK, Young SP, Zhang H, Greenberg RG, Herring AH, Davis SD. Urine gastrin-releasing peptide in the first week correlates with bronchopulmonary dysplasia and post-prematurity respiratory disease. Pediatr Pulmonol 2020; 55:899-908. [PMID: 31995668 PMCID: PMC7071969 DOI: 10.1002/ppul.24665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/04/2020] [Indexed: 11/07/2022]
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) is associated with post-prematurity respiratory disease (PRD) in survivors of extreme preterm birth. Identifying early biomarkers that correlate with later development of BPD and PRD may provide insights for intervention. In a preterm baboon model, elevated gastrin-releasing peptide (GRP) is associated with BPD, and GRP inhibition mitigates BPD occurrence. OBJECTIVE We performed a prospective cohort study to investigate whether urine GRP levels obtained in the first postnatal week were associated with BPD, PRD, and other urinary biomarkers of oxidative stress. METHODS Extremely low gestational age infants (23-28 completed weeks) were enrolled in a US multicenter observational study, The Prematurity and Respiratory Outcomes Program (http://clinicaltrials.gov/ct2/show/NCT01435187). We used multivariable logistic regression to examine the association between urine GRP in the first postnatal week and multiple respiratory outcomes: BPD, defined as supplemental oxygen use at 36 + 0 weeks postmenstrual age, and post-PRD, defined by positive quarterly surveys for increased medical utilization over the first year (PRD score). RESULTS A total of 109 of 257 (42%) infants had BPD, and 120 of 217 (55%) had PRD. On adjusted analysis, GRP level more than 80 was associated with BPD (adjusted odds ratio [aOR], 1.83; 95% confidence interval [CI], 1.03-3.25) and positive PRD score (aOR, 2.46; 95% CI, 1.35-4.48). Urine GRP levels correlated with duration of NICU ventilatory and oxygen support and with biomarkers of oxidative stress: allantoin and 8-hydroxydeoxyguanosine. CONCLUSIONS Urine GRP in the first postnatal week was associated with concurrent urine biomarkers of oxidative stress and with later diagnoses of BPD and PRD.
Collapse
Affiliation(s)
- Judith A Voynow
- Division of Pediatric Pulmonology, Duke University, Durham, North Carolina.,Division of Pediatric Pulmonology, Children's Hospital of Richmond, Richmond, Virginia
| | - Kimberley Fisher
- Division of Neonatology, Duke University, Durham, North Carolina
| | - Mary E Sunday
- Department of Pathology, Duke University, Durham, North Carolina
| | - Charles M Cotten
- Division of Neonatology, Duke University, Durham, North Carolina
| | - Aaron Hamvas
- Division of Neonatology, Washington University, St Louis, Missouri.,Division of Neonatology, Northwestern University, Chicago, Illinois
| | | | - Brenda B Poindexter
- Division of Neonatology, Indiana University, Indianapolis, Indiana.,Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Clement L Ren
- Division of Pediatric Pulmonology, University of Rochester, Rochester, New York.,Division of Pediatric Pulmonology, Indiana University, Indianapolis, Indiana
| | - Rita M Ryan
- Division of Neonatology, State University of New York at Buffalo, Buffalo, New York.,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Jack K Sharp
- Division of Pediatric Pulmonology, Duke University, Durham, North Carolina.,Division of Pediatric Pulmonology, State University of New York at Buffalo, Buffalo, New York.,Division of Pediatric Pulmonology, Baylor College of Medicine, Houston, Texas
| | - Sarah P Young
- Division of Medical Genetics, Duke University, Durham, North Carolina
| | - Haoyue Zhang
- Division of Medical Genetics, Duke University, Durham, North Carolina
| | - Rachel G Greenberg
- Division of Neonatology and The Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Amy H Herring
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Stephanie D Davis
- Division of Pediatric Pulmonology, Indiana University, Indianapolis, Indiana.,Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Shirey KA, Sunday ME, Lai W, Patel M, Blanco JCG, Cuttitta F, Vogel SN. Novel role of gastrin releasing peptide-mediated signaling in the host response to influenza infection. Mucosal Immunol 2019; 12:223-231. [PMID: 30327535 PMCID: PMC6301097 DOI: 10.1038/s41385-018-0081-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 02/04/2023]
Abstract
Gastrin-releasing peptide (GRP) is an evolutionarily well-conserved neuropeptide that was originally recognized for its ability to mediate gastric acid secretion in the gut. More recently, however, GRP has been implicated in pulmonary lung inflammatory diseases including bronchopulmonary dysplasia, chronic obstructive pulmonary disease, emphysema, and others. Antagonizing GRP or its receptor mitigated lethality associated with the onset of viral pneumonia in a well-characterized mouse model of influenza. In mice treated therapeutically with the small-molecule GRP inhibitor, NSC77427, increased survival was accompanied by decreased numbers of GRP-producing pulmonary neuroendocrine cells, improved lung histopathology, and suppressed cytokine gene expression. In addition, in vitro studies in macrophages indicate that GRP synergizes with the prototype TLR4 agonist, lipopolysaccharide, to induce cytokine gene expression. Thus, these findings reveal that GRP is a previously unidentified mediator of influenza-induced inflammatory disease that is a potentially novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Dept. of Microbiology and Immunology, Univ. of Maryland, School of Medicine, Baltimore, MD USA 21201
| | - Mary E. Sunday
- Dept. of Pathology, Duke University Medical Center, Durham, NC USA 27710
| | - Wendy Lai
- Dept. of Microbiology and Immunology, Univ. of Maryland, School of Medicine, Baltimore, MD USA 21201
| | - Mira Patel
- Sigmovir Biosystems, Inc., Rockville, MD USA 20850
| | | | - Frank Cuttitta
- Mouse Cancer Genetics Program, National Cancer Institute, NIH, Frederick, MD USA 21702
| | - Stefanie N. Vogel
- Dept. of Microbiology and Immunology, Univ. of Maryland, School of Medicine, Baltimore, MD USA 21201
| |
Collapse
|
8
|
Garantziotis S, Tighe RM. Inflammation Gets on the Lung's Nerves: IL-17 and Neuroendocrine Cells Mediate Ozone Responses in Obesity. Am J Respir Cell Mol Biol 2018; 58:284-285. [PMID: 29493325 PMCID: PMC5854962 DOI: 10.1165/rcmb.2017-0363ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Stavros Garantziotis
- 1 Division of Intramural Research National Institute of Environmental Health Sciences Research Triangle Park, North Carolina and
| | - Robert M Tighe
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine Duke University Medical Center Durham, North Carolina
| |
Collapse
|
9
|
Elhaik E. A "Wear and Tear" Hypothesis to Explain Sudden Infant Death Syndrome. Front Neurol 2016; 7:180. [PMID: 27840622 PMCID: PMC5083856 DOI: 10.3389/fneur.2016.00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/04/2016] [Indexed: 01/22/2023] Open
Abstract
Sudden infant death syndrome (SIDS) is the leading cause of death among USA infants under 1 year of age accounting for ~2,700 deaths per year. Although formally SIDS dates back at least 2,000 years and was even mentioned in the Hebrew Bible (Kings 3:19), its etiology remains unexplained prompting the CDC to initiate a sudden unexpected infant death case registry in 2010. Due to their total dependence, the ability of the infant to allostatically regulate stressors and stress responses shaped by genetic and environmental factors is severely constrained. We propose that SIDS is the result of cumulative painful, stressful, or traumatic exposures that begin in utero and tax neonatal regulatory systems incompatible with allostasis. We also identify several putative biochemical mechanisms involved in SIDS. We argue that the important characteristics of SIDS, namely male predominance (60:40), the significantly different SIDS rate among USA Hispanics (80% lower) compared to whites, 50% of cases occurring between 7.6 and 17.6 weeks after birth with only 10% after 24.7 weeks, and seasonal variation with most cases occurring during winter, are all associated with common environmental stressors, such as neonatal circumcision and seasonal illnesses. We predict that neonatal circumcision is associated with hypersensitivity to pain and decreased heart rate variability, which increase the risk for SIDS. We also predict that neonatal male circumcision will account for the SIDS gender bias and that groups that practice high male circumcision rates, such as USA whites, will have higher SIDS rates compared to groups with lower circumcision rates. SIDS rates will also be higher in USA states where Medicaid covers circumcision and lower among people that do not practice neonatal circumcision and/or cannot afford to pay for circumcision. We last predict that winter-born premature infants who are circumcised will be at higher risk of SIDS compared to infants who experienced fewer nociceptive exposures. All these predictions are testable experimentally using animal models or cohort studies in humans. Our hypothesis provides new insights into novel risk factors for SIDS that can reduce its risk by modifying current infant care practices to reduce nociceptive exposures.
Collapse
Affiliation(s)
- Eran Elhaik
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
11
|
Li R, Tan S, Yu M, Jundt MC, Zhang S, Wu M. Annexin A2 Regulates Autophagy in Pseudomonas aeruginosa Infection through the Akt1-mTOR-ULK1/2 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2015; 195:3901-11. [PMID: 26371245 DOI: 10.4049/jimmunol.1500967] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023]
Abstract
Earlier studies reported that a cell membrane protein, Annexin A2 (AnxA2), plays multiple roles in the development, invasion, and metastasis of cancer. Recent studies demonstrated that AnxA2 also functions in immunity against infection, but the underlying mechanism remains largely elusive. Using a mouse infection model, we reveal a crucial role for AnxA2 in host defense against Pseudomonas aeruginosa, as anxa2(-/-) mice manifested severe lung injury, systemic dissemination, and increased mortality compared with wild-type littermates. In addition, anxa2(-/-) mice exhibited elevated inflammatory cytokines (TNF-α, IL-6, IL-1β, and IFN-γ), decreased bacterial clearance by macrophages, and increased superoxide release in the lung. We further identified an unexpected molecular interaction between AnxA2 and Fam13A, which activated Rho GTPase. P. aeruginosa infection induced autophagosome formation by inhibiting Akt1 and mTOR. Our results indicate that AnxA2 regulates autophagy, thereby contributing to host immunity against bacteria through the Akt1-mTOR-ULK1/2 signaling pathway.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 211800, People's Republic of China
| | - Shirui Tan
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203; College of Agriculture, Yunnan University, Kunming 650091, People's Republic of China
| | - Min Yu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203; Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; and
| | - Michael C Jundt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Shuang Zhang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203; State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|