1
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
2
|
Shademan B, Karamad V, Nourazarian A, Avcı CB. CAR T Cells: Cancer Cell Surface Receptors Are the Target for Cancer Therapy. Adv Pharm Bull 2021; 12:476-489. [PMID: 35935042 PMCID: PMC9348524 DOI: 10.34172/apb.2022.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Immunotherapy has become a prominent strategy for the treatment of cancer. A method that improves the immune system's ability to attack a tumor (Enhances antigen binding). Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in the treatment of cancers. For this purpose, the patient's immune cells, with genetic engineering aid, are loaded with chimeric receptors that have particular antigen binding and activate cytotoxic T lymphocytes. That increases the effectiveness of immune cells and destroying cancer cells. This review discusses the basic structure and function of CAR-T cells and how antigenic targets are identified to treat different cancers and address the disadvantages of this treatment for cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
3
|
Zam W, Assaad A. Chimeric antigen receptor T-cells (CARs) in cancer treatment. Curr Mol Pharmacol 2021; 15:532-546. [PMID: 34382510 DOI: 10.2174/1874467214666210811150255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide. Chemotherapy, radiation therapy, and stem cell transplantation were the main cancer treatment approaches for several years but due to their limited effectiveness, there was a constant search for new therapeutic approaches. Cancer immunotherapy that utilizes and enhances the normal capacity of the patient's immune system was used to fight against cancer. Genetically engineered T-cells that express chimeric antigen receptors (CARs) showed remarkable anti-tumor activity against hematologic malignancies and is now being investigated in a variety of solid tumors. The use of this therapy in the last few years has been successful, achieving a great success in improving the quality of life and prolonging the survival time of patients with a reduction in remission rates. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. <P> Objective: This review summarizes various experimental approaches towards the use of CAR T-cells in hematologic malignancies and solid tumors. <P> Conclusion: Finally, we address the challenges posed by CAR T-cells and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Wadi International University, Homs. Syrian Arab Republic
| | - Amany Assaad
- 2. Department of Analytical and Food Chemistry, Faculty of Pharmacy,Tartous University, Tartous. Syrian Arab Republic
| |
Collapse
|
4
|
Frayberg M, Yung A, Zubiri L, Zlotoff DA, Reynolds KL. What the Cardiologist Needs to Know About Cancer Immunotherapies and Complications. Curr Treat Options Oncol 2021; 22:53. [PMID: 34037918 DOI: 10.1007/s11864-021-00844-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Immunotherapies have transformed the current landscape for cancer treatment and demonstrated unparalleled improvements in survival rates. Now, a third of cancer patients are eligible for treatment with the most widely used class of immunotherapy, immune checkpoint inhibitors (ICIs). As more patients are treated with these novel agents, it is critical for both oncologists and subspecialists to establish a better understanding of the adverse events which can occur. The incidence of myocarditis associated with ICI therapy has been reported to be between 0.27 and 1.14%, 5 times that of myocarditis from other cancer therapies, and, of those patients, 20-50% develop a fulminant form. However, because of unclear risk factors, a broad clinical spectrum, and lack of specific noninvasive studies for diagnosis, the care of patients with ICI-associated cardiotoxicity can be challenging. Here, we have provided a brief overview of the current immunotherapy agents with a focus on the emerging evidence regarding diagnosis and management of cardiac adverse events.
Collapse
Affiliation(s)
- Marina Frayberg
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Anthony Yung
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Leyre Zubiri
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel A Zlotoff
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kerry L Reynolds
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Danquah MK, Guo HB, Tan KX, Bhakta M. Atomistic probing of aptameric binding of CD19 outer membrane domain reveals an "aptamer walking" mechanism. Biotechnol Prog 2020; 36:e2957. [PMID: 31912987 DOI: 10.1002/btpr.2957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/15/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022]
Abstract
We propose an integrated structural approach to search potential aptamer molecules for targeting cancer receptor proteins. We used the outer cellular domain of the B-lymphocyte antigen, CD19, as the target for this study. First, using available protein-aptamer structures deposited in the protein data bank as resources, structural annotation was performed to seek the most probable binding aptamer and its potential initial configuration to the CD19 structure. Using this initial structure, molecular dynamics (MD) simulations were performed for adjustment of the aptamer-binding. During this process, we observed an "aptamer walking" mechanism of the binding of the single-stranded RNA-aptamer to CD19: the aptamer molecule gradually adjusts its configurations and shifts toward favorable binding positions. However, the target molecule CD19 maintained a relatively stable conformation during this process. The interface area between the RNA-aptamer and CD19 increased from less than 8 nm2 to over 12 nm2 during a 2-μs MD simulation. Using a stable binding pose as the starting structure, we manually mutated the RNA-aptamer to a DNA-aptamer and found that the interface area was further increased to over 16 nm2 , indicating a stronger affinity compared to the RNA-aptamer. The RNA- and DNA-aptamers and their stable binding-poses to the CD19 molecule may be used as templates in designing potential aptamer molecules that target the B-cell marker molecule CD19 with enhanced specificity and stability.
Collapse
Affiliation(s)
- Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee
| | - Hao-Bo Guo
- Department of Computer Science and Engineering, University of Tennessee, Chattanooga, Tennessee.,SimCenter, University of Tennessee, Chattanooga, Tennessee
| | - Kei X Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore
| | - Manoo Bhakta
- Pediatric Hematology and Oncology, Children's Hospital at Erlanger, Chattanooga, Tennessee
| |
Collapse
|
6
|
Cellular Immunotherapy in the Treatment of Hematopoietic Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:217-229. [PMID: 31338822 DOI: 10.1007/978-981-13-7342-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy has been shown to be an efficacious therapeutic approach in the treatment of cancers including hematopoietic malignancies. Induction of T cell cytotoxicity against tumors by adoptive cell therapies (ACT), cancer vaccines, gene therapies, and monoclonal antibody therapies has been intensively studied. In particular, immune checkpoint blockade and chimeric antigen receptor T (CAR-T) cell therapies are the recent clinical successes in cancer immunotherapy. This article introduces the main concepts and addresses the most relevant clinical modalities of cellular immunotherapies for hematological malignancies: antigen non-specific T cell therapy, genetically modified T cell receptor (TCR) T cell therapy, chimeric antigen receptor (CAR) T cell therapy, and CAR-T cell clinical trials in leukemia, lymphoma, and multiple myeloma. Clinical trials have shown encouraging results, but future studies may need to incorporate novel CAR constructs or targets with enhanced safety and efficacy to ensure long-term benefits.
Collapse
|
7
|
Zhang W, Jordan KR, Schulte B, Purev E. Characterization of clinical grade CD19 chimeric antigen receptor T cells produced using automated CliniMACS Prodigy system. Drug Des Devel Ther 2018; 12:3343-3356. [PMID: 30323566 PMCID: PMC6181073 DOI: 10.2147/dddt.s175113] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating acute lymphoblastic leukemia and non-Hodgkin's lymphoma with high rate complete responses. However, the broad clinical application of CAR T-cell therapy has been challenging, largely due to the lack of widespread ability to produce and high cost of CAR T-cell products using traditional methods of production. Automated cell processing in a closed system has emerged as a potential method to increase the feasibility of producing CAR T cells locally at academic centers due to its minimal reliance on experienced labor, thereby making the process less expensive and more consistent than traditional methods of production. METHOD In this study, we describe the successful production of clinical grade CD19 CAR T cells using the Miltenyi CliniMACS Prodigy Automated Cell Processor at University of Colorado Anschutz Medical Campus in a rapid manner with a high frequent CD19 CAR expression. RESULTS The final CAR T-cell product is highly active, low in immune suppression, and absent in exhaustion. Full panel cytokine assays also showed elevated production of Th1 cytokines upon IL-2 stimulation when specifically killing CD19+ target cells. CONCLUSION These results demonstrate the feasibility of producing CAR T cells locally in a university hospital setting using automated cell processor for future clinical applications.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,
| | - Kimberly R Jordan
- Division of Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Schulte
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Enkhtsetseg Purev
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,
| |
Collapse
|
8
|
John S, Chen H, Deng M, Gui X, Wu G, Chen W, Li Z, Zhang N, An Z, Zhang CC. A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML. Mol Ther 2018; 26:2487-2495. [PMID: 30131301 DOI: 10.1016/j.ymthe.2018.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
To effectively improve treatment for acute myeloid leukemia (AML), new molecular targets and therapeutic approaches need to be identified. Chimeric antigen receptor (CAR)-modified T cells targeting tumor-associated antigens have shown promise in the treatment of some malignancies. However, CAR-T cell development for AML has been limited by lack of an antigen with high specificity for AML cells that is not present on normal hematopoietic stem cells, and thus will not result in myelotoxicity. Here we demonstrate that leukocyte immunoglobulin-like receptor-B4 (LILRB4) is a tumor-associated antigen highly expressed on monocytic AML cells. We generated a novel anti-LILRB4 CAR-T cell that displays high antigen affinity and specificity. These CAR-T cells display efficient effector function in vitro and in vivo against LILRB4+ AML cells. Furthermore, we demonstrate anti-LILRB4 CAR-T cells are not toxic to normal CD34+ umbilical cord blood cells in colony-forming unit assays, nor in a humanized hematopoietic-reconstituted mouse model. Our data demonstrate that anti-LILRB4 CAR-T cells specifically target monocytic AML cells with no toxicity to normal hematopoietic progenitors. This work thus offers a new treatment strategy to improve outcomes for monocytic AML, with the potential for elimination of leukemic disease while minimizing the risk for on-target off-tumor toxicity.
Collapse
Affiliation(s)
- Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zunling Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA.
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Zhao Z, Chen Y, Francisco NM, Zhang Y, Wu M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B 2018; 8:539-551. [PMID: 30109179 PMCID: PMC6090008 DOI: 10.1016/j.apsb.2018.03.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/26/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy is a novel adoptive immunotherapy where T lymphocytes are engineered with synthetic receptors known as chimeric antigen receptors (CAR). The CAR-T cell is an effector T cell that recognizes and eliminates specific cancer cells, independent of major histocompatibility complex molecules. The whole procedure of CAR-T cell production is not well understood. The CAR-T cell has been used predominantly in the treatment of hematological malignancies, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, lymphoma, and multiple myeloma. Solid tumors including melanoma, breast cancer and sarcoma offer great promise in CAR-T cell research and development. CD19 CAR-T cell is most commonly used, and other targets, including CD20, CD30, CD38 and CD138 are being studied. Although this novel therapy is promising, there are several disadvantages. In this review we discuss the applications of CAR-T cells in different hematological malignancies, and pave a way for future improvement on the effectiveness and persistence of these adoptive cell therapies.
Collapse
Affiliation(s)
- Zijun Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
10
|
Kuhlen M, Willasch AM, Dalle JH, Wachowiak J, Yaniv I, Ifversen M, Sedlacek P, Guengoer T, Lang P, Bader P, Sufliarska S, Balduzzi A, Strahm B, von Luettichau I, Hoell JI, Borkhardt A, Klingebiel T, Schrappe M, von Stackelberg A, Glogova E, Poetschger U, Meisel R, Peters C. Outcome of relapse after allogeneic HSCT in children with ALL enrolled in the ALL-SCT 2003/2007 trial. Br J Haematol 2017; 180:82-89. [DOI: 10.1111/bjh.14965] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/14/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Michaela Kuhlen
- Department of Paediatric Oncology, Haematology and Clinical Immunology; Medical Faculty; University Children's Hospital; Heinrich Heine University; Duesseldorf Germany
| | - Andre M. Willasch
- Department for Children and Adolescents; Division for Stem Cell Transplantation and Immunology; University Hospital Frankfurt; Goethe University; Frankfurt Germany
| | - Jean-Hugues Dalle
- Paediatric Haematology Department; Robert Debré Hospital and Paris Diderot University; Paris France
| | | | - Isaac Yaniv
- Ezer Mizion Bone Marrow Donor Registry; Petach Tikva Israel
- Bone Marrow Transplant Unit; Schneider Children's Medical Centre of Israel; Petach Tikva Israel
| | - Marianne Ifversen
- Department for Children and Adolescents; Rigahospitalet; Copenhagen University Hospital; Copenhagen Denmark
| | - Petr Sedlacek
- Department of Paediatric Haematology and Oncology; Teaching Hospital Motol; Prague Czech Republic
| | - Tayfun Guengoer
- Division of Stem Cell Transplantation; University Children's Hospital Zürich; Zürich Switzerland
| | - Peter Lang
- University Hospital Tuebingen; Tuebingen Germany
| | - Peter Bader
- Department for Children and Adolescents; Division for Stem Cell Transplantation and Immunology; University Hospital Frankfurt; Goethe University; Frankfurt Germany
| | - Sabina Sufliarska
- Department of Paediatric Haematology and Oncology; Haematopoietic Stem Cell Transplantation Unit; Comenius University Children's Hospital Bratislava; Bratislava Slovakia
| | - Adriana Balduzzi
- Clinica Pediatrica Università degli Studi di Milano Bicocca; Ospedale San Gerardo; Monza Italy
| | - Brigitte Strahm
- Department of Paediatrics and Adolescent Medicine; Division of Paediatric Haematology and Oncology; Medical Centre; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Irene von Luettichau
- Department of Paediatrics; Klinikum rechts der Isar; Technische Universität München; Munich Germany
- Comprehensive Cancer Centre Munich (CCCM); Munich Germany
| | - Jessica I. Hoell
- Department of Paediatric Oncology, Haematology and Clinical Immunology; Medical Faculty; University Children's Hospital; Heinrich Heine University; Duesseldorf Germany
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology; Medical Faculty; University Children's Hospital; Heinrich Heine University; Duesseldorf Germany
| | - Thomas Klingebiel
- Department for Children and Adolescents; Division for Stem Cell Transplantation and Immunology; University Hospital Frankfurt; Goethe University; Frankfurt Germany
| | - Martin Schrappe
- Department of Paediatrics; University Medical Centre Schleswig-Holstein; Kiel Germany
| | - Arend von Stackelberg
- Department of Paediatric Oncology/Haematology; Charité Universitätsmedizin Berlin; Charité Campus Virchow; Berlin Germany
| | | | | | - Roland Meisel
- Department of Paediatric Oncology, Haematology and Clinical Immunology; Medical Faculty; University Children's Hospital; Heinrich Heine University; Duesseldorf Germany
| | | |
Collapse
|
11
|
Bayer V, Amaya B, Baniewicz D, Callahan C, Marsh L, McCoy AS. Cancer Immunotherapy: An Evidence-Based Overview and Implications for Practice. Clin J Oncol Nurs 2017; 21:13-21. [PMID: 28315552 DOI: 10.1188/17.cjon.s2.13-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Significant research progress has been made in immunotherapies since the mid-1990s, and this rapid evolution necessitates evidence-based education on immunotherapies, their pathophysiology, and their toxicities to provide safe, effective care.
. OBJECTIVES The aim of this article is to provide an evidence-based overview, with implications for practice, of checkpoint inhibitors, monoclonal antibodies, oncolytic viral therapies, and chimeric antigen receptor T-cell therapies.
. METHODS Each immunotherapy category is presented according to the pathophysiology of its immune modulation, the classes of agents within each category, evidence-based toxicities associated with each class, and implications for practice.
. FINDINGS Immunotherapies vary in their pathophysiology and offer potential to be highly effective for the management of a wide array of cancer types. Understanding the unique pathophysiology and toxicities is necessary to assess, manage, and provide safe, effective patient-focused care.
Collapse
Affiliation(s)
| | | | | | | | - Lisa Marsh
- University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
12
|
Callahan C, Baniewicz D, Ely B. CAR T-Cell Therapy: Pediatric Patients With Relapsed and Refractory Acute Lymphoblastic Leukemia. Clin J Oncol Nurs 2017; 21:22-28. [DOI: 10.1188/17.cjon.s2.22-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Huguet F, Tavitian S. Emerging biological therapies to treat acute lymphoblastic leukemia. Expert Opin Emerg Drugs 2016; 22:107-121. [DOI: 10.1080/14728214.2016.1257606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol Dis 2016; 62:49-63. [DOI: 10.1016/j.bcmd.2016.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/05/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
|
15
|
Tatar AS, Nagy-Simon T, Tomuleasa C, Boca S, Astilean S. Nanomedicine approaches in acute lymphoblastic leukemia. J Control Release 2016; 238:123-138. [PMID: 27460684 DOI: 10.1016/j.jconrel.2016.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs.
Collapse
Affiliation(s)
- Andra-Sorina Tatar
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Timea Nagy-Simon
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania.
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Oncology Institute, Bul. 21 Decembrie 1918 Nr 73, 400124 Cluj-Napoca, Romania; Research Center for Functional Genomics and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Marinescu Street 23, 400337 Cluj-Napoca, Romania.
| | - Sanda Boca
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| |
Collapse
|