1
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03463-2. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Verschuur AS, Tax CMW, Boomsma MF, Carlson HL, van Wezel-Meijler G, King R, Leemans A, Leijser LM. Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data. FRONTIERS IN RADIOLOGY 2024; 4:1416672. [PMID: 39007078 PMCID: PMC11239519 DOI: 10.3389/fradi.2024.1416672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Purpose The study aimed to (1) assess the feasibility constrained spherical deconvolution (CSD) tractography to reconstruct crossing fiber bundles with unsedated neonatal diffusion MRI (dMRI), and (2) demonstrate the impact of spatial and angular resolution and processing settings on tractography and derived quantitative measures. Methods For the purpose of this study, the term-equivalent dMRIs (single-shell b800, and b2000, both 5 b0, and 45 gradient directions) of two moderate-late preterm infants (with and without motion artifacts) from a local cohort [Brain Imaging in Moderate-late Preterm infants (BIMP) study; Calgary, Canada] and one infant from the developing human connectome project with high-quality dMRI (using the b2600 shell, comprising 20 b0 and 128 gradient directions, from the multi-shell dataset) were selected. Diffusion tensor imaging (DTI) and CSD tractography were compared on b800 and b2000 dMRI. Varying image resolution modifications, (pre-)processing and tractography settings were tested to assess their impact on tractography. Each experiment involved visualizing local modeling and tractography for the corpus callosum and corticospinal tracts, and assessment of morphological and diffusion measures. Results Contrary to DTI, CSD enabled reconstruction of crossing fibers. Tractography was susceptible to image resolution, (pre-) processing and tractography settings. In addition to visual variations, settings were found to affect streamline count, length, and diffusion measures (fractional anisotropy and mean diffusivity). Diffusion measures exhibited variations of up to 23%. Conclusion Reconstruction of crossing fiber bundles using CSD tractography with unsedated neonatal dMRI data is feasible. Tractography settings affected streamline reconstruction, warranting careful documentation of methods for reproducibility and comparison of cohorts.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital, Zwolle, Netherlands
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital, Zwolle, Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Radwan AM, Emsell L, Vansteelandt K, Cleeren E, Peeters R, De Vleeschouwer S, Theys T, Dupont P, Sunaert S. Comparative validation of automated presurgical tractography based on constrained spherical deconvolution and diffusion tensor imaging with direct electrical stimulation. Hum Brain Mapp 2024; 45:e26662. [PMID: 38646998 PMCID: PMC11033921 DOI: 10.1002/hbm.26662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES Accurate presurgical brain mapping enables preoperative risk assessment and intraoperative guidance. This cross-sectional study investigated whether constrained spherical deconvolution (CSD) methods were more accurate than diffusion tensor imaging (DTI)-based methods for presurgical white matter mapping using intraoperative direct electrical stimulation (DES) as the ground truth. METHODS Five different tractography methods were compared (three DTI-based and two CSD-based) in 22 preoperative neurosurgical patients undergoing surgery with DES mapping. The corticospinal tract (CST, N = 20) and arcuate fasciculus (AF, N = 7) bundles were reconstructed, then minimum distances between tractograms and DES coordinates were compared between tractography methods. Receiver-operating characteristic (ROC) curves were used for both bundles. For the CST, binary agreement, linear modeling, and posthoc testing were used to compare tractography methods while correcting for relative lesion and bundle volumes. RESULTS Distance measures between 154 positive (functional response, pDES) and negative (no response, nDES) coordinates, and 134 tractograms resulted in 860 data points. Higher agreement was found between pDES coordinates and CSD-based compared to DTI-based tractograms. ROC curves showed overall higher sensitivity at shorter distance cutoffs for CSD (8.5 mm) compared to DTI (14.5 mm). CSD-based CST tractograms showed significantly higher agreement with pDES, which was confirmed by linear modeling and posthoc tests (PFWE < .05). CONCLUSIONS CSD-based CST tractograms were more accurate than DTI-based ones when validated using DES-based assessment of motor and sensory function. This demonstrates the potential benefits of structural mapping using CSD in clinical practice.
Collapse
Affiliation(s)
- Ahmed Mohamed Radwan
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Department of Neurosciences, NeuropsychiatryLeuvenBelgium
- KU Leuven, Department of Geriatric PsychiatryUniversity Psychiatric Center (UPC)LeuvenBelgium
| | - Kristof Vansteelandt
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Department of Neurosciences, NeuropsychiatryLeuvenBelgium
- KU Leuven, Department of Geriatric PsychiatryUniversity Psychiatric Center (UPC)LeuvenBelgium
| | - Evy Cleeren
- UZ Leuven, Department of NeurologyLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
| | | | - Steven De Vleeschouwer
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
- KU Leuven, Department of NeurosciencesResearch Group Experimental Neurosurgery and NeuroanatomyLeuvenBelgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
- KU Leuven, Department of NeurosciencesResearch Group Experimental Neurosurgery and NeuroanatomyLeuvenBelgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Laboratory for Cognitive NeurologyDepartment of NeurosciencesLeuvenBelgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of RadiologyLeuvenBelgium
| |
Collapse
|
4
|
Zheng Q, Guo K, Meng Y, Nan J, Xu L. White Matter Fiber Tracking Method with Adaptive Correction of Tracking Direction. Int J Biomed Imaging 2024; 2024:4102461. [PMID: 38348198 PMCID: PMC10861278 DOI: 10.1155/2024/4102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Background The deterministic fiber tracking method has the advantage of high computational efficiency and good repeatability, making it suitable for the noninvasive estimation of brain structural connectivity in clinical fields. To address the issue of the current classical deterministic method tending to deviate in the tracking direction in the region of crossing fiber region, in this paper, we propose an adaptive correction-based deterministic white matter fiber tracking method, named FTACTD. Methods The proposed FTACTD method can accurately track white matter fibers by adaptively adjusting the deflection direction strategy based on the tensor matrix and the input fiber direction of adjacent voxels. The degree of correction direction changes adaptively according to the shape of the diffusion tensor, mimicking the actual tracking deflection angle and direction. Furthermore, both forward and reverse tracking techniques are employed to track the entire fiber. The effectiveness of the proposed method is validated and quantified using both simulated and real brain datasets. Various indicators such as invalid bundles (IB), valid bundles (VB), invalid connections (IC), no connections (NC), and valid connections (VC) are utilized to assess the performance of the proposed method on simulated data and real diffusion-weighted imaging (DWI) data. Results The experimental results of the simulated data show that the FTACTD method tracks outperform existing methods, achieving the highest number of VB with a total of 13 bundles. Additionally, it identifies the least number of incorrect fiber bundles, with only 32 bundles identified as wrong. Compared to the FACT method, the FTACTD method reduces the number of NC by 36.38%. In terms of VC, the FTACTD method surpasses even the best performing SD_Stream method among deterministic methods by 1.64%. Extensive in vivo experiments demonstrate the superiority of the proposed method in terms of tracking more accurate and complete fiber paths, resulting in improved continuity. Conclusion The FTACTD method proposed in this study indicates superior tracking results and provides a methodological basis for the investigating, diagnosis, and treatment of brain disorders associated with white matter fiber deficits and abnormalities.
Collapse
Affiliation(s)
- Qian Zheng
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Kefu Guo
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yinghui Meng
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiaofen Nan
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lin Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Kokkinos V, Chatzisotiriou A, Seimenis I. Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging-Tractography in Resective Brain Surgery: Lesion Coverage Strategies and Patient Outcomes. Brain Sci 2023; 13:1574. [PMID: 38002534 PMCID: PMC10670090 DOI: 10.3390/brainsci13111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Diffusion tensor imaging (DTI)-tractography and functional magnetic resonance imaging (fMRI) have dynamically entered the presurgical evaluation context of brain surgery during the past decades, providing novel perspectives in surgical planning and lesion access approaches. However, their application in the presurgical setting requires significant time and effort and increased costs, thereby raising questions regarding efficiency and best use. In this work, we set out to evaluate DTI-tractography and combined fMRI/DTI-tractography during intra-operative neuronavigation in resective brain surgery using lesion-related preoperative neurological deficit (PND) outcomes as metrics. We retrospectively reviewed medical records of 252 consecutive patients admitted for brain surgery. Standard anatomical neuroimaging protocols were performed in 127 patients, 69 patients had additional DTI-tractography, and 56 had combined DTI-tractography/fMRI. fMRI procedures involved language, motor, somatic sensory, sensorimotor and visual mapping. DTI-tractography involved fiber tracking of the motor, sensory, language and visual pathways. At 1 month postoperatively, DTI-tractography patients were more likely to present either improvement or preservation of PNDs (p = 0.004 and p = 0.007, respectively). At 6 months, combined DTI-tractography/fMRI patients were more likely to experience complete PND resolution (p < 0.001). Low-grade lesion patients (N = 102) with combined DTI-tractography/fMRI were more likely to experience complete resolution of PNDs at 1 and 6 months (p = 0.001 and p < 0.001, respectively). High-grade lesion patients (N = 140) with combined DTI-tractography/fMRI were more likely to have PNDs resolved at 6 months (p = 0.005). Patients with motor symptoms (N = 80) were more likely to experience complete remission of PNDs at 6 months with DTI-tractography or combined DTI-tractography/fMRI (p = 0.008 and p = 0.004, respectively), without significant difference between the two imaging protocols (p = 1). Patients with sensory symptoms (N = 44) were more likely to experience complete PND remission at 6 months with combined DTI-tractography/fMRI (p = 0.004). The intraoperative neuroimaging modality did not have a significant effect in patients with preoperative seizures (N = 47). Lack of PND worsening was observed at 6 month follow-up in patients with combined DTI-tractography/fMRI. Our results strongly support the combined use of DTI-tractography and fMRI in patients undergoing resective brain surgery for improving their postoperative clinical profile.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | | | - Ioannis Seimenis
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, 387479 Alexandroupolis, Greece;
| |
Collapse
|
6
|
Segregated circuits for phonemic and semantic fluency: A novel patient-tailored disconnection study. Neuroimage Clin 2022; 36:103149. [PMID: 35970113 PMCID: PMC9400120 DOI: 10.1016/j.nicl.2022.103149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Phonemic and semantic fluency are neuropsychological tests widely used to assess patients' language and executive abilities and are highly sensitive tests in detecting language deficits in glioma patients. However, the networks that are involved in these tasks could be distinct and suggesting either a frontal (phonemic) or temporal (semantic) involvement. 42 right-handed patients (26 male, mean age = 52.5 years, SD=±13.3) were included in this retrospective study. Patients underwent awake (54.8%) or asleep (45.2%) surgery for low-grade (16.7%) or high-grade-glioma (83.3%) in the frontal (64.3%) or temporal lobe (35.7%) of the left (50%) or right (50%) hemisphere. Pre-operative tractography was reconstructed for each patient, with segmentation of the inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), third branch of the superior longitudinal fasciculus (SLF-III), frontal aslant tract (FAT), and cortico-spinal tract (CST). Post-operative percentage of damage and disconnection of each tract, based on the patients' surgical cavities, were correlated with verbal fluencies scores at one week and one month after surgery. Analyses of differences between fluency scores at these timepoints (before surgery, one week and one month after surgery) were performed; lesion-symptom mapping was used to identify the correlation between cortical areas and post-operative scores. Immediately after surgery, a transient impairment of verbal fluency was observed, that improved within a month. Left hemisphere lesions were related to a worse verbal fluency performance, being a damage to the left superior frontal or temporal gyri associated with phonemic or semantic fluency deficit, respectively. At a subcortical level, disconnection analyses revealed that fluency scores were associated to the involvement of the left FAT and the left frontal part of the IFOF for phonemic fluency, and the association was still present one month after surgery. For semantic fluency, the correlation between post-surgery performance emerged for the left AF, UF, ILF and the temporal part of the IFOF, but disappeared at the follow-up. This approach based on the patients' pre-operative tractography, allowed to trace for the first time a dissociation between white matter pathways integrity and verbal fluency after surgery for glioma resection. Our results confirm the involvement of a frontal anterior pathway for phonemic fluency and a ventral temporal pathway for semantic fluency. Finally, our longitudinal results suggest that the frontal executive pathway requires a longer interval to recover compared to the semantic one.
Collapse
|
7
|
Radwan AM, Sunaert S, Schilling K, Descoteaux M, Landman BA, Vandenbulcke M, Theys T, Dupont P, Emsell L. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage 2022; 254:119029. [PMID: 35231632 DOI: 10.1016/j.neuroimage.2022.119029] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Virtual dissection of white matter (WM) using diffusion MRI tractography is confounded by its poor reproducibility. Despite the increased adoption of advanced reconstruction models, early region-of-interest driven protocols based on diffusion tensor imaging (DTI) remain the dominant reference for virtual dissection protocols. Here we bridge this gap by providing a comprehensive description of typical WM anatomy reconstructed using a reproducible automated subject-specific parcellation-based approach based on probabilistic constrained-spherical deconvolution (CSD) tractography. We complement this with a WM template in MNI space comprising 68 bundles, including all associated anatomical tract selection labels and associated automated workflows. Additionally, we demonstrate bundle inter- and intra-subject variability using 40 (20 test-retest) datasets from the human connectome project (HCP) and 5 sessions with varying b-values and number of b-shells from the single-subject Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation (MASSIVE) dataset. The most reliably reconstructed bundles were the whole pyramidal tracts, primary corticospinal tracts, whole superior longitudinal fasciculi, frontal, parietal and occipital segments of the corpus callosum and middle cerebellar peduncles. More variability was found in less dense bundles, e.g., the fornix, dentato-rubro-thalamic tract (DRTT), and premotor pyramidal tract. Using the DRTT as an example, we show that this variability can be reduced by using a higher number of seeding attempts. Overall inter-session similarity was high for HCP test-retest data (median weighted-dice = 0.963, stdev = 0.201 and IQR = 0.099). Compared to the HCP-template bundles there was a high level of agreement for the HCP test-retest data (median weighted-dice = 0.747, stdev = 0.220 and IQR = 0.277) and for the MASSIVE data (median weighted-dice = 0.767, stdev = 0.255 and IQR = 0.338). In summary, this WM atlas provides an overview of the capabilities and limitations of automated subject-specific probabilistic CSD tractography for mapping white matter fasciculi in healthy adults. It will be most useful in applications requiring a reproducible parcellation-based dissection protocol, and as an educational resource for applied neuroimaging and clinical professionals.
Collapse
Affiliation(s)
- Ahmed M Radwan
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Kurt Schilling
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN, USA
| | | | - Bennett A Landman
- Vanderbilt University, Department of Electrical Engineering and Computer Engineering, Nashville, TN, USA
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium; UZ Leuven, Department of Neurosurgery, Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| |
Collapse
|
8
|
Doyen S, Nicholas P, Poologaindran A, Crawford L, Young IM, Romero-Garcia R, Sughrue ME. Connectivity-based parcellation of normal and anatomically distorted human cerebral cortex. Hum Brain Mapp 2021; 43:1358-1369. [PMID: 34826179 PMCID: PMC8837585 DOI: 10.1002/hbm.25728] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022] Open
Abstract
For over a century, neuroscientists have been working toward parcellating the human cortex into distinct neurobiological regions. Modern technologies offer many parcellation methods for healthy cortices acquired through magnetic resonance imaging. However, these methods are suboptimal for personalized neurosurgical application given that pathology and resection distort the cerebrum. We sought to overcome this problem by developing a novel connectivity‐based parcellation approach that can be applied at the single‐subject level. Utilizing normative diffusion data, we first developed a machine‐learning (ML) classifier to learn the typical structural connectivity patterns of healthy subjects. Specifically, the Glasser HCP atlas was utilized as a prior to calculate the streamline connectivity between each voxel and each parcel of the atlas. Using the resultant feature vector, we determined the parcel identity of each voxel in neurosurgical patients (n = 40) and thereby iteratively adjusted the prior. This approach enabled us to create patient‐specific maps independent of brain shape and pathological distortion. The supervised ML classifier re‐parcellated an average of 2.65% of cortical voxels across a healthy dataset (n = 178) and an average of 5.5% in neurosurgical patients. Our patient dataset consisted of subjects with supratentorial infiltrating gliomas operated on by the senior author who then assessed the validity and practical utility of the re‐parcellated diffusion data. We demonstrate a rapid and effective ML parcellation approach to parcellation of the human cortex during anatomical distortion. Our approach overcomes limitations of indiscriminately applying atlas‐based registration from healthy subjects by employing a voxel‐wise connectivity approach based on individual data.
Collapse
Affiliation(s)
- Stephane Doyen
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Peter Nicholas
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Anujan Poologaindran
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.,The Alan Turing Institute, British Library, London, UK
| | - Lewis Crawford
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | | | - Rafeael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Perri K, De Mori L, Tortora D, Calevo MG, Allegri AEM, Napoli F, Patti G, Fava D, Crocco M, Schiavone M, Casalini E, Severino M, Rossi A, Di Iorgi N, Gastaldi R, Maghnie M. Cognitive and White Matter Microstructure Development in Congenital Hypothyroidism and Familial Thyroid Disorders. J Clin Endocrinol Metab 2021; 106:e3990-e4006. [PMID: 34105732 DOI: 10.1210/clinem/dgab412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 12/25/2022]
Abstract
CONTEXT Children with congenital hypothyroidism (CH) are at risk for suboptimal neurodevelopment. OBJECTIVES To evaluate neurocognitive function and white matter microstructure in children with permanent or transient CH and to correlate these findings with disease severity. DESIGN, PARTICIPANTS AND METHODS A retrospective and prospective observational study was conducted in 39 children with permanent or transient CH, and in 39 healthy children. Cognitive function was assessed by Wechsler Intelligence Scale, Fourth Edition, and by other tests; the white matter microstructure was investigated by 3 Tesla magnetic resonance imaging. RESULTS Children with permanent CH have lower cognitive scores at a median age of 9.5 years than those with transient CH and controls. An IQ score between 71 and 84 was found in 28.6% of permanent CH and of <70 (P = 0.06) in 10.7%. The Processing Speed Index (PSI; P = 0.004), sustained visual attention (P = 0.02), reading speed (P = 0.0001), written calculations (P = 0.002), and numerical knowledge (P = 0.0001) were significantly lower than controls. Children born to mothers with Hashimoto's thyroiditis have significantly lower IQ values (P = 0.02), Working Memory Index (P = 0.03), and PSI (P = 0.02). Significantly lower IQ and Verbal Comprehension Index values were found in children with a family history of thyroid disorders (P = 0.004 and P = 0.009, respectively). In children with permanent CH, significant correlations between abnormalities in white matter microstructural, clinical, and cognitive measures were documented. CONCLUSIONS These findings indicate that children with CH are at risk of neurocognitive impairment and white matter abnormalities despite timely and adequate treatment. The association between offspring cognitive vulnerability and maternal thyroid disorders requires careful consideration.
Collapse
Affiliation(s)
- Katia Perri
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Letizia De Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-University of Genova, Genova, Italy
| | - Domenico Tortora
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Grazia Calevo
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Anna E M Allegri
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-University of Genova, Genova, Italy
| | - Daniela Fava
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-University of Genova, Genova, Italy
| | - Marco Crocco
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-University of Genova, Genova, Italy
| | - Maurizio Schiavone
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-University of Genova, Genova, Italy
| | - Emilio Casalini
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-University of Genova, Genova, Italy
| | | | - Andrea Rossi
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-University of Genova, Genova, Italy
| | - Roberto Gastaldi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-University of Genova, Genova, Italy
| |
Collapse
|
10
|
Navas-Sánchez FJ, Martín De Blas D, Fernández-Pena A, Alemán-Gómez Y, Lage-Castellanos A, Marcos-Vidal L, Guzmán-De-Villoria JA, Catalina I, Lillo L, Muñoz-Blanco JL, -Ugalde AO, Quintáns B, Sobrido MJ, Carmona S, Grandas F, Desco M. Corticospinal tract and motor cortex degeneration in pure hereditary spastic paraparesis type 4 (SPG4). Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:25-34. [PMID: 34396852 DOI: 10.1080/21678421.2021.1962353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive retrograde degeneration, or "dying-back" phenomenon, of the corticospinal tract's longest axons. Neuroimaging studies mainly focus on white matter changes and, although previous studies reported cortical thinning in complicated HSP forms, cortical changes remain unclear in SPG4 patients. This work aimed to compare changes in white matter microstructure and cortical thickness between 12 SPG4 patients and 22 healthy age-matched controls. We also explore whether white matter alterations are related to cortical thickness and their correlation with clinical symptoms. Methods: we used fixel-based analysis, an advanced diffusion-weighted imaging technique, and probabilistic tractography of the corticospinal tracts. We also analyzed cortical morphometry using whole-brain surface-based and atlas-based methods in sensorimotor areas. Results: SPG4 patients showed bilateral involvement in the corticospinal tracts; this was more intense in the distal portion than in the upper segments and was associated with the degree of clinical impairment. We found a significant correlation between disease severity and fiber density and cross-section of the corticospinal tracts. Furthermore, corticospinal tract changes were significantly correlated with bilateral cortical thinning in the precentral gyrus in SPG4 patients. Conclusions: Our data point to axonal damage of the corticospinal motor neurons in SPG4 patients might be related to cortical thinning in motor regions.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | - Yasser Alemán-Gómez
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Centre d'Imagerie BioMédicale (CIBM), Medical Image Analysis Laboratory (MIAL), Lausanne, Switzerland
| | | | - Luis Marcos-Vidal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan A Guzmán-De-Villoria
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Catalina
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Lillo
- Servicio de Neurología, Hospital Ruber Internacional, Madrid, Spain.,Servicio de Neurología, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - José L Muñoz-Blanco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Ordoñez -Ugalde
- Laboratorio Biomolecular, Cuenca, Ecuador.,Unidad de Genética y Molecular, Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador.,Neurogenetics Group, FPGMX-IDIS, Santiago de Compostela, Spain
| | - Beatriz Quintáns
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-U711), Madrid, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - María-Jesús Sobrido
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Hospital Clínico Universitario de A Coruña, SERGAS, A Coruña, Spain and
| | - Susanna Carmona
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Francisco Grandas
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
11
|
Argyropoulou MI, Xydis VG, Drougia A, Giantsouli AS, Giapros V, Astrakas LG. Structural and functional brain connectivity in moderate-late preterm infants with low-grade intraventricular hemorrhage. Neuroradiology 2021; 64:197-204. [PMID: 34342681 DOI: 10.1007/s00234-021-02770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Brain functional connectivity (FC) changes and microstructural abnormalities are reported in infants born moderate and late preterm (MLPT). We evaluated the effect of low-grade (grades I, II) intraventricular hemorrhage (IVH) in MLPT babies on brain structural connectivity (SC) and FC. METHODS Babies born MLPT between January 2014 and May 2017 underwent brain ultrasound (US) at 72 h and 7 days after birth, and MRI at around term equivalent. The MRI protocol comprised T1- and T2-weighted sequences, diffusion tensor imaging (DTI), and resting-state functional MRI (fMRI). SC and FC were assessed using graph analysis. RESULTS Of 350 MLPT neonates, 15 showed low-grade IVH on US at 72 h, for which brain MRI was available in 10. These 10 infants, with mean gestational age (GA) 34.0 ± 0.8 weeks, comprised the study group, and 10 MLPT infants of mean GA 33.9 ± 1.1 weeks, with no abnormalities on brain US and MRI, were control subjects. All study subjects presented modularity, small world topology, and rich club organization for both SC and FC. The patients with low-grade IVH had lower FC rich club coefficient and lower SC betweenness centrality in the left frontoparietal operculum, and lower SC rich club coefficient in the right superior orbitofrontal cortex than the control subjects. CONCLUSIONS Topological and functional properties of mature brain connectivity are present in MLPT infants. IVH in these infants was associated with structural and functional abnormalities in the left frontoparietal operculum and right orbitofrontal cortex, regions related to language and cognition.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Aikaterini Drougia
- Neonatal Intensive Care Unit, Child Health Department, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Anastasia S Giantsouli
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, Child Health Department, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Loukas G Astrakas
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
12
|
Hoursan H, Farahmand F, Ahmadian MT. Effect of axonal fiber architecture on mechanical heterogeneity of the white matter-a statistical micromechanical model. Comput Methods Biomech Biomed Engin 2021; 25:27-39. [PMID: 33998911 DOI: 10.1080/10255842.2021.1927000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of the hyperelastic model was used to introduce the statistical DTI data into the representative volume element. The FA-informed statistical micromechanical models of three characteristic regions of white matter were developed by deriving the corresponding probabilistic measures of FA variations. Comparison of the model predictions and experimental data indicated a good agreement, suggesting that the model could reasonably capture the inter-regional heterogeneity of white matter. Moreover, the standard deviations of experimental results correlated well with the model predictions, suggesting that the model could capture the intra-regional mechanical heterogeneity for different regions of white matter.
Collapse
Affiliation(s)
- Hesam Hoursan
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Farzam Farahmand
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
13
|
Yuan W, Tamm L, Harpster K, Altaye M, Illapani VSP, Parikh NA. Effects of intraventricular hemorrhage on white matter microstructural changes at term and early developmental outcomes in infants born very preterm. Neuroradiology 2021; 63:1549-1561. [PMID: 33830309 DOI: 10.1007/s00234-021-02708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/30/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Very preterm (VPT) infants are at high risk for motor and behavioral deficits. We investigated microstructural differences using diffusion tensor imaging (DTI) among VPT infants with different grades of intraventricular hemorrhage (IVH), their association with early motor function and temperament ratings, and the potential moderating effect of IVH severity on the above structure-function relations. METHODS Fifty-seven VPT (≤32 weeks gestational age) infants with IVH (Low Grade (Papile grading I/II): 42; High Grade (III/IV): 15) were studied. DTI was acquired between 39 and 44 weeks postmenstrual age and was analyzed using the tract-based spatial statistics approach. Early motor function and temperament were assessed at 3-month corrected age based on the Hammersmith Infant Neurological Examination (HINE) and Infant Behavioral Questionnaire - Revised, Short Version (IBQ-R-S), respectively. RESULTS Significantly lower fractional anisotropy and higher mean, axial, and/or radial diffusivity were found in VPT infants with High Grade IVH compared to Low Grade IVH (p < 0.05). Significant associations were found between DTI metrics and motor function in both IVH groups and between DTI and Fear temperament ratings in the High Grade IVH Group (all p < 0.05). IVH severity had a significant moderating effect on the relation between DTI and motor and Fear ratings (p < 0.05). CONCLUSION DTI is a sensitive neuroimaging biomarker providing a refined understanding of the impact and location of differing severities of IVH on the developing white matter of VPT infants. Early motor and behavioral outcomes are associated with microstructural changes that are influenced by severity of IVH.
Collapse
Affiliation(s)
- Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leanne Tamm
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karen Harpster
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Nehal A Parikh
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Kelley S, Plass J, Bender AR, Polk TA. Age-Related Differences in White Matter: Understanding Tensor-Based Results Using Fixel-Based Analysis. Cereb Cortex 2021; 31:3881-3898. [PMID: 33791797 DOI: 10.1093/cercor/bhab056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with widespread alterations in cerebral white matter (WM). Most prior studies of age differences in WM have used diffusion tensor imaging (DTI), but typical DTI metrics (e.g., fractional anisotropy; FA) can reflect multiple neurobiological features, making interpretation challenging. Here, we used fixel-based analysis (FBA) to investigate age-related WM differences observed using DTI in a sample of 45 older and 25 younger healthy adults. Age-related FA differences were widespread but were strongly associated with differences in multi-fiber complexity (CX), suggesting that they reflected differences in crossing fibers in addition to structural differences in individual fiber segments. FBA also revealed a frontolimbic locus of age-related effects and provided insights into distinct microstructural changes underlying them. Specifically, age differences in fiber density were prominent in fornix, bilateral anterior internal capsule, forceps minor, body of the corpus callosum, and corticospinal tract, while age differences in fiber cross section were largest in cingulum bundle and forceps minor. These results provide novel insights into specific structural differences underlying major WM differences associated with aging.
Collapse
Affiliation(s)
- Shannon Kelley
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Plass
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew R Bender
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Fuelscher I, Hyde C, Anderson V, Silk TJ. White matter tract signatures of fiber density and morphology in ADHD. Cortex 2021; 138:329-340. [PMID: 33784515 DOI: 10.1016/j.cortex.2021.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Previous studies investigating white matter organization in attention deficit hyperactivity disorder (ADHD) have adopted diffusion tensor imaging (DTI). However, attempts to derive pathophysiological models from this research have had limited success, possibly reflecting limitations of the DTI method. This study investigated the organization of white matter tracts in ADHD using fixel based analysis (FBA), a fiber specific analysis framework that is well placed to provide novel insights into the pathophysiology of ADHD. High angular diffusion weighted imaging and clinical data were collected in a large paediatric cohort (N = 144; 76 with ADHD; age range 9-11 years). White matter tractography and FBA were performed across 14 white matter tracts. Permutation based inference testing (using FBA derived measures of fiber density and morphology) assessed differences in white matter tract profiles between children with and without ADHD. Analysis further examined the association between white matter properties and ADHD symptom severity. Relative to controls, children with ADHD showed reduced white matter connectivity along association and projection pathways considered critical to behavioral control and motor function. Increased ADHD symptom severity was associated with reduced white matter organization in fronto-pontine fibers projecting to and from the supplementary motor area. Providing novel insight into the neurobiological foundations of ADHD, this is the first research to uncover fiber specific white matter alterations across a comprehensive set of white matter tracts in ADHD using FBA. Findings inform pathophysiological models of ADHD and hold great promise for the consistent identification and systematic replication of brain differences in this disorder.
Collapse
Affiliation(s)
- Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Vicki Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Australia; The Royal Children's Hospital, Parkville, Australia
| | - Timothy J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
16
|
Craig BT, Hilderley A, Kinney-Lang E, Long X, Carlson HL, Kirton A. Developmental neuroplasticity of the white matter connectome in children with perinatal stroke. Neurology 2020; 95:e2476-e2486. [PMID: 32887781 PMCID: PMC7682831 DOI: 10.1212/wnl.0000000000010669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To employ diffusion imaging connectome methods to explore network development in the contralesional hemisphere of children with perinatal stroke and its relationship to clinical function. We hypothesized alterations in global efficiency of the intact hemisphere would correlate with clinical disability. METHODS Children with unilateral perinatal arterial (n = 26) or venous (n = 27) stroke and typically developing controls (n = 32) underwent 3T diffusion and T1 anatomical MRI and completed established motor assessments. A validated atlas coregistered to whole-brain tractography for each individual was used to estimate connectivity between 47 regions. Graph theory metrics (assortativity, hierarchical coefficient of regression, global and local efficiency, and small worldness) were calculated for the left hemisphere of controls and the intact contralesioned hemisphere of both stroke groups. Validated clinical motor assessments were then correlated with connectivity outcomes. RESULTS Global efficiency was higher in arterial strokes compared to venous strokes (p < 0.001) and controls (p < 0.001) and was inversely associated with all motor assessments (all p < 0.012). Additional graph theory metrics including assortativity, hierarchical coefficient of regression, and local efficiency also demonstrated consistent differences in the intact hemisphere associated with clinical function. CONCLUSIONS The structural connectome of the contralesional hemisphere is altered after perinatal stroke and correlates with clinical function. Connectomics represents a powerful tool to understand whole brain developmental plasticity in children with disease-specific cerebral palsy.
Collapse
Affiliation(s)
- Brandon T Craig
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Alicia Hilderley
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Eli Kinney-Lang
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Xiangyu Long
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Helen L Carlson
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Adam Kirton
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
17
|
White matter and cerebellar involvement in alternating hemiplegia of childhood. J Neurol 2020; 267:1300-1311. [PMID: 31950366 DOI: 10.1007/s00415-020-09698-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/01/2020] [Accepted: 01/05/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine whether brain volumetric and white matter microstructural changes are present and correlate with neurological impairment in subjects with alternating hemiplegia of childhood (AHC). METHODS In this prospective single-center study, 12 AHC subjects (mean age 22.9 years) and 24 controls were studied with 3DT1-weighted MR imaging and high angular resolution diffusion imaging at 3T. Data obtained with voxel-based morphometry and tract-based spatial statistics were correlated with motor impairment using the International Cooperative Ataxia Rating Scale (ICARS) and Movement and Disability sub-scales of Burke-Fahn-Marsden Dystonia Rating Scale (BFMMS and BFMDS). RESULTS Compared to healthy controls, AHC subjects showed lower total brain volume (P < 0.001) and white matter volume (P = 0.002), with reduced clusters of white matter in frontal and parietal regions (P < 0.001). No significant regional differences were found in cortical or subcortical grey matter volumes. Lower cerebellar subvolumes correlated with worse ataxic symptoms and global motor impairment in AHC group (P < 0.001). Increased mean and radial diffusivity values were found in the corpus callosum, corticospinal tracts, superior and inferior longitudinal fasciculi, subcortical frontotemporal white matter, internal and external capsules, and optic radiations (P < 0.001). These diffusion scalar changes correlated with higher ICARS and BFMDS scores (P < 0.001). INTERPRETATION AHC subjects showed prevalent white matter involvement, with reduced volume in several cerebral and cerebellar regions associated with widespread microstructural changes reflecting secondary myelin injury rather than axonal loss. Conversely, no specific pattern of grey matter atrophy emerged. Lower cerebellar volumes, correlating with severity of neurological manifestations, seems related to disrupted developmental rather than neurodegenerative processes.
Collapse
|
18
|
Revealing the Hippocampal Connectome through Super-Resolution 1150-Direction Diffusion MRI. Sci Rep 2019; 9:2418. [PMID: 30787303 PMCID: PMC6382767 DOI: 10.1038/s41598-018-37905-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022] Open
Abstract
The hippocampus is a key component of emotional and memory circuits and is broadly connected throughout the brain. We tracked the whole-brain connections of white matter fibres from the hippocampus using ultra-high angular resolution diffusion MRI in both a single 1150-direction dataset and a large normal cohort (n = 94; 391-directions). Using a connectomic approach, we identified six dominant pathways in terms of strength, length and anatomy, and characterised them by their age and gender variation. The strongest individual connection was to the ipsilateral thalamus. There was a strong age dependence of hippocampal connectivity to medial occipital regions. Overall, our results concur with preclinical and ex-vivo data, confirming that meaningful in vivo characterisation of hippocampal connections is possible in an individual. Our findings extend the collective knowledge of hippocampal anatomy, highlighting the importance of the spinal-limbic pathway and the striking lack of hippocampal connectivity with motor and sensory cortices.
Collapse
|
19
|
Shah A, Prasad S, Rastogi B, Dash S, Saini J, Pal PK, Ingalhalikar M. Altered structural connectivity of the motor subnetwork in multiple system atrophy with cerebellar features. Eur Radiol 2018; 29:2783-2791. [PMID: 30552481 DOI: 10.1007/s00330-018-5874-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To investigate the structural connectivity of the motor subnetwork in multiple system atrophy with cerebellar features (MSA-C), a distinct subtype of MSA, characterized by predominant cerebellar symptoms. METHODS Twenty-three patients with MSA-C and 25 age- and gender-matched healthy controls were recruited for the study. Disease severity was quantified using the Unified Multiple System Atrophy Rating Scale (UMSARS). Diffusion MRI images were acquired and used to compute the structural connectomes (SCs) using probabilistic fiber tracking. The motor network with 12 brain regions and 26 cerebellar regions was extracted and was compared between the groups using analysis of variance at a global (network-wide), nodal (at each node), and edge (at each connection) levels, and was corrected for multiple comparisons. In addition, the acquired connectivity measures were correlated with duration of illness, total Unified MSA Rating Scale (UMSARS), and the motor component score. RESULTS Significantly lower global network metrics-global density, transitivity, clustering coefficient, and characteristic path length-were observed in MSA-C (corrected p < 0.05). Reduced nodal strength was observed in the bilateral ventral diencephalon, the left thalamus, and several cerebellar regions. Network-based statistics revealed significant abnormal edge-wise connectivity in 40 connections (corrected p < 0.01), with majority of deficits observed in the cerebellum. Finally, significant negative correlations were observed between UMSARS scores and thalamic and cerebellar connectivity (p < 0.05) as well as between duration of illness and cerebellar connectivity. CONCLUSIONS Abnormal connectivity of the basal ganglia and cerebellar network may be causally implicated for the motor features observed in MSA-C. KEY POINTS • Structural connectivity of the motor subnetwork was explored in patients with multiple system atrophy with cerebellar features (MSA-C) using probabilistic tractography. • The motor subnetwork in MSA-C has significant alterations in both basal ganglia and cerebellar connectivity, with a higher extent of abnormality in the cerebellum. • These findings may be causally implicated for the motor features of cerebellar dysfunction and parkinsonism observed in MSA-C.
Collapse
Affiliation(s)
- Apurva Shah
- Symbiosis Center for Medical Image Analysis and Symbiosis Institute of Technology, Symbiosis International University, Lavale, Mulshi, Pune, Maharashtra, 412115, India
| | - Shweta Prasad
- Department of Clinical Neurosciences and Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Bharti Rastogi
- Symbiosis Center for Medical Image Analysis and Symbiosis Institute of Technology, Symbiosis International University, Lavale, Mulshi, Pune, Maharashtra, 412115, India
| | - Santosh Dash
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis and Symbiosis Institute of Technology, Symbiosis International University, Lavale, Mulshi, Pune, Maharashtra, 412115, India.
| |
Collapse
|
20
|
Hyde C, Fuelscher I, Enticott PG, Jones DK, Farquharson S, Silk TJ, Williams J, Caeyenberghs K. White matter organization in developmental coordination disorder: A pilot study exploring the added value of constrained spherical deconvolution. NEUROIMAGE-CLINICAL 2018; 21:101625. [PMID: 30552074 PMCID: PMC6411781 DOI: 10.1016/j.nicl.2018.101625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/13/2022]
Abstract
Previous studies of white matter organization in sensorimotor tracts in developmental coordination disorder (DCD) have adopted diffusion tensor imaging (DTI), a method unable to reconcile pathways with ‘crossing fibres’. In response to limitations of the commonly adopted DTI approach, the present study employed a framework that can reconcile the ‘crossing fibre’ problem (i.e., constrained spherical deconvolution- CSD) to characterize white matter tissue organization of sensorimotor tracts in young adults with DCD. Participants were 19 healthy adults aged 18–46: 7 met diagnostic criteria for DCD (4 females) and 12 were controls (3 females). All underwent high angular diffusion MRI. After preprocessing, the left and right corticospinal tracts (CST) and superior longitudinal fasciculi (SLF) were delineated and all tracts were then generated using both CSD and DTI tractography respectively. Based on the CSD model, individuals with DCD demonstrated significantly decreased mean apparent fibre density (AFD) in the left SLF relative to controls (with large effect size, Cohen's d = 1.32) and a trend for decreased tract volume of the right SLF (with medium-large effect size, Cohen's d = 0.73). No differences in SLF microstructure were found between groups using DTI, nor were differences in CST microstructure observed across groups regardless of hemisphere or diffusion model. Our data are consistent with the view that motor impairment characteristic of DCD may be subserved by white matter abnormalities in sensorimotor tracts, specifically the left and right SLF. Our data further highlight the benefits of higher order diffusion MRI (e.g. CSD) relative to DTI for clarifying earlier inconsistencies in reports speaking to white matter organization in DCD, and its contribution to poor motor skill in DCD. All previous diffusion studies of white matter in DCD have employed a tensor model We employed a non-tensor model to characterize microstructure in adults with DCD The non-tensor model showed atypical white matter organization in the SLF in DCD The tensor model failed to detect microstructural group differences for any tract Motor impairment characteristic of DCD may be subserved by white matter abnormalities
We need to move beyond the tensor model in characterizing white matter in DCD
Collapse
Affiliation(s)
- Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia.
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Shawna Farquharson
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia; Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Melbourne, Australia
| | - Tim J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
21
|
Nigro S, Bianco MG, Arabia G, Morelli M, Nisticò R, Novellino F, Salsone M, Augimeri A, Quattrone A. Track density imaging in progressive supranuclear palsy: A pilot study. Hum Brain Mapp 2018; 40:1729-1737. [PMID: 30474903 DOI: 10.1002/hbm.24484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by white matter (WM) changes in different supra- and infratentorial brain structures. We used track density imaging (TDI) to characterize WM microstructural alterations in patients with PSP-Richardson's Syndrome (PSP-RS). Moreover, we investigated the diagnostic utility of TDI in distinguishing patients with PSP-RS from those with Parkinson's disease and healthy controls (HC). Twenty PSP-RS patients, 21 PD patients, and 23 HC underwent a 3 T MRI diffusion-weighted (DW) imaging. Then, we combined constrained spherical deconvolution and WM probabilistic tractography to reconstruct track density maps by calculating the number of WM streamlines traversing each voxel. Voxel-wise analysis was performed to assess group differences in track density maps. A support vector machine (SVM) approach was also used to evaluate the performance of TDI for discriminating between groups. Relative to PD patients, decreases in track density in PSP-RS patients were found in brainstem, cerebellum, thalamus, corpus callosum, and corticospinal tract. Similar findings were obtained between PSP-RS patients and HC. No differences in TDI were observed between PD and HC. SVM approach based on whole-brain analysis differentiated PD patients from PSP-RS with an area under the curve (AUC) of 0.82. The AUC reached a value of 0.98 considering only the voxels belonging to the superior cerebellar peduncle. This study shows that TDI may represent a useful approach for characterizing WM alterations in PSP-RS patients. Moreover, track density decrease in PSP could be considered a new feature for the differentiation of patients with PSP-RS from those with PD.
Collapse
Affiliation(s)
- Salvatore Nigro
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Gennarina Arabia
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Maurizio Morelli
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Rita Nisticò
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Fabiana Novellino
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Maria Salsone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | | | - Aldo Quattrone
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy.,Neuroscience Center, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
22
|
Role of presurgical functional MRI and diffusion MR tractography in pediatric low-grade brain tumor surgery: a single-center study. Childs Nerv Syst 2018; 34:2241-2248. [PMID: 29802593 DOI: 10.1007/s00381-018-3828-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/13/2018] [Indexed: 01/12/2023]
Abstract
PURPOSE Presurgical functional MRI (fMRI) and diffusion MRI tractography (dMRI tractography) are widely employed to delineate eloquent brain regions and their connections prior to brain tumor resection in adults. However, such studies are harder to perform in children, resulting in suboptimal neurosurgical care in pediatric brain tumor surgery as compared to adults. Thus, our objective was to assess the feasibility and the influence of presurgical advanced MR imaging on neurosurgical care in pediatric brain tumor surgery. METHODS Retrospective analyses of 31 presurgical fMRI/dMRI tractography studies were performed in children with low-grade tumors near eloquent brain regions at our site between 2005 and 2017. RESULTS In only 3/31 cases, imaging results were not interpretable (10%). All 28 successful imaging sessions were used for neurosurgical risk assessment. Based on this, surgery was canceled in 2/28 patients, and intention to treat was changed in 5/28 patients. In 4/28 cases, the surgical approach was changed and in 10/28, electrode placement for intraoperative neurophysiological monitoring was guided by imaging results. Gross total resection (GTR) was planned in 21/28 cases and could be achieved in 15/21 (71%). Despite highly eloquent tumor location, only four children suffered from a mild permanent neurological deficit after the operation. CONCLUSIONS We demonstrate that presurgical fMRI/dMRI tractography can have a profound impact on pediatric brain tumor management, optimizing preoperative risk-assessment and pre- as well as intraoperative decision-making. We believe that these tools should be offered to children suffering from eloquent brain tumors as part of a comprehensive operative work-up.
Collapse
|
23
|
Wilke M, Groeschel S, Lorenzen A, Rona S, Schuhmann MU, Ernemann U, Krägeloh‐Mann I. Clinical application of advanced MR methods in children: points to consider. Ann Clin Transl Neurol 2018; 5:1434-1455. [PMID: 30480038 PMCID: PMC6243383 DOI: 10.1002/acn3.658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
The application of both functional MRI and diffusion MR tractography prior to a neurosurgical operation is well established in adults, but less so in children, for several reasons. For this review, we have identified several aspects (task design, subject preparation, actual scanning session, data processing, interpretation of results, and decision-making) where pediatric peculiarities should be taken into account. Further, we not only systematically identify common issues, but also provide solutions, based on our experience as well as a review of the pertinent literature. The aim is to provide the clinician as well as the imaging scientist with information that helps to plan, conduct, and interpret such a clinically-indicated exam in a way that maximizes benefit for, and minimizes the burden on the individual child.
Collapse
Affiliation(s)
- Marko Wilke
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Samuel Groeschel
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Anna Lorenzen
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Sabine Rona
- Department of NeurosurgeryUniversity HospitalTuebingenGermany
| | | | - Ulrike Ernemann
- Department of Diagnostic and Interventional NeuroradiologyUniversity HospitalUniversity of TübingenTuebingenGermany
| | - Ingeborg Krägeloh‐Mann
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
| |
Collapse
|
24
|
Blesa M, Sullivan G, Anblagan D, Telford EJ, Quigley AJ, Sparrow SA, Serag A, Semple SI, Bastin ME, Boardman JP. Early breast milk exposure modifies brain connectivity in preterm infants. Neuroimage 2018; 184:431-439. [PMID: 30240903 DOI: 10.1016/j.neuroimage.2018.09.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Preterm infants are at increased risk of alterations in brain structure and connectivity, and subsequent neurocognitive impairment. Breast milk may be more advantageous than formula feed for promoting brain development in infants born at term, but uncertainties remain about its effect on preterm brain development and the optimal nutritional regimen for preterm infants. We test the hypothesis that breast milk exposure is associated with improved markers of brain development and connectivity in preterm infants at term equivalent age. We collected information about neonatal breast milk exposure and brain MRI at term equivalent age from 47 preterm infants (mean postmenstrual age [PMA] 29.43 weeks, range 23.28-33.0). Network-Based Statistics (NBS), Tract-based Spatial Statistics (TBSS) and volumetric analysis were used to investigate the effect of breast milk exposure on white matter water diffusion parameters, tissue volumes, and the structural connectome. Twenty-seven infants received exclusive breast milk feeds for ≥75% of days of in-patient care and this was associated with higher connectivity in the fractional anisotropy (FA)-weighted connectome compared with the group who had < 75% of days receiving exclusive breast milk feeds (NBS, p = 0.04). Within the TBSS white matter skeleton, the group that received ≥75% exclusive breast milk days exhibited higher FA within the corpus callosum, cingulum cingulate gyri, centrum semiovale, corticospinal tracts, arcuate fasciculi and posterior limbs of the internal capsule compared with the low exposure group after adjustment for PMA at birth, PMA at image acquisition, bronchopulmonary dysplasia, and chorioamnionitis (p < 0.05). The effect on structural connectivity and tract water diffusion parameters was greater with ≥90% exposure, suggesting a dose effect. There were no significant groupwise differences in brain volumes. Breast milk feeding in the weeks after preterm birth is associated with improved structural connectivity of developing networks and greater FA in major white matter fasciculi.
Collapse
Affiliation(s)
- Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Devasuda Anblagan
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK; Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh EH9 1LF, UK
| | - Sarah A Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Ahmed Serag
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Scott I Semple
- University / BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK; Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
25
|
Roine U, Roine TJ, Hakkarainen A, Tokola A, Balk MH, Mannerkoski M, Åberg LE, Lönnqvist T, Autti T. Global and Widespread Local White Matter Abnormalities in Juvenile Neuronal Ceroid Lipofuscinosis. AJNR Am J Neuroradiol 2018; 39:1349-1354. [PMID: 29853519 DOI: 10.3174/ajnr.a5687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/11/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Juvenile neuronal ceroid lipofuscinosis is a progressive neurodegenerative lysosomal storage disease of childhood. It manifests with loss of vision, seizures, and loss of cognitive and motor functions leading to premature death. Previous MR imaging studies have reported cerebral and cerebellar atrophy, progressive hippocampal atrophy, thalamic signal intensity alterations, and decreased white matter volume in the corona radiata. However, conventional MR imaging findings are usually normal at younger than 10 years of age. The purpose of our study was to investigate whether diffusion MR imaging could reveal changes in white matter microstructure already present at a younger age. MATERIALS AND METHODS We investigated global and local white matter abnormalities in 14 children with juvenile neuronal ceroid lipofuscinosis (mean age, 9.6 ± 3.4 years; 10 boys) and 14 control subjects (mean age, 11.2 ± 2.3 years; 7 boys). Twelve patients underwent follow-up MR imaging after 2 years (mean age, 11.4 ± 3.2 years; 8 boys). We performed a global analysis using 2 approaches: white matter tract skeleton and constrained spherical deconvolution-based whole-brain tractography. Then, we investigated local microstructural abnormalities using Tract-Based Spatial Statistics. RESULTS We found globally decreased anisotropy (P = .000001) and increased diffusivity (P = .001) in patients with juvenile neuronal ceroid lipofuscinosis. In addition, we found widespread increased diffusivity and decreased anisotropy in, for example, the corona radiata (P < .001) and posterior thalamic radiation (P < .001). However, we found no differences between the first and second acquisitions. CONCLUSIONS The patients with juvenile neuronal ceroid lipofuscinosis exhibited global and local abnormalities in white matter microstructure. Future studies could apply more specific microstructural models and study whether these abnormalities are already present at a younger age.
Collapse
Affiliation(s)
- U Roine
- From the Department of Radiology (U.R., T.J.R., A.H., A.T., M.H.B., T.A.), HUS Medical Imaging Center
| | - T J Roine
- From the Department of Radiology (U.R., T.J.R., A.H., A.T., M.H.B., T.A.), HUS Medical Imaging Center.,imec-Vision Lab (T.J.R.), Department of Physics, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - A Hakkarainen
- From the Department of Radiology (U.R., T.J.R., A.H., A.T., M.H.B., T.A.), HUS Medical Imaging Center
| | - A Tokola
- From the Department of Radiology (U.R., T.J.R., A.H., A.T., M.H.B., T.A.), HUS Medical Imaging Center
| | - M H Balk
- From the Department of Radiology (U.R., T.J.R., A.H., A.T., M.H.B., T.A.), HUS Medical Imaging Center
| | | | - L E Åberg
- Psychiatry (L.E.Å), University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - T Lönnqvist
- Department of Child Neurology (T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - T Autti
- From the Department of Radiology (U.R., T.J.R., A.H., A.T., M.H.B., T.A.), HUS Medical Imaging Center
| |
Collapse
|