1
|
van Schaik LF, Engelhardt EG, Wilthagen EA, Steeghs N, Fernández Coves A, Joore MA, van Harten WH, Retèl VP. Factors for a broad technology assessment of comprehensive genomic profiling in advanced cancer, a systematic review. Crit Rev Oncol Hematol 2024; 202:104441. [PMID: 39002790 DOI: 10.1016/j.critrevonc.2024.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Abstract
Comprehensive Genomic Profiling (CGP) allows for the identification of many targets. Reimbursement decision-making is, however, challenging because besides the health benefits of on-label treatments and costs, other factors related to diagnostic and treatment pathways may also play a role. The aim of this study was to identify which other factors are relevant for the technology assessment of CGP and to summarize the available evidence for these factors. After a scoping search and two expert sessions, five factors were identified: feasibility, test journey, wider implications of diagnostic results, organisation of laboratories, and "scientific spillover". Subsequently, a systematic search identified 83 studies collecting mainly evidence for the factors "test journey" and "wider implications of diagnostic results". Its nature was, however, of limited value for decision-making. We recommend the use of comparative strategies, uniformity in outcome definitions, and the inclusion of a comprehensive set of factors in future evidence generation.
Collapse
Affiliation(s)
- L F van Schaik
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| | - E G Engelhardt
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands.
| | - E A Wilthagen
- Scientific Information Service, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam CX 1066, the Netherlands.
| | - N Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam CX 1066, the Netherlands.
| | - A Fernández Coves
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), P. Debyelaan 25, Oxford Building, P.O. Box 5800a, Maastricht, Limburg, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.
| | - M A Joore
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), P. Debyelaan 25, Oxford Building, P.O. Box 5800a, Maastricht, Limburg, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.
| | - W H van Harten
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Department of Health Technology and Services Research, University of Twente, Enschede, the Netherlands.
| | - V P Retèl
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Boer JM, Ilan U, Boeree A, Langenberg KPS, Koster J, Koudijs MJ, Hehir-Kwa JY, Nierkens S, Rossi C, Molenaar JJ, Goemans BF, den Boer ML, Zwaan CM. Oncogenic and immunological targets for matched therapy of pediatric blood cancer patients: Dutch iTHER study experience. Hemasphere 2024; 8:e122. [PMID: 39011126 PMCID: PMC11247331 DOI: 10.1002/hem3.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Over the past 10 years, institutional and national molecular tumor boards have been implemented for relapsed or refractory pediatric cancer to prioritize targeted drugs for individualized treatment based on actionable oncogenic lesions, including the Dutch iTHER platform. Hematological malignancies form a minority in precision medicine studies. Here, we report on 56 iTHER leukemia/lymphoma patients for which we considered cell surface markers and oncogenic aberrations as actionable events, supplemented with ex vivo drug sensitivity for six patients. Prior to iTHER registration, 34% of the patients had received allogeneic hematopoietic cell transplantation (HCT) and 18% CAR-T therapy. For 51 patients (91%), a sample with sufficient tumor percentage (≥20%) required for comprehensive diagnostic testing was obtained. Up to 10 oncogenic actionable events were prioritized in 49/51 patients, and immunotherapy targets were identified in all profiled patients. Targeted treatment(s) based on the iTHER advice was given to 24 of 51 patients (47%), including immunotherapy in 17 patients, a targeted drug matching an oncogenic aberration in 12 patients, and a drug based on ex vivo drug sensitivity in one patient, resulting in objective responses and a bridge to HCT in the majority of the patients. In conclusion, comprehensive profiling of relapsed/refractory hematological malignancies showed multiple oncogenic and immunotherapy targets for a precision medicine approach, which requires multidisciplinary expertise to prioritize the best treatment options for this rare, heavily pretreated pediatric population.
Collapse
Affiliation(s)
- Judith M Boer
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Uri Ilan
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Aurélie Boeree
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | | | - Jan Koster
- Amsterdam UMC University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology Amsterdam The Netherlands
| | - Marco J Koudijs
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- Center for Translational Immunology UMC Utrecht Utrecht The Netherlands
| | - Corinne Rossi
- Department of Pediatric Oncology, Hematology, and Immunology Heidelberg University Hospital Heidelberg Germany
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Bianca F Goemans
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- Department of Pediatric Oncology and Hematology Erasmus Medical Center - Sophia Children's Hospital Rotterdam The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- Department of Pediatric Oncology and Hematology Erasmus Medical Center - Sophia Children's Hospital Rotterdam The Netherlands
| |
Collapse
|
3
|
Vodicska B, Déri J, Tihanyi D, Várkondi E, Kispéter E, Dóczi R, Lakatos D, Dirner A, Vidermann M, Filotás P, Szalkai-Dénes R, Szegedi I, Bartyik K, Gábor KM, Simon R, Hauser P, Péter G, Kiss C, Garami M, Peták I. Real-world performance analysis of a novel computational method in the precision oncology of pediatric tumors. World J Pediatr 2023; 19:992-1008. [PMID: 36914906 PMCID: PMC10497647 DOI: 10.1007/s12519-023-00700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND The utility of routine extensive molecular profiling of pediatric tumors is a matter of debate due to the high number of genetic alterations of unknown significance or low evidence and the lack of standardized and personalized decision support methods. Digital drug assignment (DDA) is a novel computational method to prioritize treatment options by aggregating numerous evidence-based associations between multiple drivers, targets, and targeted agents. DDA has been validated to improve personalized treatment decisions based on the outcome data of adult patients treated in the SHIVA01 clinical trial. The aim of this study was to evaluate the utility of DDA in pediatric oncology. METHODS Between 2017 and 2020, 103 high-risk pediatric cancer patients (< 21 years) were involved in our precision oncology program, and samples from 100 patients were eligible for further analysis. Tissue or blood samples were analyzed by whole-exome (WES) or targeted panel sequencing and other molecular diagnostic modalities and processed by a software system using the DDA algorithm for therapeutic decision support. Finally, a molecular tumor board (MTB) evaluated the results to provide therapy recommendations. RESULTS Of the 100 cases with comprehensive molecular diagnostic data, 88 yielded WES and 12 panel sequencing results. DDA identified matching off-label targeted treatment options (actionability) in 72/100 cases (72%), while 57/100 (57%) showed potential drug resistance. Actionability reached 88% (29/33) by 2020 due to the continuous updates of the evidence database. MTB approved the clinical use of a DDA-top-listed treatment in 56 of 72 actionable cases (78%). The approved therapies had significantly higher aggregated evidence levels (AELs) than dismissed therapies. Filtering of WES results for targeted panels missed important mutations affecting therapy selection. CONCLUSIONS DDA is a promising approach to overcome challenges associated with the interpretation of extensive molecular profiling in the routine care of high-risk pediatric cancers. Knowledgebase updates enable automatic interpretation of a continuously expanding gene set, a "virtual" panel, filtered out from genome-wide analysis to always maximize the performance of precision treatment planning.
Collapse
Affiliation(s)
- Barbara Vodicska
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Júlia Déri
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Dóra Tihanyi
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Edit Várkondi
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Enikő Kispéter
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Róbert Dóczi
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Dóra Lakatos
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Anna Dirner
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Mátyás Vidermann
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Péter Filotás
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | | | - István Szegedi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Bartyik
- Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Krisztina Míta Gábor
- Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Réka Simon
- Onco-Hematology Department, Velkey László Paediatric Health Centre, Miskolc, Hungary
| | - Péter Hauser
- Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - György Péter
- Onco-Hematology Department, Heim Pál Children's Hospital, Budapest, Hungary
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Garami
- Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - István Peták
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, USA.
- Genomate Health, Cambridge, MA, USA.
| |
Collapse
|
4
|
Alfahed A. Molecular pathology of colorectal cancer: The Saudi situation in perspective. Saudi Med J 2023; 44:836-847. [PMID: 37717975 PMCID: PMC10505285 DOI: 10.15537/smj.2023.44.9.20230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, and one of the most common causes of cancer deaths. In recent times, significant advancements have been made in elucidating the molecular alterations of the disease, and the results have been an improved understanding of CRC biology, as well as the discovery of biomarkers of diagnostic, prognostic, and therapeutic significance. In this review, an evaluation is carried out of the molecular pathology research of CRC emanating from Saudi Arabia. The verdict is that the data on the molecular alterations in CRC from Saudi patients is at best modest. This dearth of molecular pathology data is aptly reflected in the paucity of molecular markers recommended for testing by the Saudi National Cancer Centre guidelines for CRC management. Large scale multi-institutional and multiregional translational studies are required to generate molecular data that would inform diagnostic, prognostic, and risk-stratification guidelines for Saudi CRC patients.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Mayoh C, Mao J, Xie J, Tax G, Chow SO, Cadiz R, Pazaky K, Barahona P, Ajuyah P, Trebilcock P, Malquori A, Gunther K, Avila A, Yun DY, Alfred S, Gopalakrishnan A, Kamili A, Wong M, Cowley MJ, Jessop S, Lau LM, Trahair TN, Ziegler DS, Fletcher JI, Gifford AJ, Tsoli M, Marshall GM, Haber M, Tyrrell V, Failes TW, Arndt GM, Lock RB, Ekert PG, Dolman MEM. High-Throughput Drug Screening of Primary Tumor Cells Identifies Therapeutic Strategies for Treating Children with High-Risk Cancer. Cancer Res 2023; 83:2716-2732. [PMID: 37523146 PMCID: PMC10425737 DOI: 10.1158/0008-5472.can-22-3702] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 08/01/2023]
Abstract
For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.
Collapse
Affiliation(s)
- Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jie Mao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Gabor Tax
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Shu-Oi Chow
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Roxanne Cadiz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Karina Pazaky
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Pamela Ajuyah
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Peter Trebilcock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Angela Malquori
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Kate Gunther
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Anica Avila
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Doo Young Yun
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Stephanie Alfred
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Anjana Gopalakrishnan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Marie Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Mark J. Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Sophie Jessop
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Loretta M.S. Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Toby N. Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Jamie I. Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Andrew J. Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Timothy W. Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Greg M. Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard B. Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Paul G. Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - M. Emmy M. Dolman
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
6
|
McGee RB, Oak N, Harrison L, Xu K, Nuccio R, Blake AK, Mostafavi R, Lewis S, Taylor LM, Kubal M, Ouma A, Hines-Dowell SJ, Cheng C, Furtado LV, Nichols KE. Pathogenic Variants in Adult-Onset Cancer Predisposition Genes in Pediatric Cancer: Prevalence and Impact on Tumor Molecular Features and Clinical Management. Clin Cancer Res 2023; 29:1243-1251. [PMID: 36693186 PMCID: PMC10642481 DOI: 10.1158/1078-0432.ccr-22-2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Clinical genomic sequencing of pediatric tumors is increasingly uncovering pathogenic variants in adult-onset cancer predisposition genes (aoCPG). Nevertheless, it remains poorly understood how often aoCPG variants are of germline origin and whether they influence tumor molecular profiles and/or clinical care. In this study, we examined the prevalence, spectrum, and impacts of aoCPG variants on tumor genomic features and patient management at our institution. EXPERIMENTAL DESIGN This is a retrospective study of 1,018 children with cancer who underwent clinical genomic sequencing of their tumors. Tumor genomic data were queried for pathogenic variants affecting 24 preselected aoCPGs. Available tumor whole-genome sequencing (WGS) data were evaluated for second hit mutations, loss of heterozygosity (LOH), DNA mutational signatures, and homologous recombination deficiency (HRD). Patients whose tumors harbored one or more pathogenic aoCPG variants underwent subsequent germline testing based on hereditary cancer evaluation and family or provider preference. RESULTS Thirty-three patients (3%) had tumors harboring pathogenic variants affecting one or more aoCPGs. Among 21 tumors with sufficient WGS sequencing data, six (29%) harbored a second hit or LOH affecting the remaining aoCPG allele with four of these six tumors (67%) also exhibiting a DNA mutational signature consistent with the altered aoCPG. Two additional tumors demonstrated HRD, of uncertain relation to the identified aoCPG variant. Twenty-one of 26 patients (81%) completing germline testing were positive for the aoCPG variant in the germline. All germline-positive patients were counseled regarding future cancer risks, surveillance, and risk-reducing measures. No patients had immediate cancer therapy changed due to aoCPG data. CONCLUSIONS AoCPG variants are rare in pediatric tumors; however, many originate in the germline. Almost one third of tumor aoCPG variants examined exhibited a second hit and/or conferred an abnormal DNA mutational profile suggesting a role in tumor formation. aoCPG information aids in cancer risk prediction but is not commonly used to alter the treatment of pediatric cancers.
Collapse
Affiliation(s)
- Rose B. McGee
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lynn Harrison
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ke Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Regina Nuccio
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Alise K. Blake
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Roya Mostafavi
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sara Lewis
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie M. Taylor
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Manish Kubal
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Annastasia Ouma
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Larissa V. Furtado
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
7
|
Dimitri P. Precision diagnostics in children. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e17. [PMID: 38550930 PMCID: PMC10953773 DOI: 10.1017/pcm.2023.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 11/06/2024]
Abstract
Medical practice is transforming from a reactive to a pro-active and preventive discipline that is underpinned by precision medicine. The advances in technologies in such fields as genomics, proteomics, metabolomics, transcriptomics and artificial intelligence have resulted in a paradigm shift in our understanding of specific diseases in childhood, greatly enhanced by our ability to combine data from changes within cells to the impact of environmental and population changes. Diseases in children have been reclassified as we understand more about their genomic origin and their evolution. Genomic discoveries, additional 'omics' data and advances such as optical genome mapping have driven rapid improvements in the precision and speed of diagnoses of diseases in children and are now being incorporated into newborn screening, have improved targeted therapies in childhood and have supported the development of predictive biomarkers to assess therapeutic impact and determine prognosis in congenital and acquired diseases of childhood. New medical device technologies are facilitating data capture at a population level to support higher diagnostic accuracy and tailored therapies in children according to predicted population outcome, and digital ecosystems now tailor therapies and provide support for their specific needs. By capturing biological and environmental data as early as possible in childhood, we can understand factors that predict disease or maintain health and track changes across a more extensive longitudinal path. Data from multiple health and external sources over long-time periods starting from birth or even in the in utero environment will provide further clarity about how to sustain health and prevent or predict disease. In this respect, we will not only use data to diagnose disease, but precision diagnostics will aid the 'diagnosis of good health'. The principle of 'start early and change more' will thus underpin the value of applying a personalised medicine approach early in life.
Collapse
Affiliation(s)
- Paul Dimitri
- Department of Paediatric Endocrinology, Sheffield Children’s NHS Foundation Trust, Sheffield, UK
- The College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
8
|
Villani A, Davidson S, Kanwar N, Lo WW, Li Y, Cohen-Gogo S, Fuligni F, Edward LM, Light N, Layeghifard M, Harripaul R, Waldman L, Gallinger B, Comitani F, Brunga L, Hayes R, Anderson ND, Ramani AK, Yuki KE, Blay S, Johnstone B, Inglese C, Hammad R, Goudie C, Shuen A, Wasserman JD, Venier RE, Eliou M, Lorenti M, Ryan CA, Braga M, Gloven-Brown M, Han J, Montero M, Spatare F, Whitlock JA, Scherer SW, Chun K, Somerville MJ, Hawkins C, Abdelhaleem M, Ramaswamy V, Somers GR, Kyriakopoulou L, Hitzler J, Shago M, Morgenstern DA, Tabori U, Meyn S, Irwin MS, Malkin D, Shlien A. The clinical utility of integrative genomics in childhood cancer extends beyond targetable mutations. NATURE CANCER 2023; 4:203-221. [PMID: 36585449 PMCID: PMC9970873 DOI: 10.1038/s43018-022-00474-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/02/2022] [Indexed: 12/31/2022]
Abstract
We conducted integrative somatic-germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset. Therapeutically targetable variants (54% of patients) were of unanticipated timing and type, with over 20% derived from the germline. Corroborating mutational signatures (SBS3/BRCAness) in patients with germline homologous recombination defects demonstrates the potential utility of PARP inhibitors. Mutational burden was significantly elevated in 9% of patients. Sequential sampling identified changes in therapeutically targetable drivers in over one-third of patients, suggesting benefit from rebiopsy for genomic analysis at the time of relapse. Comprehensive cancer genomic profiling is useful at multiple points in the care trajectory for children and adolescents/young adults with cancer, supporting its integration into early clinical management.
Collapse
Affiliation(s)
- Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Scott Davidson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nisha Kanwar
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Winnie W Lo
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yisu Li
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah Cohen-Gogo
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fabio Fuligni
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Nicholas Light
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Mehdi Layeghifard
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ricardo Harripaul
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Larissa Waldman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Cancer Genetics and High-Risk Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Bailey Gallinger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Genetic Counselling, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Federico Comitani
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ledia Brunga
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Reid Hayes
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Nathaniel D Anderson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Arun K Ramani
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Center for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kyoko E Yuki
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Sasha Blay
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Brittney Johnstone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Cancer Genetics and High-Risk Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Cara Inglese
- Department of Genetic Counselling, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rawan Hammad
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Catherine Goudie
- Division of Hematology-Oncology, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Andrew Shuen
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jonathan D Wasserman
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosemarie E Venier
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Genetic Counselling, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Eliou
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Miranda Lorenti
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carol Ann Ryan
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Braga
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meagan Gloven-Brown
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jianan Han
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maria Montero
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Famida Spatare
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James A Whitlock
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Kathy Chun
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin J Somerville
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed Abdelhaleem
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Gino R Somers
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lianna Kyriakopoulou
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Mary Shago
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel A Morgenstern
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Meyn
- Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Meredith S Irwin
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada. .,Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada. .,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
How Genetics and Genomics Advances Are Rewriting Pediatric Cancer Research and Clinical Care. Medicina (B Aires) 2022; 58:medicina58101386. [PMID: 36295546 PMCID: PMC9610804 DOI: 10.3390/medicina58101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the last two decades, thanks to the data that have been obtained from the Human Genome Project and the development of next-generation sequencing (NGS) technologies, research in oncology has produced extremely important results in understanding the genomic landscape of pediatric cancers, which are the main cause of death during childhood. NGS has provided significant advances in medicine by detecting germline and somatic driver variants that determine the development and progression of many types of cancers, allowing a distinction between hereditary and non-hereditary cancers, characterizing resistance mechanisms that are also related to alterations of the epigenetic apparatus, and quantifying the mutational burden of tumor cells. A combined approach of next-generation technologies allows us to investigate the numerous molecular features of the cancer cell and the effects of the environment on it, discovering and following the path of personalized therapy to defeat an "ancient" disease that has had victories and defeats. In this paper, we provide an overview of the results that have been obtained in the last decade from genomic studies that were carried out on pediatric cancer and their contribution to the more accurate and faster diagnosis in the stratification of patients and the development of new precision therapies.
Collapse
|
10
|
Genetic Disorders with Predisposition to Paediatric Haematopoietic Malignancies—A Review. Cancers (Basel) 2022; 14:cancers14153569. [PMID: 35892827 PMCID: PMC9329786 DOI: 10.3390/cancers14153569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
The view of paediatric cancer as a genetic disease arises as genetic research develops. Germline mutations in cancer predisposition genes have been identified in about 10% of children. Paediatric cancers are characterized by heterogeneity in the types of genetic alterations that drive tumourigenesis. Interactions between germline and somatic mutations are a key determinant of cancer development. In 40% of patients, the family history does not predict the presence of inherited cancer predisposition syndromes and many cases go undetected. Paediatricians should be aware of specific symptoms, which highlight the need of evaluation for cancer syndromes. The quickest possible identification of such syndromes is of key importance, due to the possibility of early detection of neoplasms, followed by presymptomatic genetic testing of relatives, implementation of appropriate clinical procedures (e.g., avoiding radiotherapy), prophylactic surgical resection of organs at risk, or searching for donors of hematopoietic stem cells. Targetable driver mutations and corresponding signalling pathways provide a novel precision medicine strategy.Therefore, there is a need for multi-disciplinary cooperation between a paediatrician, an oncologist, a geneticist, and a psychologist during the surveillance of families with an increased cancer risk. This review aimed to emphasize the role of cancer-predisposition gene diagnostics in the genetic surveillance and medical care in paediatric oncology.
Collapse
|
11
|
Summers RJ, Castellino SM, Porter CC, MacDonald TJ, Basu GD, Szelinger S, Bhasin MK, Cash T, Carter AB, Castellino RC, Fangusaro JR, Mitchell SG, Pauly MG, Pencheva B, Wechsler DS, Graham DK, Goldsmith KC. Comprehensive Genomic Profiling of High-Risk Pediatric Cancer Patients Has a Measurable Impact on Clinical Care. JCO Precis Oncol 2022; 6:e2100451. [PMID: 35544730 DOI: 10.1200/po.21.00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Profiling of pediatric cancers through deep sequencing of large gene panels and whole exomes is rapidly being adopted in many clinical settings. However, the most impactful approach to genomic profiling of pediatric cancers remains to be defined. METHODS We conducted a prospective precision medicine trial, using whole-exome sequencing of tumor and germline tissue and whole-transcriptome sequencing (RNA Seq) of tumor tissue to characterize the mutational landscape of 127 tumors from 126 unique patients across the spectrum of pediatric brain tumors, hematologic malignancies, and extracranial solid tumors. RESULTS We identified somatic tumor alterations in 121/127 (95.3%) tumor samples and identified cancer predisposition syndromes on the basis of known pathogenic or likely pathogenic germline mutations in cancer predisposition genes in 9/126 patients (7.1%). Additionally, we developed a novel scoring system for measuring the impact of tumor and germline sequencing, encompassing therapeutically relevant genomic alterations, cancer-related germline findings, recommendations for treatment, and refinement of risk stratification or prognosis. At least one impactful finding from the genomic results was identified in 108/127 (85%) samples sequenced. A recommendation to consider a targeted agent was provided for 82/126 (65.1%) patients. Twenty patients ultimately received therapy with a molecularly targeted agent, representing 24% of those who received a targeted agent recommendation and 16% of the total cohort. CONCLUSION Paired tumor/normal whole-exome sequencing and tumor RNA Seq of de novo or relapsed/refractory tumors was feasible and clinically impactful in high-risk pediatric cancer patients.
Collapse
Affiliation(s)
- Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | | | | | - Manoj K Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.,Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
| | - Thomas Cash
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Alexis B Carter
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| | - Robert Craig Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Jason R Fangusaro
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Sarah G Mitchell
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Melinda G Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Bojana Pencheva
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Kelly C Goldsmith
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
12
|
Alpár D, Egyed B, Bödör C, Kovács GT. Single-Cell Sequencing: Biological Insight and Potential Clinical Implications in Pediatric Leukemia. Cancers (Basel) 2021; 13:5658. [PMID: 34830811 PMCID: PMC8616124 DOI: 10.3390/cancers13225658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Single-cell sequencing (SCS) provides high-resolution insight into the genomic, epigenomic, and transcriptomic landscape of oncohematological malignancies including pediatric leukemia, the most common type of childhood cancer. Besides broadening our biological understanding of cellular heterogeneity, sub-clonal architecture, and regulatory network of tumor cell populations, SCS can offer clinically relevant, detailed characterization of distinct compartments affected by leukemia and identify therapeutically exploitable vulnerabilities. In this review, we provide an overview of SCS studies focused on the high-resolution genomic and transcriptomic scrutiny of pediatric leukemia. Our aim is to investigate and summarize how different layers of single-cell omics approaches can expectedly support clinical decision making in the future. Although the clinical management of pediatric leukemia underwent a spectacular improvement during the past decades, resistant disease is a major cause of therapy failure. Currently, only a small proportion of childhood leukemia patients benefit from genomics-driven therapy, as 15-20% of them meet the indication criteria of on-label targeted agents, and their overall response rate falls in a relatively wide range (40-85%). The in-depth scrutiny of various cell populations influencing the development, progression, and treatment resistance of different disease subtypes can potentially uncover a wider range of driver mechanisms for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (D.A.); (B.E.); (C.B.)
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (D.A.); (B.E.); (C.B.)
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (D.A.); (B.E.); (C.B.)
| | - Gábor T. Kovács
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| |
Collapse
|
13
|
Lee J, Gillam L, Visvanathan K, Hansford JR, McCarthy MC. Clinical Utility of Precision Medicine in Pediatric Oncology: A Systematic Review. JCO Precis Oncol 2021; 5:1088-1102. [DOI: 10.1200/po.20.00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Precision medicine uses advanced molecular techniques to guide the use of targeted therapeutic drugs and is an emerging paradigm in pediatric oncology. Clinical evidence related to the efficacy of many novel targeted drugs, however, is currently very limited given the rarity of pediatric cancer and the lack of published evidence for the use of these drugs in children. This systematic review aimed to evaluate the existing evidence for the feasibility and clinical efficacy of precision medicine in pediatric oncology. METHODS A systematic review was conducted using the PubMed, Medline, and Embase databases. Clinical trials and observational studies, which used molecular assays such as whole-exome sequencing to identify molecular targets that guided the allocation of targeted cancer drugs and reported clinical outcomes, were included in this review. RESULTS Twenty-one clinical trials and observational studies were identified, collectively enrolling 1,408 pediatric patients across nine countries. Therapeutic targets were found in 647 patients (46.0%); however, only 175 of these patients (27.0%) received a targeted drug. Objective responses were recorded for 73 (41.7%) of these 175 patients, only 5.2% of the total sample. Inconsistent outcome reporting and limited comparison with conventional treatment hindered evaluation of the clinical utility of precision medicine. CONCLUSION Precision medicine can feasibly identify molecular targets in a clinical setting. However, the inaccessibility of targeted drugs is a significant barrier, restricting the exploration of its therapeutic potential in pediatric oncology. Future clinical trials should endeavor to link the molecular testing results with access to targeted drugs and standardize outcome reporting to advance understanding of the benefits of this novel paradigm in improving patient outcomes.
Collapse
Affiliation(s)
- Justin Lee
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lynn Gillam
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
- Department of Human Bioethics, University of Melbourne, Melbourne, VIC, Australia
| | - Keshini Visvanathan
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jordan R. Hansford
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Maria C. McCarthy
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Langenberg KPS, Looze EJ, Molenaar JJ. The Landscape of Pediatric Precision Oncology: Program Design, Actionable Alterations, and Clinical Trial Development. Cancers (Basel) 2021; 13:4324. [PMID: 34503139 PMCID: PMC8431194 DOI: 10.3390/cancers13174324] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last years, various precision medicine programs have been developed for pediatric patients with high-risk, relapsed, or refractory malignancies, selecting patients for targeted treatment through comprehensive molecular profiling. In this review, we describe characteristics of these initiatives, demonstrating the feasibility and potential of molecular-driven precision medicine. Actionable events are identified in a significant subset of patients, although comparing results is complicated due to the lack of a standardized definition of actionable alterations and the different molecular profiling strategies used. The first biomarker-driven trials for childhood cancer have been initiated, but until now the effect of precision medicine on clinical outcome has only been reported for a small number of patients, demonstrating clinical benefit in some. Future perspectives include the incorporation of novel approaches such as liquid biopsies and immune monitoring as well as innovative collaborative trial design including combination strategies, and the development of agents specifically targeting aberrations in childhood malignancies.
Collapse
Affiliation(s)
- Karin P. S. Langenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
| | - Eleonora J. Looze
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
- Department of Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
15
|
Koopman B, Groen HJ, Ligtenberg MJ, Grünberg K, Monkhorst K, de Langen AJ, Boelens MC, Paats MS, von der Thüsen JH, Dinjens WN, Solleveld N, van Wezel T, Gelderblom H, Hendriks LE, Speel EM, Theunissen TE, Kroeze LI, Mehra N, Piet B, van der Wekken AJ, ter Elst A, Timens W, Willems SM, Meijers RW, de Leng WW, van Lindert AS, Radonic T, Hashemi SM, Heideman DA, Schuuring E, van Kempen LC. Multicenter Comparison of Molecular Tumor Boards in The Netherlands: Definition, Composition, Methods, and Targeted Therapy Recommendations. Oncologist 2021; 26:e1347-e1358. [PMID: 33111480 PMCID: PMC8342588 DOI: 10.1002/onco.13580] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Molecular tumor boards (MTBs) provide rational, genomics-driven, patient-tailored treatment recommendations. Worldwide, MTBs differ in terms of scope, composition, methods, and recommendations. This study aimed to assess differences in methods and agreement in treatment recommendations among MTBs from tertiary cancer referral centers in The Netherlands. MATERIALS AND METHODS MTBs from all tertiary cancer referral centers in The Netherlands were invited to participate. A survey assessing scope, value, logistics, composition, decision-making method, reporting, and registration of the MTBs was completed through on-site interviews with members from each MTB. Targeted therapy recommendations were compared using 10 anonymized cases. Participating MTBs were asked to provide a treatment recommendation in accordance with their own methods. Agreement was based on which molecular alteration(s) was considered actionable with the next line of targeted therapy. RESULTS Interviews with 24 members of eight MTBs revealed that all participating MTBs focused on rare or complex mutational cancer profiles, operated independently of cancer type-specific multidisciplinary teams, and consisted of at least (thoracic and/or medical) oncologists, pathologists, and clinical scientists in molecular pathology. Differences were the types of cancer discussed and the methods used to achieve a recommendation. Nevertheless, agreement among MTB recommendations, based on identified actionable molecular alteration(s), was high for the 10 evaluated cases (86%). CONCLUSION MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational cancer profiles. We propose a "Dutch MTB model" for an optimal, collaborative, and nationally aligned MTB workflow. IMPLICATIONS FOR PRACTICE Interpretation of genomic analyses for optimal choice of target therapy for patients with cancer is becoming increasingly complex. A molecular tumor board (MTB) supports oncologists in rationalizing therapy options. However, there is no consensus on the most optimal setup for an MTB, which can affect the quality of recommendations. This study reveals that the eight MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational profiles. The Dutch MTB model is based on a collaborative and nationally aligned workflow with interinstitutional collaboration and data sharing.
Collapse
Affiliation(s)
- Bart Koopman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Harry J.M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Marjolijn J.L. Ligtenberg
- Department of Pathology, Radboud University Medical CenterNijmegenThe Netherlands
- Department of Human Genetics, Radboud University Medical CenterNijmegenThe Netherlands
| | - Katrien Grünberg
- Department of Pathology, Radboud University Medical CenterNijmegenThe Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Adrianus J. de Langen
- Department of Thoracic Oncology, Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mirjam C. Boelens
- Department of Pathology, Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Marthe S. Paats
- Department of Pulmonary Medicine, Erasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Jan H. von der Thüsen
- Department of Pathology, Erasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Winand N.M. Dinjens
- Department of Pathology, Erasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Nienke Solleveld
- Department of Pathology, Leiden University Medical CenterLeidenThe Netherlands
| | - Tom van Wezel
- Department of Pathology, Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Pathology, Leiden University Medical CenterLeidenThe Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical CenterLeidenThe Netherlands
| | - Lizza E. Hendriks
- Department of Pulmonary Diseases, GROW‐School for Oncology and Developmental Biology, Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Ernst‐Jan M. Speel
- Department of Pathology, GROW‐School for Oncology and Developmental Biology, Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Tom E. Theunissen
- Department of Pathology, GROW‐School for Oncology and Developmental Biology, Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Leonie I. Kroeze
- Department of Pathology, Radboud University Medical CenterNijmegenThe Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical CenterNijmegenThe Netherlands
| | - Berber Piet
- Department of Pulmonary Diseases, Radboud University Medical CenterNijmegenThe Netherlands
| | - Anthonie J. van der Wekken
- Department of Pulmonary Diseases, University of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Arja ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Stefan M. Willems
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Pathology, University Medical Center UtrechtUtrechtThe Netherlands
| | - Ruud W.J. Meijers
- Department of Pathology, University Medical Center UtrechtUtrechtThe Netherlands
| | - Wendy W.J. de Leng
- Department of Pathology, University Medical Center UtrechtUtrechtThe Netherlands
| | | | - Teodora Radonic
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sayed M.S. Hashemi
- Department of Pulmonary Diseases, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Daniëlle A.M. Heideman
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
16
|
Newman S, Nakitandwe J, Kesserwan CA, Azzato EM, Wheeler DA, Rusch M, Shurtleff S, Hedges DJ, Hamilton KV, Foy SG, Edmonson MN, Thrasher A, Bahrami A, Orr BA, Klco JM, Gu J, Harrison LW, Wang L, Clay MR, Ouma A, Silkov A, Liu Y, Zhang Z, Liu Y, Brady SW, Zhou X, Chang TC, Pande M, Davis E, Becksfort J, Patel A, Wilkinson MR, Rahbarinia D, Kubal M, Maciaszek JL, Pastor V, Knight J, Gout AM, Wang J, Gu Z, Mullighan CG, McGee RB, Quinn EA, Nuccio R, Mostafavi R, Gerhardt EL, Taylor LM, Valdez JM, Hines-Dowell SJ, Pappo AS, Robinson G, Johnson LM, Pui CH, Ellison DW, Downing JR, Zhang J, Nichols KE. Genomes for Kids: The scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov 2021; 11:3008-3027. [PMID: 34301788 DOI: 10.1158/2159-8290.cd-20-1631] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole genome (WGS), exome, and RNA sequencing, to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically-relevant (25%), and/or cancer predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors) and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor-normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers.
Collapse
Affiliation(s)
- Scott Newman
- Computational Biology, St. Jude Children's Research Hospital
| | - Joy Nakitandwe
- Pathology and Laboratory Medicine Institute, Cleveland Clinic
| | | | | | | | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | - Dale J Hedges
- Computational Biology, St. Jude Children's Research Hospital
| | - Kayla V Hamilton
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Scott G Foy
- Computational Biology, St. Jude Children's Research Hospital
| | | | - Andrew Thrasher
- Computational Biology, St. Jude Children's Research Hospital
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital
| | - Brent A Orr
- Pathology, St. Jude Children's Research Hospital
| | | | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital
| | - Lynn W Harrison
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Lu Wang
- Pathology, St. Jude Children's Research Hospital
| | | | - Annastasia Ouma
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Antonina Silkov
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | | | - Yu Liu
- Computational Biology, St. Jude Children's Research Hospital
| | - Samuel W Brady
- Computational Biology, St. Jude Children's Research Hospital
| | - Xin Zhou
- St. Jude Children's Research Hospital
| | - Ti-Cheng Chang
- Computational Biology, St. Jude Children's Research Hospital
| | - Manjusha Pande
- Department of Computational Biology, St. Jude Children's Research Hospital
| | - Eric Davis
- Department of Computational Biology, St. Jude Children's Research Hospital
| | - Jared Becksfort
- Computational Biology, St. Jude Children's Research Hospital
| | - Aman Patel
- Computational Biology, St. Jude Children's Research Hospital
| | | | | | - Manish Kubal
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | | | - Jay Knight
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | | | | | - Emily A Quinn
- Pharmacy and Health Sciences, Keck Graduate Institute
| | - Regina Nuccio
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | - Elsie L Gerhardt
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Leslie M Taylor
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | | | | | | | - Liza-Marie Johnson
- Division of Quality of Life and Palliative Care, St. Jude Children's Research Hospital
| | | | | | | | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | |
Collapse
|
17
|
Siraj AK, Masoodi T, Bu R, Parvathareddy SK, Siraj S, Alassiri A, Al-Dayel F, Alkuraya FS, Al-Kuraya KS. The study of Lynch syndrome in a special population reveals a strong founder effect and an unusual mutational mechanism in familial adenomatous polyposis. Gut 2020; 69:2048-2049. [PMID: 31924657 PMCID: PMC7569390 DOI: 10.1136/gutjnl-2019-320511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/08/2022]
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Sarah Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Alassiri
- Department of Pediatric Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Wong M, Mayoh C, Lau LMS, Khuong-Quang DA, Pinese M, Kumar A, Barahona P, Wilkie EE, Sullivan P, Bowen-James R, Syed M, Martincorena I, Abascal F, Sherstyuk A, Bolanos NA, Baber J, Priestley P, Dolman MEM, Fleuren EDG, Gauthier ME, Mould EVA, Gayevskiy V, Gifford AJ, Grebert-Wade D, Strong PA, Manouvrier E, Warby M, Thomas DM, Kirk J, Tucker K, O'Brien T, Alvaro F, McCowage GB, Dalla-Pozza L, Gottardo NG, Tapp H, Wood P, Khaw SL, Hansford JR, Moore AS, Norris MD, Trahair TN, Lock RB, Tyrrell V, Haber M, Marshall GM, Ziegler DS, Ekert PG, Cowley MJ. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat Med 2020; 26:1742-1753. [PMID: 33020650 DOI: 10.1038/s41591-020-1072-4] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.
Collapse
Affiliation(s)
- Marie Wong
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Loretta M S Lau
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Amit Kumar
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Emilie E Wilkie
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Rachel Bowen-James
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Mustafa Syed
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | | | | | - Alexandra Sherstyuk
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Noemi A Bolanos
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jonathan Baber
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Hartwig Medical Foundation Australia, Sydney, NSW, Australia
| | - Peter Priestley
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Hartwig Medical Foundation Australia, Sydney, NSW, Australia
| | - M Emmy M Dolman
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Marie-Emilie Gauthier
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Emily V A Mould
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Dylan Grebert-Wade
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Patrick A Strong
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Elodie Manouvrier
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Meera Warby
- Cancer Centre for Children, The Children's Hospital Westmead, Westmead, NSW, Australia
| | - David M Thomas
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Katherine Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
- Prince of Wales Hospital Clinical School, University of New South Wales, Randwick, NSW, Australia
| | - Tracey O'Brien
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Frank Alvaro
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Geoffry B McCowage
- Cancer Centre for Children, The Children's Hospital Westmead, Westmead, NSW, Australia
| | - Luciano Dalla-Pozza
- Cancer Centre for Children, The Children's Hospital Westmead, Westmead, NSW, Australia
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children's Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
| | - Heather Tapp
- Women's and Children's Hospital, Adelaide, SA, Australia
| | - Paul Wood
- Monash Children's Hospital, Melbourne, VIC, Australia
| | - Seong-Lin Khaw
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
| | - Andrew S Moore
- Oncology Service, Oncology Service, Queensland Children's Hospital, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| |
Collapse
|
19
|
Mora A, Bosch R, Cuellar-García C, Blanco L, Sierra J, Nomdedeu J, Moreno C. Gene expression workflow to analyze residual leukemic cells in Chronic Lymphocytic Leukemia. Int J Lab Hematol 2020; 42:423-430. [PMID: 32333638 DOI: 10.1111/ijlh.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND In chronic lymphocytic leukemia, a better understanding of leukemic cell characteristics after treatment would help to design specific therapeutic approaches aimed at preventing clinical relapse. Gene arrays have become a powerful approach to perform gene expression profiling; nevertheless, to work with residual cells entails an intensive labor. The aim of this study was to set forth an effective gene expression approach to analyze residual leukemic cells. METHODS Leukocytes from CLL patient's samples were sorted by flow cytometry using a 6-color panel. The quality and quantity of RNA isolated from different inputs of cells were compared by two silica column protocols: RNeasy Micro and RNeasy Mini. RNA amplifications were carried out according to two manufacturer's protocols: Ovation Pico SL and Ovation Pico WTA. A total of 3.5 μg of cDNA was labeled and hybridized to Human Gene 2.0 ST arrays. RESULTS RNA extracted from low number of input cells by RNeasy Micro showed similar RNA integrity number to that obtained from RNeasy Mini; however, the RNA quantity was higher using the RNeasy Micro Kit. In addition, those RNA samples obtained with RNeasy Micro and amplified with Ovation Pico WTA showed good quality to proceed for a gene array study, independently of the number of input cells (range: 1 × 104 -5 × 105 cells). CONCLUSIONS We observed that this workflow is a feasible approach to obtain genomic material extracted from leukemic cells as little as 1 × 104 cells and it can be useful to carry out gene expression profile experiments to characterize residual leukemic cells in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Alba Mora
- Laboratory of Oncology/Hematology and Transplantation, Biomedical Research Institute, IIB Sant Pau, Barcelona, Spain.,Department of Hematology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain.,Deparment of Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Joseph Carreras Leukemia Research Institute, Barcelona, Spain
| | - Rosa Bosch
- Laboratory of Oncology/Hematology and Transplantation, Biomedical Research Institute, IIB Sant Pau, Barcelona, Spain.,Department of Hematology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Carolina Cuellar-García
- Laboratory of Oncology/Hematology and Transplantation, Biomedical Research Institute, IIB Sant Pau, Barcelona, Spain.,Department of Hematology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain.,Joseph Carreras Leukemia Research Institute, Barcelona, Spain
| | - Laura Blanco
- Laboratory of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jorge Sierra
- Laboratory of Oncology/Hematology and Transplantation, Biomedical Research Institute, IIB Sant Pau, Barcelona, Spain.,Department of Hematology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain.,Deparment of Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Laboratory of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Josep Nomdedeu
- Laboratory of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carol Moreno
- Laboratory of Oncology/Hematology and Transplantation, Biomedical Research Institute, IIB Sant Pau, Barcelona, Spain.,Department of Hematology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain.,Deparment of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Zhang H, Wang H, Qian X, Gao S, Xia J, Liu J, Cheng Y, Man J, Zhai X. Genetic mutational analysis of pediatric acute lymphoblastic leukemia from a single center in China using exon sequencing. BMC Cancer 2020; 20:211. [PMID: 32164600 PMCID: PMC7068927 DOI: 10.1186/s12885-020-6709-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL), the most common childhood malignancy, is characterized by recurring structural chromosomal alterations and genetic alterations, whose detection is critical in diagnosis, risk stratification and prognostication. However, the genetic mechanisms that give rise to ALL remain poorly understood. Methods Using next-generation sequencing (NGS) in matched germline and tumor samples from 140 pediatric Chinese patients with ALL, we landscaped the gene mutations and estimated the mutation frequencies in this disease. Results Our results showed that the top driver oncogenes having a mutation prevalence over 5% in childhood ALL included KRAS (8.76%), NRAS (6.4%), FLT3 (5.7%) and KMT2D (5.0%). While the most frequently mutated genes were KRAS, NRAS and FLT3 in B cell ALL (B-ALL), the most common mutations were enriched in NOTCH1 (23.1%), FBXW7 (23.1%) and PHF6 (11.5%) in T cell ALL (T-ALL). These mutant genes are involved in key molecular processes, including the Ras pathway, the Notch pathway, epigenetic modification, and cell-cycle regulation. Strikingly, more than 50% of mutations occurred in the high-hyperdiploid (HeH) ALL existed in Ras pathway, especially FLT3 (20%). We also found that the epigenetic regulator gene KMT2D, which is frequently mutated in ALL, may be involved in driving leukemia transformation, as evidenced by an in vitro functional assay. Conclusion Overall, this study provides further insights into the genetic basis of ALL and shows that Ras mutations are predominant in childhood ALL, especially in the high-hyperdiploid subtype in our research.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Hematology oncology, Children's hospital of Fudan university, 399 Wanyuan Road, Shanghai, China.,Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China
| | - Hongsheng Wang
- Department of Hematology oncology, Children's hospital of Fudan university, 399 Wanyuan Road, Shanghai, China.,Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China
| | - Xiaowen Qian
- Department of Hematology oncology, Children's hospital of Fudan university, 399 Wanyuan Road, Shanghai, China.,Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China
| | - Shuai Gao
- Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China
| | - Jieqi Xia
- Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China
| | - Junwen Liu
- Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China
| | - Yanqin Cheng
- Department of Hematology oncology, Children's hospital of Fudan university, 399 Wanyuan Road, Shanghai, China.,Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China
| | - Jie Man
- Department of Hematology oncology, Children's hospital of Fudan university, 399 Wanyuan Road, Shanghai, China.,Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China
| | - Xiaowen Zhai
- Department of Hematology oncology, Children's hospital of Fudan university, 399 Wanyuan Road, Shanghai, China. .,Clinical laboratory center, Children's hospital of Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Abstract
Developments over the past five years have significantly advanced our ability to use genome-scale analyses—including high-density genotyping, transcriptome sequencing, exome sequencing, and genome sequencing—to identify the genetic basis of childhood cancer. This article reviews several key results from an expanding number of genomic studies of pediatric cancer: ( a) Histopathologic subtypes of cancers can be associated with a high incidence of germline predisposition, ( b) neurodevelopmental disorders or highly penetrant cancer predisposition syndromes can result from specific patterns of variation in genes encoding the SMARC family of chromatin remodelers, ( c) genome-wide association studies with relatively small pediatric cancer cohorts have successfully identified single-nucleotide polymorphisms with large effect sizes and provided insight into population differences in cancer risk, and ( d) multiple exome or genome analyses of unselected childhood cancer cohorts have yielded a 7–10% incidence of pathogenic variants in cancer predisposition genes. This work supports the increasing use of genomic sequencing in the care of pediatric cancer patients and at-risk family members.
Collapse
Affiliation(s)
- Sharon E. Plon
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Philip J. Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Bailey KM, Jacobs MF, Anderson B, Rabah R, Wu YM, Else T, Mody RJ. DICER1 Mutations in the Era of Expanding Integrative Clinical Sequencing in Pediatric Oncology. JCO Precis Oncol 2019; 3. [PMID: 32832834 DOI: 10.1200/po.18.00172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE DICER1 syndrome is a recently described inherited cancer predisposition syndrome caused by pathogenic variants in DICER1. With the recent increase in integrative clinical sequencing for pediatric patients with cancer, our understanding of the DICER1 syndrome continues to evolve, as new and rare pathogenic variants are reported. As the frequency of integrative clinical sequencing increases, discussions regarding challenges encountered in the interpretation of sequencing results are essential to continue to advance the field of cancer predisposition. The purpose of this work was to identify patients with somatic and/or germline DICER1 variants in our patient population and to discuss sequencing interpretation and the clinical recommendations that result from the integrative clinical sequencing results. METHODS Patients were enrolled in the PEDS-MIONCOSEQ study. This integrative clinical sequencing study includes paired tumor/normal whole-exome sequencing and tumor transcriptome sequencing. Patients identified as having DICER1 variants were included. RESULTS We report a DICER1 variant of unknown clinical significance in a patient with a highly unusual response to therapy. Two patients had diagnoses clarified once the integrative clinical sequencing revealing a DICER1 variant was available. We also discovered a patient with low-level DICER1 mosaicism and the challenges encountered in the sequencing interpretation for this patient. In addition to the sequencing data and result interpretation, this work also highlights testing and screening recommendations made to patients with DICER1 variants and their families on the basis of these results. CONCLUSION This work serves to extend the DICER1 phenotype and advance the utility of clinical integrative sequencing in the fields of pediatric oncology and cancer genetic predisposition.
Collapse
Affiliation(s)
- Kelly M Bailey
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | | - Yi-Mi Wu
- Michigan Medicine, Ann Arbor, MI
| | | | | |
Collapse
|
23
|
Peters SM, Turk AT. Salivary gland anlage tumor: molecular profiling sheds light on a morphologic question. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127:e108-e113. [PMID: 30598408 DOI: 10.1016/j.oooo.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Salivary gland anlage tumor (SGAT), previously described as a squamous proliferative lesion or "congenital pleomorphic adenoma," is a rare, benign entity that presents within the first months of life. It occurs almost exclusively in the nasopharynx or posterior nasal cavity and demonstrates a biphasic composition of epithelial and mesenchymal elements. Although the clinical and histologic features of SGAT are well described, its etiology remains poorly understood. SGAT is currently considered a hamartoma rather than a neoplasm, partly because of its benign behavior and lack of reported recurrence after treatment. However, investigators have not yet evaluated this concept by using genomic methods. STUDY DESIGN Here, we present 3 SGAT cases where we performed whole-exome sequencing. RESULTS Examination of sequence data, with specific attention to variants affecting 964 cancer-related genes, showed no plausible driver-type alterations. CONCLUSIONS The lack of apparent driver mutations supports the classification of this entity as a hamartomatous (nonneoplastic) process.
Collapse
Affiliation(s)
- Scott M Peters
- Division of Oral and Maxillofacial Pathology, Columbia University Medical Center, New York, NY, USA.
| | - Andrew T Turk
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Precision Medicine in Pediatric Cancer: Current Applications and Future Prospects. High Throughput 2018; 7:ht7040039. [PMID: 30551569 PMCID: PMC6306856 DOI: 10.3390/ht7040039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
Precision oncologic medicine is an emerging approach for cancer treatment that has recently taken giant steps in solid clinical practice. Recent advances in molecular diagnostics that can analyze the individual tumor’s variability in genes have provided greater understanding and additional strategies to treat cancers. Although tumors can be tested by several molecular methods, the use of next-generation sequencing (NGS) has greatly facilitated our understanding of pediatric cancer and identified additional therapeutic opportunities. Pediatric tumors have a different genetic make-up, with a fewer number of actionable targets than adult tumors. Nevertheless, precision oncology in the pediatric population has greatly improved the survival of patients with leukemia and solid tumors. This review discusses the current status of pediatric precision oncology and the different clinical scenarios in which it can be effectively applied.
Collapse
|
25
|
Mallory N, Pierro J, Raetz E, Carroll WL. The potential of precision medicine for childhood acute lymphoblastic leukemia: opportunities and challenges. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1547108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nicole Mallory
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Joanna Pierro
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Elizabeth Raetz
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - William L. Carroll
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| |
Collapse
|
26
|
Pikman Y, Stegmaier K. Targeted therapy for fusion-driven high-risk acute leukemia. Blood 2018; 132:1241-1247. [PMID: 30049809 PMCID: PMC6148448 DOI: 10.1182/blood-2018-04-784157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
Despite continued progress in drug development for acute leukemias, outcomes for patients with some subtypes have not changed significantly in the last decade. Recurrent chromosomal translocations have long been recognized as driver events in leukemia, and many of these oncogenic fusions portend high-risk disease. Improved understanding of the molecular underpinnings of these fusions, coupled with novel chemistry approaches, now provide new opportunity for therapeutic inroads into the treatment of leukemia driven by these fusions.
Collapse
Affiliation(s)
- Yana Pikman
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA; and
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA; and
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| |
Collapse
|
27
|
Rahal Z, Abdulhai F, Kadara H, Saab R. Genomics of adult and pediatric solid tumors. Am J Cancer Res 2018; 8:1356-1386. [PMID: 30210910 PMCID: PMC6129500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023] Open
Abstract
Different types of cancers exhibit disparate spectra of genomic alterations (germline and/or somatic). These alterations can include single nucleotide variants (SNVs), copy number alterations (CNAs) or structural changes (e.g. gene fusions and chromosomal rearrangements). Identification of those genomic alterations has provided the opportune element to derive new strategies for molecular-based precision medicine of adult and pediatric cancers including risk assessment, non-invasive detection, molecular diagnosis and personalized therapy. Moreover, it is now becoming clear that the spectra of genomic-based alterations and mechanisms in pediatric malignancies are different from those predominantly occurring in adult cancer. Adult cancers on average exhibit substantially higher mutational burdens compared with the vast majority of childhood tumors. Accumulating evidence also suggests that the type of genomic alterations frequently encountered in adult cancers is different from those observed in pediatric malignancies. In this review, we discuss the state of knowledge on adult and pediatric cancer genomes (or "mutatomes"), specifically focusing on solid tumors. We present an overview of mutational signatures and processes in cancer as well as comprehensively compare and contrast the diverse spectra of genomic alterations (somatic and familial) among major adult and pediatric solid tumors. The review also discusses the role of genomics in molecular-based precision medicine of adult and pediatric solid malignancies as well as comprehending resistance mechanisms to various targeted therapies. In addition, we present a perspective that discusses upon emerging concepts in cancer genomics including intratumoral heterogeneity, the precancer (premalignant) genome as well as the interface between the host immune response and tumor genome - immunogenomics - as they relate to adult and pediatric tumors.
Collapse
Affiliation(s)
- Zahraa Rahal
- School of Medicine, American University of BeirutBeirut, Lebanon
| | - Farah Abdulhai
- School of Medicine, American University of BeirutBeirut, Lebanon
| | - Humam Kadara
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
- Department of Epidemiology, Division of Cancer Prevention, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Raya Saab
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of BeirutBeirut, Lebanon
- Department of Anatomy, Physiology and Cell Biology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|