1
|
Bednarska K, Chowdhury R, Tobin JWD, Swain F, Keane C, Boyle S, Khanna R, Gandhi MK. Epstein-Barr virus-associated lymphomas decoded. Br J Haematol 2024; 204:415-433. [PMID: 38155519 DOI: 10.1111/bjh.19255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rakin Chowdhury
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joshua W D Tobin
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Swain
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Nishio M, Saito M, Yoshimori M, Kumaki Y, Ohashi A, Susaki E, Yonese I, Sawada M, Arai A. Clinical significance of anti-Epstein-Barr virus antibodies in systemic chronic active Epstein-Barr virus disease. Front Microbiol 2024; 14:1320292. [PMID: 38260896 PMCID: PMC10800478 DOI: 10.3389/fmicb.2023.1320292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Systemic chronic active Epstein-Barr virus disease (sCAEBV) is a rare and fatal neoplasm, involving clonally proliferating Epstein-Barr virus (EBV)-infected T cells or natural killer cells. Patients with sCAEBV have abnormal titers of anti-EBV antibodies in their peripheral blood, but their significance is unknown. We retrospectively investigated titers and their relationship with the clinical features of sCAEBV using the data collected by the Japanese nationwide survey. Eighty-four patients with sCAEBV were analyzed. The anti-EBV nuclear antigen (EBNA) antibody, targeting EBNA-expressing EBV-positive cells, was found in 87.5% of children (<15 years old), 73.7% of adolescents and young adults (15-39 years old), and 100% of adults (≥40 years old). Anti-EBNA antibody titers were significantly lower and anti-VCA-IgG antibody titers significantly higher in patients with sCAEBV than those in healthy controls (p < 0.0001). Patients with high anti-VCA-IgG and anti-early antigen-IgG antibody (antibodies against the viral particles) levels had significantly better 3-year overall survival rates than those with low titers, suggesting that patients with sCAEBV have a reduced immune response to EBV-infected cells.
Collapse
Affiliation(s)
- Miwako Nishio
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Minori Saito
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mayumi Yoshimori
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Kumaki
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayaka Ohashi
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Eri Susaki
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ichiro Yonese
- Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Megumi Sawada
- Department of Nutrition, Tokyo Kasei University, Tokyo, Japan
| | - Ayako Arai
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Hematology and Oncology, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
3
|
Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer 2023; 18:7. [PMID: 36750846 PMCID: PMC9902840 DOI: 10.1186/s13027-023-00485-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Historically, COVID-19 emerges as one of the most devastating diseases of humankind, which creates an unmanageable health crisis worldwide. Until now, this disease costs millions of lives and continues to paralyze human civilization's economy and social growth, leaving an enduring damage that will take an exceptionally long time to repair. While a majority of infected patients survive after mild to moderate reactions after two to six weeks, a growing population of patients suffers for months with severe and prolonged symptoms of fatigue, depression, and anxiety. These patients are no less than 10% of total COVID-19 infected individuals with distinctive chronic clinical symptomatology, collectively termed post-acute sequelae of COVID-19 (PASC) or more commonly long-haul COVID. Interestingly, Long-haul COVID and many debilitating viral diseases display a similar range of clinical symptoms of muscle fatigue, dizziness, depression, and chronic inflammation. In our current hypothesis-driven review article, we attempt to discuss the molecular mechanism of muscle fatigue in long-haul COVID, and other viral diseases as caused by HHV6, Powassan, Epstein-Barr virus (EBV), and HIV. We also discuss the pathological resemblance of virus-triggered muscle fatigue with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Daniel Peterson
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Jan Armstrong
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Konstance Knox
- grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Avik Roy
- Simmaron Research INC, 948 Incline Way, Incline Village, NV, 89451, USA. .,Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. .,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI, 53186, USA.
| |
Collapse
|
4
|
Fournier B, Hoshino A, Bruneau J, Bachelet C, Fusaro M, Klifa R, Lévy R, Lenoir C, Soudais C, Picard C, Blanche S, Castelle M, Moshous D, Molina T, Defachelles AS, Neven B, Latour S. Inherited TNFSF9 deficiency causes broad Epstein-Barr virus infection with EBV+ smooth muscle tumors. J Exp Med 2022; 219:213262. [PMID: 35657354 PMCID: PMC9170382 DOI: 10.1084/jem.20211682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Epstein-Barr virus (EBV) can infect smooth muscle cells causing smooth muscle tumors (SMTs) or leiomyoma. Here, we report a patient with a heterozygous 22q11.2 deletion/DiGeorge syndrome who developed a unique, broad, and lethal susceptibility to EBV characterized by EBV-infected T and B cells and disseminated EBV+SMT. The patient also harbored a homozygous missense mutation (p.V140G) in TNFSF9 coding for CD137L/4-1BBL, the ligand of the T cell co-stimulatory molecule CD137/4-1BB, whose deficiency predisposes to EBV infection. We show that wild-type CD137L was up-regulated on activated monocytes and dendritic cells, EBV-infected B cells, and SMT. The CD137LV140G mutant was weakly expressed on patient cells or when ectopically expressed in HEK and P815 cells. Importantly, patient EBV-infected B cells failed to trigger the expansion of EBV-specific T cells, resulting in decreased T cell effector responses. T cell expansion was recovered when CD137L expression was restored on B cells. Therefore, these results highlight the critical role of the CD137-CD137L pathway in anti-EBV immunity, in particular in the control of EBV+SMT.
Collapse
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France
| | - Julie Bruneau
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Camille Bachelet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France
| | - Mathieu Fusaro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Roman Klifa
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Romain Lévy
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Stéphane Blanche
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Martin Castelle
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Despina Moshous
- Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Thierry Molina
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | | | - Bénédicte Neven
- Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Correspondence to Sylvain Latour:
| |
Collapse
|
5
|
Loss of GATA4 C-Terminus by p.S335X Mutation Modulates Coronary Artery Vascular Smooth Muscle Cell Phenotype. Mediators Inflamm 2021; 2021:3698386. [PMID: 34545275 PMCID: PMC8449727 DOI: 10.1155/2021/3698386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Coronary artery disease (CAD) has been the leading cause of morbidity and mortality worldwide, and its pathogenesis is closely related with the proliferation and migration of vascular smooth muscle cell (VSMC). We previously reported a truncated GATA4 protein lacking C-terminus induced by p.S335X mutation in cardiomyocyte from ventricular septal defect (VSD) patients. However, it is still unclear whether GATA4 p.S335X mutation could influence the development of CAD. GATA4 wild-type (WT) and p.S335X mutant (MU) overexpression plasmids were constructed and transfected transiently into rat coronary artery smooth muscle cell (RCSMC) to observe the proliferative and migratory abilities by MTS and wound healing assay, respectively. PCR array was used to preliminarily detect the expression of phenotypic modulation-related genes, and QRT-PCR was then carried out to verify the screened differentially expressed genes (DEGs). The results showed that, when stimulated by fetal bovine serum (10%) for 24 h or tumor necrosis factor-α (10 or 30 ng/ml) for 10 or 24 h, deletion of GATA4 C-terminus by p.S335X mutation in GATA4 enhanced the proliferation of RCSMC, without alteration of the migration capability. Twelve DEGs, including Fas, Hbegf, Itga5, Aimp1, Cxcl1, Il15, Il2rg, Il7, Tnfsf10, Il1r1, Irak1, and Tlr3, were screened and identified as phenotypic modulation-related genes. Our data might be beneficial for further exploration regarding the mechanisms of GATA4 p.S335X mutation on the phenotypic modulation of coronary VSMC.
Collapse
|
6
|
Shimizu M, Shimbo A, Takagi M, Eguchi K, Ishimura M, Sugita J, Morio T, Kanegane H. Successful treatment of joint and fascial chronic graft-versus-host disease with baricitinib. Rheumatology (Oxford) 2021; 61:e1-e3. [PMID: 34302457 DOI: 10.1093/rheumatology/keab599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masaki Shimizu
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Asami Shimbo
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Sugita
- Division of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
7
|
Fournier B, Latour S. Immunity to EBV as revealed by immunedeficiencies. Curr Opin Immunol 2021; 72:107-115. [PMID: 33989894 DOI: 10.1016/j.coi.2021.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus infection is the most common viral latent infection in humans and represents one prototypical model to study immunity to viral infections. In that respect, inborn errors of immunity (IEIs) or primary immunodeficiencies (PIDs) predisposing to severe and chronic EBV infections provide peculiar examples to decipher-specific molecular and cellular components involved in the immune control of EBV-infected cells. Herein, we discuss the recent knowledge and concepts arising from these studies, with a particular focus on 'atypical' EBV infections when EBV enters T, NK and smooth muscle cells, instead of the common 'typical' infection of B cells.
Collapse
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris, F75006 Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris, F75006 Paris, France.
| |
Collapse
|
8
|
Chronic Active Epstein-Barr Virus Infection: The Elucidation of the Pathophysiology and the Development of Therapeutic Methods. Microorganisms 2021; 9:microorganisms9010180. [PMID: 33467742 PMCID: PMC7829705 DOI: 10.3390/microorganisms9010180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) is a disease where Epstein-Barr virus (EBV)-infected T- or NK-cells are activated and proliferate clonally. The symptoms of this dual-faced disease include systemic inflammation and multiple organ failures caused by the invasion of infected cells: inflammation and neoplasm. At present, the only effective treatment strategy to eradicate EBV-infected cells is allogeneic stem cell transplantation. Lately, the investigation into the disease's pathogenic mechanism and pathophysiology has been advancing. In this review, I will evaluate the new definition in the 2017 WHO classification, present the advancements in the study of CAEBV, and unfold the future direction.
Collapse
|
9
|
Fujiwara S, Nakamura H. Chronic Active Epstein-Barr Virus Infection: Is It Immunodeficiency, Malignancy, or Both? Cancers (Basel) 2020; 12:cancers12113202. [PMID: 33143184 PMCID: PMC7692233 DOI: 10.3390/cancers12113202] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is a rare syndrome of unknown etiology characterized by prolonged infectious mononucleosis-like symptoms and proliferation of EBV-infected T and/or natural killer cells. CAEBV has been primarily reported in East Asia and Latin America, suggesting a genetic predisposition in its pathogenesis. The clinical course of CAEBV is heterogeneous ranging from an indolent and occasionally self-limiting disease to an aggressive and fatal condition, but its prognosis is generally poor. This heterogeneous clinical picture does not suggest a simple etiology for the syndrome. Clinicopathological investigations of CAEBV suggest that it has aspects of both malignant neoplasm and immunodeficiency. This article summarizes the latest findings on CAEBV and discusses critical unsolved questions regarding its pathogenesis and disease concept. Abstract Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is a rare syndrome characterized by prolonged infectious mononucleosis-like symptoms and elevated peripheral blood EBV DNA load in apparently immunocompetent persons. CAEBV has been primarily reported in East Asia and Latin America, suggesting a genetic predisposition in its pathogenesis. In most cases of CAEBV, EBV induces proliferation of its unusual host cells, T or natural killer (NK) cells. The clinical course of CAEBV is heterogeneous; some patients show an indolent course, remaining in a stable condition for years, whereas others show an aggressive course with a fatal outcome due to hemophagocytic lymphohistiocytosis, multiple organ failure, or progression to leukemia/lymphoma. The pathogenesis of CAEBV is unclear and clinicopathological investigations suggest that it has aspects of both malignant neoplasm and immunodeficiency. Recent genetic analyses of both viral and host genomes in CAEBV patients have led to discoveries that are improving our understanding of the nature of this syndrome. This article summarizes the latest findings on CAEBV and discusses critical unsolved questions regarding its pathogenesis and disease concept.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Correspondence:
| | - Hiroyuki Nakamura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| |
Collapse
|
10
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
11
|
Arcas-García A, Garcia-Prat M, Magallón-Lorenz M, Martín-Nalda A, Drechsel O, Ossowski S, Alonso L, Rivière JG, Soler-Palacín P, Colobran R, Sayós J, Martínez-Gallo M, Franco-Jarava C. The IL-2RG R328X nonsense mutation allows partial STAT-5 phosphorylation and defines a critical region involved in the leaky-SCID phenotype. Clin Exp Immunol 2020; 200:61-72. [PMID: 31799703 DOI: 10.1111/cei.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 01/10/2023] Open
Abstract
In addition to their detection in typical X-linked severe combined immunodeficiency, hypomorphic mutations in the interleukin (IL)-2 receptor common gamma chain gene (IL2RG) have been described in patients with atypical clinical and immunological phenotypes. In this leaky clinical phenotype the diagnosis is often delayed, limiting prompt therapy in these patients. Here, we report the biochemical and functional characterization of a nonsense mutation in exon 8 (p.R328X) of IL2RG in two siblings: a 4-year-old boy with lethal Epstein-Barr virus-related lymphoma and his asymptomatic 8-month-old brother with a Tlow B+ natural killer (NK)+ immunophenotype, dysgammaglobulinemia, abnormal lymphocyte proliferation and reduced levels of T cell receptor excision circles. After confirming normal IL-2RG expression (CD132) on T lymphocytes, signal transducer and activator of transcription-1 (STAT-5) phosphorylation was examined to evaluate the functionality of the common gamma chain (γc ), which showed partially preserved function. Co-immunoprecipitation experiments were performed to assess the interaction capacity of the R328X mutant with Janus kinase (JAK)3, concluding that R328X impairs JAK3 binding to γc . Here, we describe how the R328X mutation in IL-2RG may allow partial phosphorylation of STAT-5 through a JAK3-independent pathway. We identified a region of three amino acids in the γc intracellular domain that may be critical for receptor stabilization and allow this alternative signaling. Identification of the functional consequences of pathogenic IL2RG variants at the cellular level is important to enable clearer understanding of partial defects leading to leaky phenotypes.
Collapse
Affiliation(s)
- A Arcas-García
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Garcia-Prat
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Magallón-Lorenz
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - A Martín-Nalda
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - O Drechsel
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S Ossowski
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - L Alonso
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Hematopoietic Stem Cell Transplantation Unit, Pediatric Hematology and Oncology Department, Vall d'Hebron Campus Hospitalari, Barcelona, Spain
| | - J G Rivière
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - P Soler-Palacín
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - R Colobran
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Genetics Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - J Sayós
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Martínez-Gallo
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - C Franco-Jarava
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|