1
|
Chang SC, Eichinger CS, Field P. The natural history and burden of illness of metachromatic leukodystrophy: a systematic literature review. Eur J Med Res 2024; 29:181. [PMID: 38494502 PMCID: PMC10946116 DOI: 10.1186/s40001-024-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Metachromatic leukodystrophy (MLD; OMIM 250100 and 249900) is a rare lysosomal storage disease caused by deficient arylsulfatase A activity, leading to accumulation of sulfatides in the nervous system. This systematic literature review aimed to explore the effect of MLD on the lives of patients. METHODS The Ovid platform was used to search Embase, MEDLINE, and the Cochrane Library for articles related to the natural history, clinical outcomes, and burden of illness of MLD; congress and hand searches were performed using 'metachromatic leukodystrophy' as a keyword. Of the 531 publications identified, 120 were included for data extraction following screening. A subset of findings from studies relating to MLD natural history and burden of illness (n = 108) are presented here. RESULTS The mean age at symptom onset was generally 16-18 months for late-infantile MLD and 6-10 years for juvenile MLD. Age at diagnosis and time to diagnosis varied widely. Typically, patients with late-infantile MLD presented predominantly with motor symptoms and developmental delay; patients with juvenile MLD presented with motor, cognitive, and behavioral symptoms; and patients with adult MLD presented with cognitive symptoms and psychiatric and mood disorders. Patients with late-infantile MLD had more rapid decline of motor function over time and lower survival than patients with juvenile MLD. Commonly reported comorbidities/complications included ataxia, epilepsy, gallbladder abnormalities, incontinence, neuropathy, and seizures. CONCLUSIONS Epidemiology of MLD by geographic regions, quantitative cognitive data, data on the differences between early- and late-juvenile MLD, and humanistic or economic outcomes were limited. Further studies on clinical, humanistic (i.e., quality of life), and economic outcomes are needed to help inform healthcare decisions for patients with MLD.
Collapse
Affiliation(s)
- Shun-Chiao Chang
- Takeda Development Center Americas, Inc., 125 Binney Street, Cambridge, MA, USA.
| | | | | |
Collapse
|
2
|
Ramanzini LG, Frare JM, Lopes TF, Fighera MR. Developmental Delay, Hypomyelination, and Nystagmus: Case and Approach. Neuroophthalmology 2024; 48:369-372. [PMID: 39145320 PMCID: PMC11321408 DOI: 10.1080/01658107.2024.2329120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 08/16/2024] Open
Abstract
Pelizaeus-Merzbacher-like disease (PMLD, OMIM #608804) is an autosomal recessive hypomyelinating leukodystrophy caused by homozygous variants in the GJC2 gene. It usually presents in the first months of life with nystagmus, developmental delay, and diffuse hypomyelination on brain magnetic resonance imaging (MRI). We report a case of a 3-year-old boy that presented with nystagmus and global developmental delay. MRI showed diffuse hypomyelination, including the cerebellum. Pelizaeus-Merzbacher disease (PMD) was suspected; however, no pathological variants of the PLP1 gene were found. Exome sequencing found variants in the GJC2 gene, leading to a diagnosis of PMLD. The combination of global developmental delay, hypomyelination, and nystagmus in a child should raise suspicion of PMD and PMLD. Unlike PMD, however, hypomyelination of the brainstem and cerebellum are frequently seen and brainstem auditory evoked potentials are usually normal in PMLD. The latter has an overall better prognosis than the former as well. Epidemiological studies on leukodystrophies have found conflicting results on which disease is more common. However, PMLD is a rare leukodystrophy and both PMLD and PMD should be considered in any child with developmental delay, hypomyelination, and nystagmus.
Collapse
Affiliation(s)
- L. G. Ramanzini
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - J. M. Frare
- Graduated Program in Biological Science, Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - T. F. Lopes
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - M. R. Fighera
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
3
|
Nair LS, Nurul Jain JM, Dalal A, Ranganath P. Etiologic Spectrum of Pediatric-Onset Leukodystrophies and Genetic Leukoencephalopathies: The Five-Year Experience of a Tertiary Care Center in Southern India. Pediatr Neurol 2024; 152:130-152. [PMID: 38277958 DOI: 10.1016/j.pediatrneurol.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND White matter (WM) disorders with a genetic etiology are classified as leukodystrophies (LDs) and genetic leukoencephalopathies (GLEs). There are very few studies pertaining to the etiologic spectrum of these disorders in the Asian Indian population. METHODS This study was conducted over a period of five years from January 2016 to December 2020, in the medical genetics department of a tertiary care hospital in southern India. A total of 107 patients up to age 18 years, with a diagnosis of a genetic WM disorder confirmed by molecular genetic testing and/or metabolic testing, were included in the study and categorized into LD or GLE group as per the classification suggested by the Global Leukodystrophy Initiative consortium in 2015. RESULTS Forty-one patients were diagnosed to have LDs, and 66 patients had GLEs. The two most common LDs were metachromatic LD (16 patients) and X-linked adrenoleukodystrophy (seven patients). In the GLE group, lysosomal storage disorders were the most common (40 patients) followed by mitochondrial disorders (nine patients), with other metabolic disorders and miscellaneous conditions making up the rest. The clinical presentations, neuroimaging findings, and mutation spectrum of the patients in our cohort are discussed. CONCLUSIONS This is one of the largest cohorts of genetic WM disorders reported till date from the Asian Indian population. The etiologies and clinical presentations identified in our study cohort are similar to those found in other Indian studies as well as in studies based on other populations from different parts of the world.
Collapse
Affiliation(s)
- Lekshmi S Nair
- Senior Resident, Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Jamal Mohammed Nurul Jain
- Technical Officer, Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Ashwin Dalal
- Head, Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Prajnya Ranganath
- Additional Professor and Head, Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India; Adjunct Scientist, Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Su L, Peng M, Chen X, Wu S, Liu L. Severe Zellweger spectrum disorder due to a novel missense variant in the PEX13 gene: A case report and the literature review. Mol Genet Genomic Med 2024; 12:e2315. [PMID: 37962062 PMCID: PMC10767603 DOI: 10.1002/mgg3.2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Peroxisome biogenesis disorders (PBDs) are caused by variants in PEX genes that impair peroxisome function. Zellweger spectrum disorders (ZSDs) are the most severe and common subtype of PBDs, affecting multiple organ systems due to peroxisomal involvement in various metabolic functions. PEX13 gene variants are rare causes of ZSDs, with only 21 cases reported worldwide and none in China. METHODS We describe an infant with biochemically and molecularly confirmed ZSDs due to variants in the PEX13 gene, identified by whole exome sequencing and validated by Sanger sequencing. The patient's treatment and prognosis were followed up. We also reviewed the literature on previously reported cases with PEX13 variants. RESULTS The patient had severe hypotonia, seizures, hepatic dysfunction, failure to thrive, and dysmorphic features. Serum analysis revealed elevated levels of very long-chain fatty acids (VLCFA), phytanic acid, and pipecolic acid. We detected a novel homozygous missense variant c.493G>C (p. Ala165Pro) in the PEX13 gene (NM_002618.3), which caused severe clinical manifestations and was inherited from the consanguineous parents. The patient died at the age of 14 months. CONCLUSION We report the first case of ZSDs due to the PEX13 variant in China. Our findings broaden the mutational spectrum of the PEX13 gene and indicate that missense variants can lead to severe ZSDs phenotypes, which has implications for genotype-phenotype correlations and genetic counseling.
Collapse
Affiliation(s)
- Ling Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouP. R. China
| | - Min‐Zhi Peng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouP. R. China
| | - Xiao‐Dan Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouP. R. China
| | - Shuang Wu
- School of PediatricsGuangzhou Medical UniversityGuangzhouP. R. China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouP. R. China
| |
Collapse
|
5
|
Ashrafi M, Kameli R, Hosseinpour S, Razmara E, Zamani Z, Rezaei Z, Mashayekhi R, Pak N, Barzegar M, Azizimalamiri R, Kashani MR, Khosroshahi N, Rasulinezhad M, Heidari M, Amanat M, Abdi A, Mohammadi B, Mohammadi M, Zamani GR, Badv RS, Omrani A, Nikbakht S, Bereshneh AH, Movahedinia M, Moghaddam HF, Ardakani HS, Akbari MG, Tousi MB, Shahi MV, Hosseini F, Amouzadeh MH, Hosseini SA, Nikkhah A, Khajeh A, Alizadeh H, Yarali B, Rohani M, Karimi P, Elahi HML, Hosseiny SMM, Sadeghzadeh MS, Mohebbi H, Moghadam MH, Aryan H, Vahidnezhad H, Soveizi M, Rabbani B, Rabbani A, Mahdieh N, Garshasbi M, Tavasoli AR. High genetic heterogeneity of leukodystrophies in Iranian children: the first report of Iranian Leukodystrophy Registry. Neurogenetics 2023; 24:279-289. [PMID: 37597066 DOI: 10.1007/s10048-023-00730-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Leukodystrophies (LDs) are a heterogeneous group of progressive neurological disorders and characterized by primary involvement of white matter of the central nervous system (CNS). This is the first report of the Iranian LD Registry database to describe the clinical, radiological, and genomic data of Persian patients with leukodystrophies. From 2016 to 2019, patients suspicious of LDs were examined followed by a brain magnetic resonance imaging (MRI). A single gene testing or whole-exome sequencing (WES) was used depending on the neuroradiologic phenotypes. In a few cases, the diagnosis was made by metabolic studies. Based on the MRI pattern, diagnosed patients were divided into cohorts A (hypomyelinating LDs) versus cohort B (Other LDs). The most recent LD classification was utilized for classification of diagnosed patients. For novel variants, in silico analyses were performed to verify their pathogenicity. Out of 680 registered patients, 342 completed the diagnostic evaluations. In total, 245 patients met a diagnosis which in turn 24.5% were categorized in cohort A and the remaining in cohort B. Genetic tests revealed causal variants in 228 patients consisting of 213 variants in 110 genes with 78 novel variants. WES and single gene testing identified a causal variant in 65.5% and 34.5% cases, respectively. The total diagnostic rate of WES was 60.7%. Lysosomal disorders (27.3%; GM2-gangliosidosis-9.8%, MLD-6.1%, KD-4.5%), amino and organic acid disorders (17.15%; Canavan disease-4.5%, L-2-HGA-3.6%), mitochondrial leukodystrophies (12.6%), ion and water homeostasis disorders (7.3%; MLC-4.5%), peroxisomal disorders (6.5%; X-ALD-3.6%), and myelin protein disorders (3.6%; PMLD-3.6%) were the most commonly diagnosed disorders. Thirty-seven percent of cases had a pathogenic variant in nine genes (ARSA, HEXA, ASPA, MLC1, GALC, GJC2, ABCD1, L2HGDH, GCDH). This study highlights the most common types as well as the genetic heterogeneity of LDs in Iranian children.
Collapse
Affiliation(s)
- Mahmoudreza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Reyhaneh Kameli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Sareh Hosseinpour
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Zahra Zamani
- MD, MPH, Community Medicine Specialist, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Raziyeh Mashayekhi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Neda Pak
- Department of Radiology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Barzegar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nahideh Khosroshahi
- Department of Pediatric Neurology, Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinezhad
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Morteza Heidari
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Man Amanat
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Alireza Abdi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Bahram Mohammadi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolmajid Omrani
- Division of Clinical Studies, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sedigheh Nikbakht
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Ali Hosseini Bereshneh
- Prenatal Diagnosis and Genetic Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Movahedinia
- Department of Pediatric, Growth Disorders of Children Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Masood Ghahvechi Akbari
- Department of Physical Medicine and Rehabilitation, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Beiraghi Tousi
- Pediatric Ward, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Vafaee Shahi
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Firouzeh Hosseini
- Department of Pediatric Neurology, Hamedan University of Medical Sciences, Hamedan, Iran
| | | | - Seyed Ahmad Hosseini
- Department of Pediatric Neurology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Nikkhah
- Department of Pediatric Neurology, Mofid Children Hospital, Shahid Beheshti University of Medical, Tehran, Iran
| | - Ali Khajeh
- Children and Adolescence Research Center, Zahedan University of Medical Sciences, Zahedan, 000000321469345, Iran
| | - Hooman Alizadeh
- Department of Radiology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Yarali
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat-E-Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parviz Karimi
- Department of Pediatric Neurology, Ilam University of Medical Sciences, Ilam, Iran
| | - Hadi Montazer Lotf Elahi
- Department of Pediatric Neurology, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyyed Mohamad Mahdi Hosseiny
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Masoumeh Sadat Sadeghzadeh
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Hossein Mohebbi
- Department of Pediatric Neurology, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hajar Aryan
- Farhud Medical Genetic Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Mahdieh Soveizi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Al Ahmad Hwy, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran.
- Pediatric Headache Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
6
|
Muthusamy K, Sivadasan A, Dixon L, Sudhakar S, Thomas M, Danda S, Wszolek ZK, Wierenga K, Dhamija R, Gavrilova R. Adult-onset leukodystrophies: a practical guide, recent treatment updates, and future directions. Front Neurol 2023; 14:1219324. [PMID: 37564735 PMCID: PMC10410460 DOI: 10.3389/fneur.2023.1219324] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023] Open
Abstract
Adult-onset leukodystrophies though individually rare are not uncommon. This group includes several disorders with isolated adult presentations, as well as several childhood leukodystrophies with attenuated phenotypes that present at a later age. Misdiagnoses often occur due to the clinical and radiological overlap with common acquired disorders such as infectious, immune, inflammatory, vascular, metabolic, and toxic etiologies. Increased prevalence of non-specific white matter changes in adult population poses challenges during diagnostic considerations. Clinico-radiological spectrum and molecular landscape of adult-onset leukodystrophies have not been completely elucidated at this time. Diagnostic approach is less well-standardized when compared to the childhood counterpart. Absence of family history and reduced penetrance in certain disorders frequently create a dilemma. Comprehensive evaluation and molecular confirmation when available helps in prognostication, early initiation of treatment in certain disorders, enrollment in clinical trials, and provides valuable information for the family for reproductive counseling. In this review article, we aimed to formulate an approach to adult-onset leukodystrophies that will be useful in routine practice, discuss common adult-onset leukodystrophies with usual and unusual presentations, neuroimaging findings, recent advances in treatment, acquired mimics, and provide an algorithm for comprehensive clinical, radiological, and genetic evaluation that will facilitate early diagnosis and consider active treatment options when available. A high index of suspicion, awareness of the clinico-radiological presentations, and comprehensive genetic evaluation are paramount because treatment options are available for several disorders when diagnosed early in the disease course.
Collapse
Affiliation(s)
- Karthik Muthusamy
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Ajith Sivadasan
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Luke Dixon
- Department of Radiology, Imperial College, NHS Trust, London, United Kingdom
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Maya Thomas
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Klaas Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Radhika Dhamija
- Department of Clinical Genomics and Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Ralitza Gavrilova
- Department of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Wu C, Wang M, Wang X, Li W, Li S, Chen B, Niu S, Tai H, Pan H, Zhang Z. The genetic and phenotypic spectra of adult genetic leukoencephalopathies in a cohort of 309 patients. Brain 2023; 146:2364-2376. [PMID: 36380532 PMCID: PMC10232248 DOI: 10.1093/brain/awac426] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 08/12/2023] Open
Abstract
Genetic leukoencephalopathies (gLEs) are a highly heterogeneous group of rare genetic disorders. The spectrum of gLEs varies among patients of different ages. Distinct from the relatively more abundant studies of gLEs in children, only a few studies that explore the spectrum of adult gLEs have been published, and it should be noted that the majority of these excluded certain gLEs. Thus, to date, no large study has been designed and conducted to characterize the genetic and phenotypic spectra of gLEs in adult patients. We recruited a consecutive series of 309 adult patients clinically suspected of gLEs from Beijing Tiantan Hospital between January 2014 and December 2021. Whole-exome sequencing, mitochondrial DNA sequencing and repeat analysis of NOTCH2NLC, FMR1, DMPK and ZNF9 were performed for patients. We describe the genetic and phenotypic spectra of the set of patients with a genetically confirmed diagnosis and summarize their clinical and radiological characteristics. A total of 201 patients (65%) were genetically diagnosed, while 108 patients (35%) remained undiagnosed. The most frequent diseases were leukoencephalopathies related to NOTCH3 (25%), NOTCH2NLC (19%), ABCD1 (9%), CSF1R (7%) and HTRA1 (5%). Based on a previously proposed pathological classification, the gLEs in our cohort were divided into leukovasculopathies (35%), leuko-axonopathies (31%), myelin disorders (21%), microgliopathies (7%) and astrocytopathies (6%). Patients with NOTCH3 mutations accounted for 70% of the leukovasculopathies, followed by HTRA1 (13%) and COL4A1/2 (9%). The leuko-axonopathies contained the richest variety of associated genes, of which NOTCH2NLC comprised 62%. Among myelin disorders, demyelinating leukoencephalopathies (61%)-mainly adrenoleukodystrophy and Krabbe disease-accounted for the majority, while hypomyelinating leukoencephalopathies (2%) were rare. CSF1R was the only mutated gene detected in microgliopathy patients. Leukoencephalopathy with vanishing white matter disease due to mutations in EIF2B2-5 accounted for half of the astrocytopathies. We characterized the genetic and phenotypic spectra of adult gLEs in a large Chinese cohort. The most frequently mutated genes were NOTCH3, NOTCH2NLC, ABCD1, CSF1R and HTRA1.
Collapse
Affiliation(s)
- Chujun Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Mengwen Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 350005 Fuzhou, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Shaowu Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| |
Collapse
|
8
|
Alfadhel M, Umair M, Alghamdi MA, Al Fakeeh K, Al Qahtani AT, Farahat A, Shalaby MA, Kari JA, Raina R, Cochat P, Alhasan KA. Clinical and molecular characterization of a large primary hyperoxaluria cohort from Saudi Arabia: a retrospective study. Pediatr Nephrol 2022; 38:1801-1810. [PMID: 36409364 PMCID: PMC10154271 DOI: 10.1007/s00467-022-05784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Primary hyperoxalurias (PHs) constitute rare disorders resulting in abnormal glyoxalate metabolism. PH-associated phenotypes range from progressive nephrocalcinosis and/or recurrent urolithiasis to early kidney failure. METHODS A retrospective study was conducted for patients with confirmed PH diagnoses from three tertiary centers in Saudi Arabia. Detailed clinical molecular diagnosis was performed for 25 affected individuals. Whole exome sequencing (WES)-based molecular diagnosis was performed for all affected individuals. RESULTS The male:female ratio was 52% male (n = 13) and 48% female (n = 12), and consanguinity was present in 88%. Nephrolithiasis and/or nephrocalcinosis were present in all patients. Kidney stones were present in 72%, nephrocalcinosis in 60%, hematuria in 32%, proteinuria in 16%, abdominal pain in 36%, developmental delay in 8%, and chronic kidney disease stage 5 (CKD stage 5) was observed in 28% of the patients. The most common PH disorder was type I caused by variants in the AGXT gene, accounting for 56%. The GRHPR gene variants were identified in 4 patients, 16% of the total cases. Seven patients did not reveal any associated variants. Missense variants were the most commonly observed variants (48%), followed by frame-shift duplication variants (28%). CONCLUSIONS Characterization of the genetic and clinical aspects of PH in this unique population provides direction for improved patient management and further research. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Majid Alfadhel
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia. .,Medical Genomic Research Department, King Abdullah International Medical Research Center(KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia.
| | - Muhammad Umair
- Medical Genomic Research Department, King Abdullah International Medical Research Center(KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Malak A Alghamdi
- Medical Genetic Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Al Fakeeh
- Nephrology Division, Department of Pediatrics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Abdullah T Al Qahtani
- Nephrology Division, Department of Pediatrics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Afrah Farahat
- Division of Nephrology, Department of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Shalaby
- Pediatric Nephrology Center of Excellence, King Abdulaziz University Hospital, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jameela A Kari
- Pediatric Nephrology Center of Excellence, King Abdulaziz University Hospital, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rupesh Raina
- Department of Nephrology, Cleveland Clinic Akron General and Akron Childrens Hospital, Akron, OH, USA
| | - Pierre Cochat
- Centre de Référence Des Maladies Rénales Rares Néphrogones, Hospices Civils de Lyon & Université Claude-Bernard Lyon 1, Lyon, France
| | - Khalid A Alhasan
- Division of Nephrology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Division of Pediatric Kidney Transplant, Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Alyafee Y, Al Tuwaijri A, Umair M, Alharbi M, Haddad S, Ballow M, Alayyar L, Alam Q, Althenayyan S, Al Ghilan N, Al Khaldi A, Faden MS, Al Sufyan H, Alfadhel M. Non-invasive prenatal testing for autosomal recessive disorders: A new promising approach. Front Genet 2022; 13:1047474. [PMID: 36406136 PMCID: PMC9669374 DOI: 10.3389/fgene.2022.1047474] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background: In pregnant women at risk of autosomal recessive (AR) disorders, prenatal diagnosis of AR disorders primarily involves invasive procedures, such as chorionic villus sampling and amniocentesis. Methods: We collected blood samples from four pregnant women in their first trimester who presented a risk of having a child with an AR disorder. Cell-free DNA (cfDNA) was extracted, amplified, and double-purified to reduce maternal DNA interference. Additionally, whole-genome amplification was performed for traces of residual purified cfDNA for utilization in subsequent applications. Results: Based on our findings, we detected the fetal status with the family corresponding different genes, i.e., LZTR1, DVL2, HBB, RNASEH2B, and MYO7A, as homozygous affected, wild-type, and heterozygous carriers, respectively. Results were subsequently confirmed by prenatal amniocentesis. The results of AmpFLSTR™ Identifiler™ presented a distinct profile from the corresponding mother profile, thereby corroborating the result reflecting the genetic material of the fetus. Conclusion: Herein, we detected AR disease mutations in the first trimester of pregnancy while surmounting limitations associated with maternal genetic material interference. Importantly, such detection strategies would allow the screening of pregnant women for common AR diseases, especially in highly consanguineous marriage populations. This technique would open avenues for the early detection and prevention of recessive diseases among the population.
Collapse
Affiliation(s)
- Yusra Alyafee
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mashael Alharbi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shahad Haddad
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Maryam Ballow
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Latifah Alayyar
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Qamre Alam
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Saleh Althenayyan
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nadia Al Ghilan
- Maternal Fetal Medicine Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Aziza Al Khaldi
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Majid S. Faden
- Department of Obstetrics and Gynaecology, Maternal Fetal Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hamad Al Sufyan
- Assisted Reproductive Technology Laboratories, Thuriah Medical Center, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children’s Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, MNG-HA, Riyadh, Saudi Arabia
- *Correspondence: Majid Alfadhel,
| |
Collapse
|
10
|
Al Hawsawi K, Al Jabri M, Dajam MS, Almahdi B, Alhawsawi WK, Abbas S, Al Tuwaijri A, Umair M, Alfadhel M, Al-Khenaizan S. Case Report: Bi-allelic missense variant in the desmocollin 3 gene causes hypotrichosis and recurrent skin vesicles. Front Genet 2022; 13:994509. [PMID: 36061207 PMCID: PMC9428628 DOI: 10.3389/fgene.2022.994509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hypotrichosis with Recurrent Skin Vesicles (HYPTSV) is an extremely rare condition, having autosomal recessive inheritance. Here in we report a 4-years- old Saudi boy who presented with a history of recurrent skin blisters that are localized to the extremities and hypotrichosis since birth.Methods: The present study describes a consanguineous Saudi family segregating HYPTSV in an autosomal recessive fashion. A single proband (II-1) exhibited features such as diffused non-scarring alopecia on the scalp, intraepidermal blister, post-inflammatory hyperpigmented macules, and follicular hyperkeratosis. DNA of the index was subjected to whole-genome sequencing (WGS). Furthermore, 3D protein modeling was performed for the mutated and normal protein.Results: WGS revealed a novel bi-allelic missense variant (c.154G>C; p. Val52Leu) in the DSC3 gene, which segregated perfectly using Sanger sequencing. In addition, 3D protein modeling revealed a substantial change in the mutated DSC3 protein as compared to the normal DSC3 protein.Conclusion: This is the 3rd novel variant reported in the DSC3 gene associated with the HYPTSV phenotype. This report further strengthens the evidence that bi-allelic variants in the DSC3 cause severe HYPTSV in humans.
Collapse
Affiliation(s)
- Khalid Al Hawsawi
- Dermatology Department, King Abdulaziz Hospital, Makkah, Saudi Arabia
| | - Mazin Al Jabri
- Dermatology Department, Hera General Hospital, Makkah, Saudi Arabia
| | - Mazen S Dajam
- Dermatology Department, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Bashaer Almahdi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Waseem K Alhawsawi
- Dermatology Department, King Fahad Hospital of The University, Al Khobar, Saudi Arabia
| | - Safdar Abbas
- Department of Biological Science, Dartmouth College, Hanover, NH, United States
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sultan Al-Khenaizan
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Department of Dermatology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Alfadhel M, Abadel B, Almaghthawi H, Umair M, Rahbeeni Z, Faqeih E, Almannai M, Alasmari A, Saleh M, Eyaid W, Alfares A, Al Mutairi F. HMG-CoA Lyase Deficiency: A Retrospective Study of 62 Saudi Patients. Front Genet 2022; 13:880464. [PMID: 35646072 PMCID: PMC9136170 DOI: 10.3389/fgene.2022.880464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMG-CoA lyase) is a rare inborn error of leucine degradation and ketone body synthesis, caused by homozygous or compound heterozygous disease-causing variants in HMGCL. To understand the natural history of this disease, we reviewed the biochemical, clinical, and molecular data of 62 patients from 54 different families with confirmed HMG-CoA lyase deficiency (HMGCLD) diagnosis from Saudi Arabia. The majority of the affected individuals were symptomatic. At initial diagnosis, 38 patients (61.29%) presented with hypoglycemia and 49 patients (79.03%) developed metabolic acidosis. In 27 patients (43.54%), the disorder manifested in the neonatal period, mostly within the first days of life, while 35 (56.45%) patients were diagnosed within the first year of life or beyond. All the patients were alive and developed long-term neurological complications during data collection, which may significantly influence their quality of life. Common neurological findings include seizures 17/62 (27.41%), hypotonic 3/62 (4.83%), speech delay 7/62 (11.29%), hyperactivity 4/62 (4.83%), developmental delay 6/62 (9.677%), learning disability 15/62 (24.14%), and ataxic gate 1/62 (1.612%). An MRI of the brain exhibited nonspecific periventricular and deep white matter hyperintense signal changes in 16 patients (25.80%) and cerebral atrophy was found in one (1/62; 1.612%) patient. We identified a founder variant [c.122G>A; p.(Arg41Gln)] in 48 affected individuals (77.41%) in the HMGCL gene. This is the largest cohort of HMGCLD patients reported from Saudi Arabia, signifying this disorder as a likely life-threatening disease, with a high prevalence in the region. Our findings suggest that diagnosis at an early stage with careful dietary management may avoid metabolic crises.
Collapse
Affiliation(s)
- Majid Alfadhel
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City MNG-HA, Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- *Correspondence: Majid Alfadhel,
| | - Basma Abadel
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City MNG-HA, Riyadh, Saudi Arabia
| | - Hind Almaghthawi
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City MNG-HA, Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City MNG-HA, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Section of Medical Genetics, Children’s Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Saleh
- Section of Medical Genetics, Children’s Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wafaa Eyaid
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City MNG-HA, Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Department of Pediatrics, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Division of Translational Pathology, Department of Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City MNG-HA, Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Ullah A, Lin Z, Younus M, Shafiq S, Khan S, Rasheed M, Mahmood A, Alqosaibi AI, Alshehri MA, Khan A, Umair M. Homozygous missense variant in POPDC3 causes recessive limb girdle muscular dystrophy type 26. J Gene Med 2022; 24:e3412. [PMID: 35075722 DOI: 10.1002/jgm.3412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy (LGMD) is a heterogeneous group of diseases, which affects different muscles, predominantly skeletal muscles and cardiac muscles of the body. LGMD is classified into two main sub-types A and B, which are further sub-classified into eight dominant and thirty recessive sub-types. Three genes, mainly POPDC1, POPDC2 and POPDC3, encodes popeye domain-containing protein (POPDC), and the variants of POPDC1 and POPDC3 genes have been associated with LGMD. METHODS In this study, we performed whole-exome sequencing (WES) analysis on a single-family to investigate the hallmark features of LGMD. The results of WES were further confirmed by Sanger sequencing and 3D protein modeling was also performed. RESULTS WES data analysis and sanger sequencing revealed a homozygous missense variant (c.460A>G; p.Lys154Glu) at a highly conserved amino acid position in the POPDC3. Mutations in the POPDC3 gene have been previously associated with recessive limb-girdle muscular dystrophy type 26. 3D protein modeling further suggested that the identified variant might affect the POPDC3 structure and proper function. DISCUSSION/CONCLUSIONS This study confirms the role of POPDC3 in LGMD, and will facilitate in genetic counseling of the family to mitigate the risks of the carrier or affected in future pregnancies.
Collapse
Affiliation(s)
- Anwar Ullah
- Khyber Medical University Institute of Paramedical Science Peshawar
| | - Zhaohan Lin
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Shazia Khan
- Department of Biological Sciences, International Islamic University Islamabad, H-10, Islamabad, Pakistan
| | - Memoona Rasheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Amany I Alqosaibi
- Medical Genetics Laboratory Science, College of Applied medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Amjad Khan
- Faculty of Science, Department of Biological Sciences, University of Lakki Marwat, Pakistan
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
13
|
Kaur P, do Rosario MC, Hebbar M, Sharma S, Kausthubham N, Nair K, Shrikiran A, Bhat Y R, Lewis LES, Nampoothiri S, Patil SJ, Suresh N, Bijarnia Mahay S, Dua Puri R, Pai S, Kaur A, KC R, Kamath N, Bajaj S, Kumble A, Shetty R, Shenoy R, Kamate M, Shah H, Muranjan MN, BL Y, Avabratha KS, Subramaniam G, Kadavigere R, Bielas S, Girisha KM, Shukla A. Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities. Clin Genet 2021; 100:542-550. [PMID: 34302356 PMCID: PMC8918360 DOI: 10.1111/cge.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - A Shrikiran
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ramesh Bhat Y
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leslie Edward S Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - SJ Patil
- Division of Genetics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Narayanaswami Suresh
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Shivanand Pai
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anupriya Kaur
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakshith KC
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shruti Bajaj
- Jaslok Hospital and Research Centre, Mumbai, India
| | - Ali Kumble
- Department of Paediatrics, Indiana Hospital and Heart Institute, Mangalore, India
| | | | - Rathika Shenoy
- Department of Paediatrics, K.S. Hegde Medical Academy, NITTE University, Mangalore, India
| | - Mahesh Kamate
- Department of Paediatrics, Jawaharlal Nehru Medical College, Belgaum, India
| | - Hitesh Shah
- Department of Orthopaedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mamta N Muranjan
- Department of Pediatrics, Genetics Division, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Yatheesha BL
- Dheemahi Child Neurology and Development Center, Shimoga, India
| | | | | | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|