1
|
Kuek S, McCullagh A, Paul E, Armstrong D. Real world outcomes of CFTR modulator therapy in Australian adults and children. Pulm Pharmacol Ther 2023; 82:102247. [PMID: 37574040 DOI: 10.1016/j.pupt.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Recent advances in CFTR modulator therapy have the potential to change the face of cystic fibrosis (CF). This retrospective observational study describes real world experience of the four available CFTR modulators in adults and children with CF in a single centre in Melbourne, Australia. METHOD Data were collected for all patients treated with CFTR modulators at MonashCF between May 2012 and September 2020. Primary outcomes included lung function, admission days and BMI/BMI centile over time. Adverse events and reasons for changing or ceasing medications were also analysed. RESULTS 55% (74/133) adult and 46% (55/119) paediatric patients were treated with CFTR modulators. FEV1 increased in adults treated with ivacaftor (IVA) and elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) by 4.73% and 10.07% respectively, and BMI also improved in these groups. Nutrition improved in adults and children treated with lumacaftor/ivacaftor (LUM/IVA). There was no significant improvement in FEV1 or admission days with LUM/IVA or tezacaftor/ivacaftor (TEZ/IVA). 36% (31/85) ceased LUM/IVA, due to adverse effects in 81% (25/31). Of these, 92% (23/25) changed to TEZ/IVA, 78% (18/23) without significant adverse effects. CONCLUSIONS Our findings for LUM/IVA and TEZ/IVA are less encouraging than those seen in clinical trials, with no significant improvement in lung function or admission days and a higher rate of adverse effects with LUM/IVA compared with phase 3 clinical trials. TEZ/IVA was generally well tolerated by those who experienced side effects with LUM/IVA. The small number of patients treated with ELX/TEZ/IVA had improvements in all parameters. These findings support ongoing use of IVA for individuals with gating mutations, and transition to ELX/TEZ/IVA once available for patients with at least one Phe508del mutation.
Collapse
Affiliation(s)
- Stephanie Kuek
- Department of Respiratory Medicine, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| | - Angela McCullagh
- Department of Respiratory Medicine, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Eldho Paul
- Monash Centre for Health Research and Implementation, Monash University, 43-51 Kanooka Grove, Clayton, VIC, 3168, Australia
| | - David Armstrong
- Department of Respiratory Medicine, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia; Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| |
Collapse
|
2
|
McNally P, Linnane B, Williamson M, Elnazir B, Short C, Saunders C, Kirwan L, David R, Kemner-Van de Corput MPC, Tiddens HAWM, Davies JC, Cox DW. The clinical impact of Lumacaftor-Ivacaftor on structural lung disease and lung function in children aged 6-11 with cystic fibrosis in a real-world setting. Respir Res 2023; 24:199. [PMID: 37568199 PMCID: PMC10416528 DOI: 10.1186/s12931-023-02497-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Data from clinical trials of lumacaftor-ivacaftor (LUM-IVA) demonstrate improvements in lung clearance index (LCI) but not in FEV1 in children with Cystic Fibrosis (CF) aged 6-11 years and homozygous for the Phe508del mutation. It is not known whether LUM/IVA use in children can impact the progression of structural lung disease. We sought to determine the real-world impact of LUM/IVA on lung structure and function in children aged 6-11 years. METHODS This real-world observational cohort study was conducted across four paediatric sites in Ireland over 24-months using spirometry-controlled CT scores and LCI as primary outcome measures. Children commencing LUM-/IVA as part of routine care were included. CT scans were manually scored with the PRAGMA CF scoring system and analysed using the automated bronchus-artery (BA) method. Secondary outcome measures included rate of change of ppFEV1, nutritional indices and exacerbations requiring hospitalisation. RESULTS Seventy-one participants were recruited to the study, 31 of whom had spirometry-controlled CT performed at baseline, and after one year and two years of LUM/IVA treatment. At two years there was a reduction from baseline in trapped air scores (0.13 to 0.07, p = 0.016), but an increase from baseline in the % bronchiectasis score (0.84 to 1.23, p = 0.007). There was no change in overall % disease score (2.78 to 2.25, p = 0.138). Airway lumen to pulmonary artery ratios (AlumenA ratio) were abnormal at baseline and worsened over the course of the study. In 28 participants, the mean annual change from baseline LCI2.5 (-0.055 (-0.61 to 0.50), p = 0.85) measurements over two years were not significant. Improvements from baseline in weight (0.10 (0.06 to 0.15, p < 0.0001), height (0.05 (0.02 to 0.09), p = 0.002) and BMI (0.09 (0.03 to 0.15) p = 0.005) z-scores were seen with LUM/IVA treatment. The mean annual change from baseline ppFEV1 (-2.45 (-4.44 to 2.54), p = 0.66) measurements over two years were not significant. CONCLUSION In a real-world setting, the use of LUM/IVA over two years in children with CF aged 6-11 resulted in improvements in air trapping on CT but worsening in bronchiectasis scores. Our results suggest that LUM/IVA use in this age group improves air trapping but does not prevent progression of bronchiectasis over two years of treatment.
Collapse
Affiliation(s)
- Paul McNally
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Barry Linnane
- University of Limerick School of Medicine, Limerick, Ireland
| | - Michael Williamson
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Basil Elnazir
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
- Trinity College, Dublin, Ireland
| | - Christopher Short
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Clare Saunders
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Laura Kirwan
- Cystic Fibrosis Registry of Ireland, Dublin, Ireland
| | - Rea David
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Mariette P C Kemner-Van de Corput
- Department of Paediatric Pulmonology and Allergology, Department of Radiology and Nuclear Medicine, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Jane C Davies
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Des W Cox
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland.
- University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Bui S, Delhaes L, Dournes G, Reix P, Fayon MJ. Editorial: New insights into caring for pediatric patients with cystic fibrosis. Front Pediatr 2023; 11:1243496. [PMID: 37635799 PMCID: PMC10450029 DOI: 10.3389/fped.2023.1243496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Stephanie Bui
- Paediatric Cystic Fibrosis Reference Center (CRCM), Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux University Hospital, Bordeaux, France
| | - Laurence Delhaes
- Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux University Hospital, Bordeaux, France
- Service de Parasitologie-Mycologie, UMR 12 19, U1045, Bordeaux University Hospital, Bordeaux, France
| | - Gael Dournes
- Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux University Hospital, Bordeaux, France
- Service d’Imagerie Thoracique et Cardiovasculaire, Bordeaux University Hospital, Bordeaux, France
| | - Philippe Reix
- Lyon University Hospital, Hospices Civils de Lyon, Lyon, France
- Paediatric Cystic Fibrosis Reference Center (CRCM), UMR 5558, Centre National de Recherche Scientifique (CNRS), Lyon, France
| | - Michael John Fayon
- Paediatric Cystic Fibrosis Reference Center (CRCM), Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
4
|
Schütz K, Pallenberg ST, Kontsendorn J, DeLuca D, Sukdolak C, Minso R, Büttner T, Wetzke M, Dopfer C, Sauer-Heilborn A, Ringshausen FC, Junge S, Tümmler B, Hansen G, Dittrich AM. Spirometric and anthropometric improvements in response to elexacaftor/tezacaftor/ivacaftor depending on age and lung disease severity. Front Pharmacol 2023; 14:1171544. [PMID: 37469865 PMCID: PMC10352657 DOI: 10.3389/fphar.2023.1171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: Triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) was introduced in August 2020 in Germany for people with CF (pwCF) ≥12 years (yrs.) of age and in June 2021 for pwCF ≥6 yrs of age. In this single-center study, we analyzed longitudinal data on the percent-predicted forced expiratory volume (ppFEV1) and body-mass-index (BMI) for 12 months (mo.) after initiation of ETI by linear mixed models and regression analyses to identify age- and severity-dependent determinants of response to ETI. Methods: We obtained data on 42 children ≥6-11 yrs, 41 adolescents ≥12-17 yrs, and 143 adults by spirometry and anthropometry prior to ETI, and 3 and 12 mo. after ETI initiation. Data were stratified by the age group and further sub-divided into age-specific ppFEV1 impairment. To achieve this, the age strata were divided into three groups, each according to their baseline ppFEV1: lowest 25%, middle 50%, and top 25% of ppFEV1. Results: Adolescents and children with more severe lung disease prior to ETI (within the lowest 25% of age-specific ppFEV1) showed higher improvements in lung function than adults in this severity group (+18.5 vs. +7.5; p = 0.002 after 3 mo. and +13.8 vs. +7.2; p = 0.012 after 12 mo. of ETI therapy for ≥12-17 years and +19.8 vs. +7.5; p = 0.007 after 3 mo. for children ≥6-11 yrs). In all age groups, participants with more severe lung disease showed higher BMI gains than those with medium or good lung function (within the middle 50% or top 25% of age-specific ppFEV1). Regression analyses identified age as a predictive factor for FEV1 increase at 3 mo. after ETI initiation, and age and ppFEV1 at ETI initiation as predictive factors for FEV1 increase 12 mo. after ETI initiation. Discussion: We report initial data, which suggest that clinical response toward ETI depends on age and lung disease severity prior to ETI initiation, which argue for early initiation of ETI.
Collapse
Affiliation(s)
- Katharina Schütz
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sophia Theres Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Julia Kontsendorn
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - David DeLuca
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Cinja Sukdolak
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Tina Büttner
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Sibylle Junge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Enaud R, Lussac-Sorton F, Charpentier E, Velo-Suárez L, Guiraud J, Bui S, Fayon M, Schaeverbeke T, Nikolski M, Burgel PR, Héry-Arnaud G, Delhaes L. Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization. Microbiol Spectr 2023:e0225122. [PMID: 36971560 PMCID: PMC10100832 DOI: 10.1128/spectrum.02251-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The management of cystic fibrosis has been transformed recently by the advent of CFTR modulators, including lumacaftor-ivacaftor. However, the effects of such therapies on the airway ecosystem, particularly on the microbiota-mycobiota and local inflammation, which are involved in the evolution of pulmonary damage, are unclear.
Collapse
|
6
|
Gaschignard M, Beaufils F, Lussac-Sorton F, Gallet P, Clouzeau H, Menard J, Costanzo A, Nouard L, Delhaes L, Tetard C, Lamireau T, Fayon M, Bui S, Enaud R. Nutritional impact of CFTR modulators in children with cystic fibrosis. Front Pediatr 2023; 11:1130790. [PMID: 37063653 PMCID: PMC10091219 DOI: 10.3389/fped.2023.1130790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023] Open
Abstract
Background Nutritional status is a major prognostic factor for breathing and the survival of patients with cystic fibrosis (CF). Since 2012, the development of CFTR modulators has considerably transformed the outcome of this disease. Indeed, both lung function and body mass index are improved by CFTR modulators, such as Lumacaftor/Ivacaftor. However, few data exist regarding the outcome of nutritional intakes under Lumacaftor/Ivacaftor. Methods We conducted a prospective single-center study in children with CF treated with Lumacaftor/Ivacaftor to evaluate their nutritional intake before and after treatment. Results Thirty-four children were included in this study, with a median age of 12.4 years [11.9; 14.7]. There was no significant improvement in weight, height or BMI. Patients' total energy intake was not significantly changed with Lumacaftor/Ivacaftor, while carbohydrate intakes decreased significantly. We found that blood levels of vitamin E and Selenium were significantly increased under Lumacaftor/Ivacaftor, without a significant increase in supplementation. In patients with a BMI Z-score < 0 at treatment initiation, there was a significant improvement in weight and BMI Z-score, while TEI and carbohydrate intakes were significantly lower. Conclusion We showed that treatment with Lumacaftor/Ivacaftor improved the nutritional status of patients without necessarily being associated with an increase in nutritional intake. Although these data need to be confirmed in larger cohorts, they support the hypothesis that weight gain under modulators is multifactorial, and may be related to a decrease in energy expenditure or an improvement in absorption.
Collapse
Affiliation(s)
- Margaux Gaschignard
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Fabien Beaufils
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux University, Bordeaux, France
| | - Florian Lussac-Sorton
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux University, Bordeaux, France
| | - Pauline Gallet
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Haude Clouzeau
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Joris Menard
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Aurélie Costanzo
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Lucie Nouard
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Laurence Delhaes
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux University, Bordeaux, France
| | - Candice Tetard
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Thierry Lamireau
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Michael Fayon
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux University, Bordeaux, France
| | - Stéphanie Bui
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux University, Bordeaux, France
| | - Raphaël Enaud
- Bordeaux University Hospital, Hôpital Pellegrin-Enfants, Paediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux University, Bordeaux, France
- Correspondence: Raphaël Enaud
| |
Collapse
|
7
|
Beaufils F, Enaud R, Gallode F, Boucher G, Macey J, Berger P, Fayon M, Bui S. Adherence, reliability, and variability of home spirometry telemonitoring in cystic fibrosis. Front Pediatr 2023; 11:1111088. [PMID: 36911035 PMCID: PMC9998040 DOI: 10.3389/fped.2023.1111088] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Forced spirometry is the gold standard to assess lung function, but its accessibility may be limited. By contrast, home spirometry telemonitoring allows a multi-weekly lung function follow-up but its real-life adherence, reliability, and variability according to age have been poorly studied in patients with CF (PwCF). We aimed to compare real-life adherence, reliability and variability of home spirometry between children, teenagers and adults with CF. Methods This real-life observational study included PwCF followed for six months in whom lung function (i.e, forced expiratory volume maximum in 1 s (FEV1), forced vital capacity (FVC), forced mid-expiratory flow (FEF) and FEV1/FVC ratio) was monitored by both conventional and home spirometry between July 2015 and December 2021. The adherence, reliability and variability of home spirometry was assessed in all PwCF and compared between children (<12years old), teenagers (12-18 years old) and adults. Results 174 PwCF were included (74 children, 43 teenagers and 57 adults). Home spirometry was used at least one time per week by 64.1 ± 4.9% PwCF, more frequently in children and teenagers than in adults (79.4 ± 2.9%, 69.2 ± 5.5% and 40.4 ± 11.5% respectively). The reliability to conventional lung function testing was good for all assessed parameters (e.g., FEV1: r = 0.91, p < 0.01) and the variability over the 6 months of observation was low (FEV1 coefficient of variation = 11.5%). For each parameter, reliability was better, and the variability was lower in adults than in teenagers than in children. Conclusion Home spirometry telemonitoring appears to be a reliable tool for multi-weekly lung function follow-up of PwCF.
Collapse
Affiliation(s)
- Fabien Beaufils
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, Bordeaux, France.,CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| | - Raphaël Enaud
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, Bordeaux, France.,CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| | - François Gallode
- CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France
| | - Grégory Boucher
- CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France
| | - Julie Macey
- CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France
| | - Patrick Berger
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, Bordeaux, France.,CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| | - Michael Fayon
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, Bordeaux, France.,CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| | - Stéphanie Bui
- CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| |
Collapse
|
8
|
Dittrich AM, Chuang SY. Dual CFTR modulator therapy efficacy in the real world: lessons for the future. ERJ Open Res 2022; 8:00464-2022. [PMID: 36382239 PMCID: PMC9661234 DOI: 10.1183/23120541.00464-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Stringent analyses caution against drawing conclusions about the real-world efficacy of CFTR modulator therapy too early https://bit.ly/3dJt6no.
Collapse
Affiliation(s)
- Anna-Maria Dittrich
- Department for Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Sandra Y. Chuang
- Discipline of Paediatric and Child Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Respiratory Medicine Department, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
9
|
Muilwijk D, Zomer-van Ommen DD, Gulmans VA, Eijkemans MJ, van der Ent CK. Long-term effectiveness of dual CFTR modulator treatment of cystic fibrosis. ERJ Open Res 2022; 8:00204-2022. [PMID: 36382237 PMCID: PMC9661249 DOI: 10.1183/23120541.00204-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background Although short-term efficacy of lumacaftor/ivacaftor and tezacaftor/ivacaftor is clearly established in clinical trials, data on long-term effectiveness is limited. This registry-based cohort study assessed real-world longitudinal outcomes of F508del-homozygous people with cystic fibrosis (pwCF) ≥12 years, up to 3 years after the introduction of dual cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Methods Annual data (2010-2019) were retrieved from the Dutch Cystic Fibrosis Registry. Longitudinal trends of per cent predicted forced expiratory volume in 1 s (FEV1 % pred) decline, body mass index (BMI), BMI Z-score and intravenous antibiotic treatment duration before and after CFTR modulator initiation were assessed with linear and negative binomial mixed models. Results We included 401 participants (41.9% female, baseline age 24.5 years (IQR 18.0-31.5 years), baseline mean±sd FEV1 70.5±23.4% pred). FEV1 decline improved from -1.36% pred per year to -0.48% pred per year after modulator initiation (change: 0.88% pred, 95% CI: 0.35-1.39%, p=0.001). This change was even 1.40% pred per year (95% CI: -0.0001-2.82%, p=0.050) higher in participants with baseline FEV1 <40% pred. In adults, annual BMI trend was not altered (change: 0.10 kg·m-2·year-1, 95% CI:-0.01-0.21, p=0.079). Annual BMI Z-score in children reversed from -0.08 per year before modulator treatment to 0.06 per year afterwards (change: 0.14 per year, 95% CI: 0.06-0.22, p<0.001). Intravenous antibiotic treatment duration showed a three-fold reduction in the first year after modulator initiation (incidence rate ratios (IRR): 0.28, 95% CI: 0.19-0.40, p<0.001), but the annual trend did not change in the subsequent years (IRR: 1.19, 95% CI: 0.94-1.50, p=0.153). Conclusion Long-term effectiveness of dual CFTR modulator therapies on FEV1 decline, BMI and intravenous antibiotic treatment duration is less pronounced in a real-world setting than in clinical trials and varies considerably between pwCF and different baseline FEV1 levels.
Collapse
Affiliation(s)
- Danya Muilwijk
- Department of Pediatric Pulmonology, University Medical Center Utrecht, loc. Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Domenique D. Zomer-van Ommen
- Dutch Cystic Fibrosis Foundation (NCFS), Baarn, The Netherlands
- On behalf of the Dutch CF Registry Steering Group
| | - Vincent A.M. Gulmans
- Dutch Cystic Fibrosis Foundation (NCFS), Baarn, The Netherlands
- On behalf of the Dutch CF Registry Steering Group
| | - Marinus J.C. Eijkemans
- Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Pulmonology, University Medical Center Utrecht, loc. Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
10
|
Going the Extra Mile: Why Clinical Research in Cystic Fibrosis Must Include Children. CHILDREN 2022; 9:children9071080. [PMID: 35884064 PMCID: PMC9323167 DOI: 10.3390/children9071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
This is an exciting time for research and novel drug development in cystic fibrosis. However, rarely has the adage, “Children are not just little adults” been more relevant. This article is divided into two main sections. In the first, we explore why it is important to involve children in research. We discuss the potential benefits of understanding a disease and its treatment in children, and we highlight that children have the same legal and ethical right to evidence-based therapy as adults. Additionally, we discuss why extrapolation from adults may be inappropriate, for example, medication pharmacokinetics may be different in children, and there may be unpredictable adverse effects. In the second part, we discuss how to involve children and their families in research. We outline the importance and the complexities of selecting appropriate outcome measures, and we discuss the role co-design may have in improving the involvement of children. We highlight the importance of appropriate staffing and resourcing, and we outline some of the common challenges and possible solutions, including practical tips on obtaining consent/assent in children and adolescents. We conclude that it is unethical to simply rely on extrapolation from adult studies because research in young children is challenging and that research should be seen as a normal part of the paediatric therapeutic journey.
Collapse
|
11
|
Savant AP. Cystic fibrosis year in review 2021. Pediatr Pulmonol 2022; 57:1590-1599. [PMID: 35501666 DOI: 10.1002/ppul.25948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Abstract
People with cystic fibrosis (CF) have an amazing outlook with the treatment availability of highly effective modulators. Unfortunately, not all people with CF are eligible for modulators leading to continued pulmonary exacerbations and advanced lung disease. Additionally, optimizing diagnosis and evaluation for CF in the newborn period continues to be an area of focus for research. This review article will work to cover articles published in 2021 with high clinical relevance related to the above topics; however, due to the extensive body of research published, this review will not be comprehensive.
Collapse
Affiliation(s)
- Adrienne P Savant
- Department of Pediatrics, Children's Hospital of New Orleans, New Orleans, Louisiana, USA.,Department of Pediatrics, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
12
|
Regard L, Martin C, Burnet E, Da Silva J, Burgel PR. CFTR Modulators in People with Cystic Fibrosis: Real-World Evidence in France. Cells 2022; 11:cells11111769. [PMID: 35681464 PMCID: PMC9179538 DOI: 10.3390/cells11111769] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is a rare genetic multisystemic disease, the manifestations of which are due to mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein and can lead to respiratory insufficiency and premature death. CFTR modulators, which were developed in the past decade, partially restore CFTR protein function. Their clinical efficacy has been demonstrated in phase 3 clinical trials, particularly in terms of lung function and pulmonary exacerbations, nutritional status, and quality of life in people with gating mutations (ivacaftor), homozygous for the F508del mutation (lumacaftor/ivacaftor and tezacaftor/ivacaftor), and in those with at least one F508del mutation (elexacaftor/tezacaftor/ivacaftor). However, many questions remain regarding their long-term safety and effectiveness, particularly in patients with advanced lung disease, liver disease, renal insufficiency, or problematic bacterial colonization. The impact of CFTR modulators on other important outcomes such as concurrent treatments, lung transplantation, chest imaging, or pregnancies also warrants further investigation. The French CF Reference Network includes 47 CF centers that contribute patient data to the comprehensive French CF Registry and have conducted nationwide real-world studies on CFTR modulators. This review seeks to summarize the results of these real-world studies and examine their findings against those of randomized control trials.
Collapse
Affiliation(s)
- Lucile Regard
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- Institut Cochin, Université de Paris Cité, INSERM U1016, 75014 Paris, France
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Clémence Martin
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- Institut Cochin, Université de Paris Cité, INSERM U1016, 75014 Paris, France
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Espérie Burnet
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- Institut Cochin, Université de Paris Cité, INSERM U1016, 75014 Paris, France
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Jennifer Da Silva
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Pierre-Régis Burgel
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- Institut Cochin, Université de Paris Cité, INSERM U1016, 75014 Paris, France
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
- Correspondence: ; Tel.: +33-1-58-41-23-67; Fax: +33-1-46-33-82-53
| |
Collapse
|
13
|
Wucherpfennig L, Triphan SM, Wege S, Kauczor HU, Heussel CP, Schmitt N, Wuennemann F, Mayer VL, Sommerburg O, Mall MA, Eichinger M, Wielpütz MO. Magnetic resonance imaging detects improvements of pulmonary and paranasal sinus abnormalities in response to elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. J Cyst Fibros 2022; 21:1053-1060. [DOI: 10.1016/j.jcf.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
14
|
Korten I, Kieninger E, Krueger L, Bullo M, Flück CE, Latzin P, Casaulta C, Boettcher C. Short-Term Effects of Elexacaftor/Tezacaftor/Ivacaftor Combination on Glucose Tolerance in Young People With Cystic Fibrosis-An Observational Pilot Study. Front Pediatr 2022; 10:852551. [PMID: 35529332 PMCID: PMC9070552 DOI: 10.3389/fped.2022.852551] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The effect of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) on glucose tolerance and/or cystic-fibrosis-related diabetes (CFRD) is not well understood. We performed an observational study on the short-term effects of ELX/TEZ/IVA on glucose tolerance. METHODS Sixteen adolescents with CF performed oral glucose tolerance tests (OGTT) before and 4-6 weeks after initiating ELX/TEZ/IVA therapy. A continuous glucose monitoring (CGM) system was used 3 days before until 7 days after starting ELX/TEZ/IVA treatment. RESULTS OGTT categories improved after initiating ELX/TEZ/IVA therapy (p = 0.02). Glucose levels of OGTT improved at 60, 90, and 120 min (p < 0.05), whereas fasting glucose and CGM measures did not change. CONCLUSION Shortly after initiating ELX/TEZ/IVA therapy, glucose tolerance measured by OGTT improved in people with CF. This pilot study indicates that ELX/TEZ/IVA treatment has beneficial effects on the endocrine pancreatic function and might prevent or at least postpone future CFRD.
Collapse
Affiliation(s)
- Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Linn Krueger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marina Bullo
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Department of Paediatric Endocrinology, Diabetology and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia Boettcher
- Department of Paediatric Endocrinology, Diabetology and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|