1
|
Martin-Higueras C, Borghese L, Torres A, Fraga-Bilbao F, Santana-Estupiñán R, Stefanidis CJ, Tory K, Walli A, Gondra L, Kempf C, Gessner M, Habbig S, Eifler L, Schmitt CP, Rüdel B, Bartram MP, Beck BB, Hoppe B. Multicenter Long-Term Real World Data on Treatment With Lumasiran in Patients With Primary Hyperoxaluria Type 1. Kidney Int Rep 2024; 9:114-133. [PMID: 38312792 PMCID: PMC10831356 DOI: 10.1016/j.ekir.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction The RNA interference (RNAi) medication lumasiran reduces hepatic oxalate production in primary hyperoxaluria type 1 (PH1). Data outside clinical trials are scarce. Methods We report on retrospectively and observationally obtained data in 33 patients with PH1 (20 with preserved kidney function, 13 on dialysis) treated with lumasiran for a median of 18 months. Results Among those with preserved kidney function, mean urine oxalate (Uox) decreased from 1.88 (baseline) to 0.73 mmol/1.73 m2 per 24h after 3 months, to 0.72 at 12 months, and to 0.65 at 18 months, but differed according to vitamin B6 (VB6) medication. The highest response was at month 4 (0.55, -70.8%). Plasma oxalate (Pox) remained stable over time. Glomerular filtration rate increased significantly by 10.5% at month 18. Nephrolithiasis continued active in 6 patients, nephrocalcinosis ameliorated or progressed in 1 patient each. At last follow-up, Uox remained above 1.5 upper limit of normal (>0.75 mmol/1.73 m2 per 24h) in 6 patients. Urinary glycolate (Uglyc) and plasma glycolate (Pglyc) significantly increased in all, urine citrate decreased, and alkali medication needed adaptation. Among those on dialysis, mean Pox and Pglyc significantly decreased and increased, respectively after monthly dosing (Pox: 78-37.2, Pglyc: 216.4-337.4 μmol/l). At quarterly dosing, neither Pox nor Pglyc were significantly different from baseline levels. An acid state was buffered by an increased dialysis regimen. Systemic oxalosis remained unchanged. Conclusion Lumasiran treatment is safe and efficient. Dosage (interval) adjustment necessities need clarification. In dialysis, lack of Pox reduction may relate to dissolving systemic oxalate deposits. Pglyc increment may be a considerable acid load requiring careful consideration, which definitively needs further investigation.
Collapse
Affiliation(s)
- Cristina Martin-Higueras
- German Hyperoxaluria Center, c/o Kindernierenzentrum Bonn, Germany
- Institute of Biomedical Technology, University of La Laguna, Tenerife, Spain
| | | | - Armando Torres
- Institute of Biomedical Technology, University of La Laguna, Tenerife, Spain
- Department of Nephrology, Hospital Universitario de Canarias, Tenerife, Spain
| | - Fátima Fraga-Bilbao
- Department of Pediatrics, Hospital Universitario de Canarias, Tenerife, Spain
| | - Raquel Santana-Estupiñán
- Department of Nephrology, Hospital Universitario de Gran Canaria Doctor Negrín, Gran Canaria, Spain
| | | | - Kálmán Tory
- Pediatric Center, MTA Center of Excellence, Semmelweis University; Budapest, Hungary & MTA-SE Lendulet Nephrogenetic Laboratory, Hungarian Academy of Sciences, Budapest, Hungary
| | - Adam Walli
- Wisplinghoff Laboratory, Cologne, Germany
| | - Leire Gondra
- Pediatric Nephrology Department, Cruces University Hospital, UPV/EHU, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline Kempf
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Disorders, Charité Universitätsmedizin Berlin, Germany
| | | | - Sandra Habbig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, Cologne, Germany
| | - Lisa Eifler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, Cologne, Germany
| | - Claus P. Schmitt
- Division of Pediatric Nephrology, University Hospital Heidelberg, Germany
| | | | - Malte P. Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Bodo B. Beck
- Institute of Human Genetics, University Hospital Cologne, Germany
| | - Bernd Hoppe
- German Hyperoxaluria Center, c/o Kindernierenzentrum Bonn, Germany
| |
Collapse
|
2
|
Wu J, Yang Y, Yu J, Qiao L, Zuo W, Zhang B. Efficacy and safety of compassionate use for rare diseases: a scoping review from 1991 to 2022. Orphanet J Rare Dis 2023; 18:368. [PMID: 38017575 PMCID: PMC10685565 DOI: 10.1186/s13023-023-02978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Compassionate use is a system that provides patients with expedited access to drugs which has not yet been approved, but currently in clinical trials. The investigational drugs have been authorized for compassionate use in cases involving patients suffered from life-threatening diseases and with no alternative treatments. For instance, patients afflicted with highly heterogeneous rare diseases are eligible for treatment assistance through the compassionate use program. This study aims to investigate the characteristics of compassionate use in the context of rare diseases, evaluate the efficacy and safety of compassionate use for rare diseases, and analyze the marketing approval of investigational drugs. METHODS The case reports/case series of compassionate use were collected by conducting searches on Embase, PubMed, Web of Science, CNKI and SinoMed, spanning from January 1991 to December 2022. Subsequently, two independent reviewers evaluated these reports. Case reports/case series that met the inclusion criteria and exclusion criteria were enrolled. Information extracted from these reports and series included patients' basic information, the investigational drug's name, its indication, adverse events, treatment outcomes, and other relevant data. RESULTS A total of forty-six studies were included, encompassing 2079 patients with an average age of 38.1 years. Thirty-nine different drugs were involved in 46 studies. Furthermore, neoplasms emerged as the most common therapeutic area for compassionate use in rare disease management (23/46, 50.0%). Regarding the treatment efficacy, four studies reported successful disease resolution, while 35 studies observed symptom improvement among patients. Conversely, four studies documented no significant effects on patients' diseases. Moreover, one study reported worsened results following compassionate use, while the efficacy was not described in 2 studies. Adverse events were reported in 31 studies (67.4%) because of the compassionate use, while no adverse events occurred in 13 studies (28.3%). In other 2 studies, there was no description about whether treatment-emergent adverse events (TEAEs) were happened. 136 patients (6.5%) had Grade 5 adverse events (death), of which 19 deaths (0.9%) were considered to be related to compassionate use. Furthermore, the investigational drugs in 33 studies (33/46, 71.7%) received new drug approval at the end of January 31, 2023.The time lag from the start of the compassionate use to the formal approval of the investigational drug was 790.5 (IQR 359-2199.3) days. We found that in 11 studies, encompassing 9 different drugs, some compassionate use indications had not received regulatory authorities at the end of January 31, 2023. CONCLUSION The current status of compassionate use for rare diseases was clarified systematically in this study. Compassionate use of investigational drug is a significant treatment option for rare disease. In general, compassionate use appears to demonstrate favorable efficacy in the context of rare diseases, with a significant proportion of compassionate use drugs subsequently receiving marketing approval. However, the safety of drugs for compassionate use cannot be fully evaluated due to the safety data were not covered in some enrolled studies. Therefore, the establishment of an adverse event reporting system specific to compassionate use is warranted.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Pharmacy and State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yang Yang
- Department of Pharmacy and State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Jiaxin Yu
- Department of Pharmacy and State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Luyao Qiao
- Department of Pharmacy and State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wei Zuo
- Department of Pharmacy and State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Bo Zhang
- Department of Pharmacy and State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
3
|
Chen T, Qian B, Zou J, Luo P, Zou J, Li W, Chen Q, Zheng L. Oxalate as a potent promoter of kidney stone formation. Front Med (Lausanne) 2023; 10:1159616. [PMID: 37342493 PMCID: PMC10278359 DOI: 10.3389/fmed.2023.1159616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Kidney stones are among the most prevalent urological diseases, with a high incidence and recurrence rate. Treating kidney stones has been greatly improved by the development of various minimally invasive techniques. Currently, stone treatment is relatively mature. However, most current treatment methods are limited to stones and cannot effectively reduce their incidence and recurrence. Therefore, preventing disease occurrence, development, and recurrence after treatment, has become an urgent issue. The etiology and pathogenesis of stone formation are key factors in resolving this issue. More than 80% of kidney stones are calcium oxalate stones. Several studies have studied the formation mechanism of stones from the metabolism of urinary calcium, but there are few studies on oxalate, which plays an equally important role in stone formation. Oxalate and calcium play equally important roles in calcium oxalate stones, whereas the metabolism and excretion disorders of oxalate play a crucial role in their occurrence. Therefore, starting from the relationship between renal calculi and oxalate metabolism, this work reviews the occurrence of renal calculi, oxalate absorption, metabolism, and excretion mechanisms, focusing on the key role of SLC26A6 in oxalate excretion and the regulatory mechanism of SLC26A6 in oxalate transport. This review provides some new clues for the mechanism of kidney stones from the perspective of oxalate to improve the understanding of the role of oxalate in the formation of kidney stones and to provide suggestions for reducing the incidence and recurrence rate of kidney stones.
Collapse
Affiliation(s)
- Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Ganna Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Xin Q, Dong Y, Guo W, Zhao X, Liu Z, Shi X, Lang Y, Shao L. Four novel variants identified in primary hyperoxaluria and genotypic and phenotypic analysis in 21 Chinese patients. Front Genet 2023; 14:1124745. [PMID: 37139236 PMCID: PMC10150119 DOI: 10.3389/fgene.2023.1124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Primary hyperoxaluria (PH) is a rare genetic disorder characterized by excessive accumulation of oxalate in plasma and urine, resulting in various phenotypes due to allelic and clinical heterogeneity. This study aimed to analyze the genotype of 21 Chinese patients with primary hyperoxaluria (PH) and explore their correlations between genotype and phenotype. Methods: Combined with clinical phenotypic and genetic analysis, we identified 21 PH patients from highly suspected Chinese patients. The clinical, biochemical, and genetic data of the 21 patients were subsequently reviewed. Results: We reported 21 cases of PH in China, including 12 cases of PH1, 3 cases of PH2 and 6 cases of PH3, and identified 2 novel variants (c.632T > G and c.823_824del) in AGXT gene and 2 novel variants (c.258_272del and c.866-34_866-8del) in GRHPR gene, respectively. A possible PH3 hotspot variant c.769T > G was identified for the first time. In addition, patients with PH1 showed higher levels of creatinine and lower eGFR than those with PH2 and PH3. In PH1, patients with severe variants in both alleles had significantly higher creatinine and lower eGFR than other patients. Delayed diagnosis still existed in some late-onset patients. Of all cases, 6 had reached to end-stage kidney disease (ESKD) at diagnosis with systemic oxalosis. Five patients were on dialysis and three had undergone kidney or liver transplants. Notably, four patients showed a favorable therapeutic response to vitamin B6, and c.823_824dup and c.145A > C may be identified as potentially vitamin B6-sensitive genotypes. Conclusion: In brief, our study identified 4 novel variants and extended the variant spectrum of PH in the Chinese population. The clinical phenotype was characterized by large heterogeneity, which may be determined by genotype and a variety of other factors. We first reported two variants that may be sensitive to vitamin B6 therapy in Chinese population, providing valuable references for clinical treatment. In addition, early screening and prognosis of PH should be given more attention. We propose to establish a large-scale registration system for rare genetic diseases in China and call for more attention on rare kidney genetic diseases.
Collapse
Affiliation(s)
- Qing Xin
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Yameng Dong
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Wencong Guo
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiying Liu
- Renal Division, Peking University First Hospital, Beijing, China
| | - Xiaomeng Shi
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Yanhua Lang
- Department of Nursing, Qingdao Municipal Hospital, Qingdao, China
- *Correspondence: Yanhua Lang, ; Leping Shao,
| | - Leping Shao
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
- *Correspondence: Yanhua Lang, ; Leping Shao,
| |
Collapse
|
5
|
Abstract
The primary hyperoxalurias are three rare inborn errors of the glyoxylate metabolism in the liver, which lead to massively increased endogenous oxalate production, thus elevating urinary oxalate excretion and, based on that, recurrent urolithiasis and/or progressive nephrocalcinosis. Frequently, especially in type 1 primary hyperoxaluria, early end-stage renal failure occurs. Treatment possibilities are scare, namely, hyperhydration and alkaline citrate medication. In type 1 primary hyperoxaluria, vitamin B6, though, is helpful in patients with specific missense or mistargeting mutations. In those vitamin B6 responsive, urinary oxalate excretion and concomitantly urinary glycolate is significantly decreased, or even normalized. In patients non-responsive to vitamin B6, RNA interference medication is now available. Lumasiran® is already available on prescription and targets the messenger RNA of glycolate oxidase, thus blocking the conversion of glycolate into glyoxylate, hence decreasing oxalate, but increasing glycolate production. Nedosiran blocks liver-specific lactate dehydrogenase A and thus the final step of oxalate production. Similar to vitamin B6 treatment, where both RNA interference urinary oxalate excretion can be (near) normalized and plasma oxalate decreases, however, urinary and plasma glycolate increases with lumasiran treatment. Future treatment possibilities are on the horizon, for example, substrate reduction therapy with small molecules or gene editing, induced pluripotent stem cell-derived autologous hepatocyte-like cell transplantation, or gene therapy with newly developed vector technologies. This review provides an overview of current and especially new and future treatment options.
Collapse
Affiliation(s)
| | - Cristina Martin-Higueras
- German Hyperoxaluria Center, Bonn, Germany.
- Institute of Biomedical Technologies, CIBERER, Campus de Ofra s/n 38200, University of La Laguna, Tenerife, Spain.
| |
Collapse
|