1
|
Zhang Y, Su J, Zhou K, Wang S, Zhang J, Zhang T, Liu S, Lu Y. Indolelactic acid as a potential metabolic biomarker for diagnosing gout. Exp Ther Med 2024; 28:429. [PMID: 39328397 PMCID: PMC11425795 DOI: 10.3892/etm.2024.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024] Open
Abstract
Gout is a heterogeneous disease caused by the deposition of monosodium urate crystals in joints, but its pathogenesis is currently poorly understood. The discovery of novel biomarkers is necessary for the early detection and diagnosis of gout. The present study aimed to characterize the metabolic profile of patients with gout using metabolomics, and to uncover the underlying pathological mechanisms leading to gout development. Serum samples were collected from 49 healthy participants and 47 patients with gout. Using ultra-high-performance liquid chromatography Orbitrap Exploris mass spectrometer non-target metabolomics technology, with a variable importance in the projection >1 and a false discovery rate adjusted P<0.05 was used, while a biomarker panel was screened using receiver operating characteristic (ROC) analysis. The potential differentially expressed markers related to gout were identified by ROC analysis, and the erythrocyte sedimentation rate, uric acid, alanine transaminase, aspartate aminotransferase, creatinine, triglyceride, total cholesterol, high-density lipoprotein and low-density lipoprotein levels were significantly different in the group of patients with gout compared with those in healthy individuals. A total of 186 differentially expressed metabolites were identified, with 156 differential metabolites upregulated and 30 downregulated in the patients with gout compared with healthy individuals. Pathway analysis demonstrated that D-glutamine and D-glutamate metabolism may serve key roles in gout. Compared with healthy people, the indolelactic acid (ILA) level of patients with gout was significantly higher. ILA may serve as a potential biomarker for the diagnosis of gout and could be used to detect or predict gout progression in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jiayu Su
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ke Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Shuangshuang Wang
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jingwei Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Tiannan Zhang
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Shijia Liu
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Lu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
2
|
Jalan A, Jayasree PJ, Karemore P, Narayan KP, Khandelia P. Decoding the 'Fifth' Nucleotide: Impact of RNA Pseudouridylation on Gene Expression and Human Disease. Mol Biotechnol 2024; 66:1581-1598. [PMID: 37341888 DOI: 10.1007/s12033-023-00792-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Cellular RNAs, both coding and noncoding are adorned by > 100 chemical modifications, which impact various facets of RNA metabolism and gene expression. Very often derailments in these modifications are associated with a plethora of human diseases. One of the most oldest of such modification is pseudouridylation of RNA, wherein uridine is converted to a pseudouridine (Ψ) via an isomerization reaction. When discovered, Ψ was referred to as the 'fifth nucleotide' and is chemically distinct from uridine and any other known nucleotides. Experimental evidence accumulated over the past six decades, coupled together with the recent technological advances in pseudouridine detection, suggest the presence of pseudouridine on messenger RNA, as well as on diverse classes of non-coding RNA in human cells. RNA pseudouridylation has widespread effects on cellular RNA metabolism and gene expression, primarily via stabilizing RNA conformations and destabilizing interactions with RNA-binding proteins. However, much remains to be understood about the RNA targets and their recognition by the pseudouridylation machinery, the regulation of RNA pseudouridylation, and its crosstalk with other RNA modifications and gene regulatory processes. In this review, we summarize the mechanism and molecular machinery involved in depositing pseudouridine on target RNAs, molecular functions of RNA pseudouridylation, tools to detect pseudouridines, the role of RNA pseudouridylation in human diseases like cancer, and finally, the potential of pseudouridine to serve as a biomarker and as an attractive therapeutic target.
Collapse
Affiliation(s)
- Abhishek Jalan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - P J Jayasree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Pragati Karemore
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India.
| |
Collapse
|
3
|
Abascal-Saiz A, Fuente-Luelmo E, Haro M, Fioravantti V, Antolín E, Ramos-Álvarez MP, Bartha JL. Decreased Fatty Acid Oxidation Gene Expression in Pre-Eclampsia According to the Onset and Presence of Intrauterine Growth Restriction. Nutrients 2023; 15:3877. [PMID: 37764661 PMCID: PMC10536348 DOI: 10.3390/nu15183877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) is lower in placentas with pre-eclampsia. The aim of our study was to compare the placental mRNA expression of FAO enzymes in healthy pregnancies vs. different subgroups of pre-eclampsia according to the severity, time of onset, and the presence of intrauterine growth restriction (IUGR). By using real-time qPCR, we measured the mRNA levels of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), medium-chain acyl-CoA dehydrogenase (MCAD), and carnitine palmitoyltransferases 1A and 2 (CPT1A, CPT2) on the maternal side (anchoring villi in the basal decidua) and on the fetal side (chorionic plate) of the placenta (n = 56). When compared to the controls, LCHAD, MCAD, and CPT2 mRNA had decreased in all pre-eclampsia subgroups globally and on the fetal side. On the maternal side, LCHAD mRNA was also lower in all pre-eclampsia subgroups; however, MCAD and CPT2 mRNA were only reduced in severe and early-onset disease, as well as CPT2 in IUGR (p < 0.05). There were no differences in CPT1A mRNA expression. We conclude that the FAO enzymes mRNA in the placenta was lower in pre-eclampsia, with higher reductions observed in severe, early-onset, and IUGR cases and more striking reductions on the fetal side.
Collapse
Affiliation(s)
- Alejandra Abascal-Saiz
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| | - Eva Fuente-Luelmo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Boadilla del Monte, Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | - María Haro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Boadilla del Monte, Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | | | - Eugenia Antolín
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| | - María P. Ramos-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Boadilla del Monte, Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | - José L. Bartha
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| |
Collapse
|
4
|
Biomarkers of cardiovascular disease risk in the neonatal population. J Dev Orig Health Dis 2023; 14:155-165. [PMID: 35920277 DOI: 10.1017/s2040174422000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The consistently high prevalence of cardiovascular disease (CVD) has urged the need for punctual and effective prevention. Extended research on this specific area has demonstrated the influence of fetal and neonatal periods on the risk of developing CVD in adulthood. Thus, the role of traditional and novel biological markers to the effective screening of CVD among the neonatal population is widely investigated. The objective of the present narrative review is to examine those neonatal biomarkers that may play a role in the development of CVD, to exhibit scientific data that appertain to their association with various perinatal conditions leading to CVD predisposition, and their potential role on prediction and prevention strategies. Multiple biomarkers, traditional and novel, have been mined across the studied literature. Adiposity, insulin resistance, altered lipid profile, inflammation, and endothelial dysfunction seem among the headliners of CVD. Even though various novel molecules have been studied, their clinical utility remains controversial. Therefore, it is quite important for the scientific community to find elements with strong predictive value and practical clinical use.
Collapse
|