1
|
Schlieben LD, Achleitner MT, Bourke B, Diesner M, Feichtinger RG, Fichtner A, Flechtenmacher C, Hadzic N, Hegarty R, Heilos A, Janecke A, Konstantopoulou V, Lenz D, Mayr JA, Müller T, Prokisch H, Vogel GF. Missense variants in the TRPM7 α-kinase domain are associated with recurrent pediatric acute liver failure. Hepatol Commun 2024; 8:e0598. [PMID: 39621058 PMCID: PMC11608757 DOI: 10.1097/hc9.0000000000000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/20/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Pediatric acute liver failure (PALF) is a rare and life-threatening condition. In up to 50% of PALF cases, the underlying etiology remains unknown during routine clinical testing. This lack of knowledge complicates clinical management and liver transplantation decisions. Recently, whole-exome sequencing has identified genetic disorders in a large number of cases without specific laboratory biomarkers or metabolic fingerprints. METHODS We describe how further analysis of whole-exome sequencing data combined with proteomic analyses in 5 previously unsolved PALF patients, where no pathogenic variants in genes previously associated with acute liver failure were identified, revealed rare biallelic variants in transient receptor potential cation channel subfamily M member 7 (TRPM7). RESULTS We establishe TRPM7 as a novel disease gene for PALF. Yet, the cation channel kinase TRPM7 has not been associated with any Mendelian disorder. No homozygous loss-of-function variants were found in in-house exomes or publicly available databases. Rare biallelic TRPM7-variants were significantly enriched in the PALF cohort compared with a pediatric control cohort. Viral infections preceded the majority of PALF episodes. Recurrent PALF episodes characterized the disease course with rapid progression, leading to early death in 3 cases. Proteomic analyses of patient fibroblasts unveiled significantly reduced TRPM7 protein levels, indicative of functional impairment. Severely reduced Mg2+ levels in one individual with a mutation in the channel domain suggests a potential interaction between disturbed Mg2+ homeostasis and PALF. The consistent presence of mutations in the TRPM7 protein-kinase-domain across all patients suggests its specific relevance in PALF. CONCLUSIONS Our data extend the genetic spectrum of recurrent PALF and prompt consideration of TRPM7 in children with unexplained liver failure.
Collapse
Affiliation(s)
- Lea D. Schlieben
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Melanie T. Achleitner
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Billy Bourke
- UCD School of Medicine & Medical Science, Crumlin, Dublin, Ireland
| | | | - René G. Feichtinger
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Alexander Fichtner
- Department I, Division of Pediatric Neurology and Metabolic Medicine Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg, Germany
| | | | - Nedim Hadzic
- King’s College Hospital, Paediatric Liver, GI & Nutrition Centre, London, United Kingdom
| | - Robert Hegarty
- King’s College Hospital, Paediatric Liver, GI & Nutrition Centre, London, United Kingdom
| | - Andreas Heilos
- Department of Paediatric Gastroenterology, Medical University of Vienna, Vienna, Austria
- Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Dominic Lenz
- Department I, Division of Pediatric Neurology and Metabolic Medicine Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg, Germany
| | - Johannes A. Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Georg F. Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Bosman W, Butler KM, Chang CA, Ganapathi M, Guzman E, Latta F, Chung WK, Claverie-Martin F, Davis JM, Hoenderop JGJ, de Baaij JHF. Pathogenic heterozygous TRPM7 variants and hypomagnesemia with developmental delay. Clin Kidney J 2024; 17:sfae211. [PMID: 39099563 PMCID: PMC11295107 DOI: 10.1093/ckj/sfae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 08/06/2024] Open
Abstract
Background Heterozygous variants in Transient receptor potential melastatin type 7 (TRPM7), encoding an essential and ubiquitously expressed cation channel, may cause hypomagnesemia, but current evidence is insufficient to draw definite conclusions and it is unclear whether any other phenotypes can occur. Methods Individuals with unexplained hypomagnesemia underwent whole-exome sequencing which identified TRPM7 variants. Pathogenicity of the identified variants was assessed by combining phenotypic, functional and in silico analyses. Results We report three new heterozygous missense variants in TRPM7 (p.Met1000Thr, p.Gly1046Arg, p.Leu1081Arg) in individuals with hypomagnesemia. Strikingly, autism spectrum disorder and developmental delay, mainly affecting speech and motor skills, was observed in all three individuals, while two out of three also presented with seizures. The three variants are predicted to be severely damaging by in silico prediction tools and structural modeling. Furthermore, these variants result in a clear loss-of-function of TRPM7-mediated magnesium uptake in vitro, while not affecting TRPM7 expression or insertion into the plasma membrane. Conclusions This study provides additional evidence for the association between heterozygous TRPM7 variants and hypomagnesemia and adds developmental delay to the phenotypic spectrum of TRPM7-related disorders. Considering that the TRPM7 gene is relatively tolerant to loss-of-function variants, future research should aim to unravel by what mechanisms specific heterozygous TRPM7 variants can cause disease.
Collapse
Affiliation(s)
- Willem Bosman
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Caitlin A Chang
- Department of Medical Genetics, BC Women and Children's Hospital, Vancouver, British Columbia, Canada
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Edwin Guzman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Femke Latta
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Claverie-Martin
- Unidad de Investigación, RenalTube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | | |
Collapse
|
3
|
Sutherland HG, Jenkins B, Griffiths LR. Genetics of migraine: complexity, implications, and potential clinical applications. Lancet Neurol 2024; 23:429-446. [PMID: 38508838 DOI: 10.1016/s1474-4422(24)00026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/22/2024]
Abstract
Migraine is a common neurological disorder with large burden in terms of disability for individuals and costs for society. Accurate diagnosis and effective treatments remain priorities. Understanding the genetic factors that contribute to migraine risk and symptom manifestation could improve individual management. Migraine has a strong genetic basis that includes both monogenic and polygenic forms. Some distinct, rare, familial migraine subtypes are caused by pathogenic variants in genes involved in ion transport and neurotransmitter release, suggesting an underlying vulnerability of the excitatory-inhibitory balance in the brain, which might be exacerbated by disruption of homoeostasis and lead to migraine. For more prevalent migraine subtypes, genetic studies have identified many susceptibility loci, implicating genes involved in both neuronal and vascular pathways. Genetic factors can also reveal the nature of relationships between migraine and its associated biomarkers and comorbidities and could potentially be used to identify new therapeutic targets and predict treatment response.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bronwyn Jenkins
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Garcia-Nieto VM, Claverie-Martin F, Moraleda-Mesa T, Perdomo-Ramírez A, Fraga-Rodríguez GM, Luis-Yanes MI, Ramos-Trujillo E. Renal diseases that course with hypomagnesemia. Comments on a new hereditary hypomagnesemic tubulopathy. Nefrologia 2024; 44:23-31. [PMID: 38350738 DOI: 10.1016/j.nefroe.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 02/15/2024] Open
Abstract
Renal diseases associated with hypomagnesemia are a complex and diverse group of tubulopathies caused by mutations in genes encoding proteins that are expressed in the thick ascending limb of the loop of Henle and in the distal convoluted tubule. In this paper, we review the initial description, the clinical expressiveness and etiology of four of the first hypomagnesemic tubulopathies described: type 3 Bartter and Gitelman diseases, Autosomal recessive hypomagnesemia with secondary hypocalcemia and Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The basic biochemical patterns observed in renal tubular hypomagnesemias and the modalities of transport and interaction that occur between the transporters involved in the reabsorption of magnesium in the distal convoluted tubule are described below. Finally, the recent report of a new renal disease with hypomagnesemia, type 2 hypomagnesemia with secondary hypocalcemia caused by reduced TRPM7 channel activity is described.
Collapse
Affiliation(s)
- Víctor M Garcia-Nieto
- Unidad de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| | - Félix Claverie-Martin
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Teresa Moraleda-Mesa
- Unidad de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ana Perdomo-Ramírez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Gloria Mª Fraga-Rodríguez
- Nefrologia Pediàtrica, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Isabel Luis-Yanes
- Unidad de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
5
|
Abstract
Mg2+ is essential for many cellular and physiological processes, including muscle contraction, neuronal activity, and metabolism. Consequently, the blood Mg2+ concentration is tightly regulated by balanced intestinal Mg2+ absorption, renal Mg2+ excretion, and Mg2+ storage in bone and soft tissues. In recent years, the development of novel transgenic animal models and identification of Mendelian disorders has advanced our current insight in the molecular mechanisms of Mg2+ reabsorption in the kidney. In the proximal tubule, Mg2+ reabsorption is dependent on paracellular permeability by claudin-2/12. In the thick ascending limb of Henle's loop, the claudin-16/19 complex provides a cation-selective pore for paracellular Mg2+ reabsorption. The paracellular Mg2+ reabsorption in this segment is regulated by the Ca2+-sensing receptor, parathyroid hormone, and mechanistic target of rapamycin (mTOR) signaling. In the distal convoluted tubule, the fine tuning of Mg2+ reabsorption takes place by transcellular Mg2+ reabsorption via transient receptor potential melastatin-like types 6 and 7 (TRPM6/TRPM7) divalent cation channels. Activity of TRPM6/TRPM7 is dependent on hormonal regulation, metabolic activity, and interacting proteins. Basolateral Mg2+ extrusion is still poorly understood but is probably dependent on the Na+ gradient. Cyclin M2 and SLC41A3 are the main candidates to act as Na+/Mg2+ exchangers. Consequently, disturbances of basolateral Na+/K+ transport indirectly result in impaired renal Mg2+ reabsorption in the distal convoluted tubule. Altogether, this review aims to provide an overview of the molecular mechanisms of Mg2+ reabsorption in the kidney, specifically focusing on transgenic mouse models and human hereditary diseases.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|