1
|
Chaemsaithong P, Romero R, Pongchaikul P, Warintaksa P, Mongkolsuk P, Bhuwapathanapun M, Kotchompoo K, Nimsamer P, Kruasuwan W, Amnuaykiatlert O, Vivithanaporn P, Meyyazhagan A, Awonuga A, Settacomkul R, Singhsnaeh A, Laolerd W, Santanirand P, Thaipisuttikul I, Wongsurawat T, Jenjaroenpun P. The rapid diagnosis of intraamniotic infection with nanopore sequencing. Am J Obstet Gynecol 2025:S0002-9378(25)00091-2. [PMID: 39952543 DOI: 10.1016/j.ajog.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Intraamniotic infection (defined as intraamniotic inflammation with microorganisms) is an important cause of the preterm labor syndrome. Methods for the detection of microorganisms in amniotic fluid are culture and/or polymerase chain reaction assay. However, both methods take time, and the results are rarely available for clinical decision-making. Nanopore sequencing technology offers real-time, long-read sequencing that can produce rapid results. OBJECTIVE To determine 1) the diagnostic performance of the 16S rDNA nanopore sequencing method for the identification of microorganisms in patients with intraamniotic inflammation and 2) the relationship between microbial burden and the intensity of the amniotic fluid inflammatory response. STUDY DESIGN We performed a prospective cohort study that included singleton pregnancies presenting with symptoms of preterm labor with intact membranes or of preterm prelabor rupture of the membranes. Amniotic fluid samples were obtained for the evaluation of bacteria in the amniotic cavity using cultivation and polymerase chain reaction-based 16S Sanger sequencing methods. Participants were classified into 4 groups according to the results of an amniotic fluid culture, 16S Sanger sequencing, and an amniotic fluid interleukin 6 concentration: 1) no intraamniotic infection and intraamniotic inflammation (interleukin 6 <2.6 ng/mL, and no microorganisms in the amniotic cavity, as determined by culture or 16S Sanger sequencing); 2) microbial invasion of the amniotic cavity without intraamniotic inflammation, defined by the presence of bacteria detected by culture or 16S Sanger sequencing; 3) sterile intraamniotic inflammation (interleukin 6 ≥2.6 ng/mL without microbial invasion of the amniotic cavity); and 4) intraamniotic infection (interkeukin 6 ≥2.6 ng/mL with microbial invasion of the amniotic cavity). Patients who underwent a mid-trimester amniocentesis, had no intraamniotic infection or intraamniotic inflammation, and delivered at term represented the control group. 16S rDNA nanopore sequencing was performed and the diagnostic indices for the identification of intraamniotic infection were determined. Bioinformatic analysis was carried out to identify microorganisms, and a read count of at least 100 or a read count exceeding that of the background species from the control group, along with a relative abundance of no less than 1%, was used. RESULTS 1) The 16S nanopore sequencing had a sensitivity of 88.9% (8/9), specificity of 95.4% (41/43), positive predictive value of 80.0% (8/10), negative predictive value of 97.6% (41/42), positive likelihood ratio of 19.1 (95% confidence interval, 4.8-75.4), negative likelihood ratio of 0.1 (95% confidence interval, 0.02-0.7), and an accuracy of 94.2% (49/52) for the identification of intraamniotic infection (prevalence, 17% [9/52]); 2) the microbial load determined by the 16S nanopore sequencing had a strong positive correlation with the intensity of an intraamniotic inflammatory response (amniotic fluid interleukin 6 concentration; Spearman's correlation 0.9; P=.002); and 3) a subgroup of patients with intraamniotic inflammation did not have bacteria determined by culture, Sanger sequencing, or nanopore 16S, thus confirming the existence of sterile intraamniotic inflammation. CONCLUSION The 16S nanopore sequencing has high diagnostic indices, predictive values, likelihood ratios, and accuracy in the diagnosis of intraamniotic infection.
Collapse
Affiliation(s)
- Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom, Thailand; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Puntabut Warintaksa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Paninee Mongkolsuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Maolee Bhuwapathanapun
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyaphat Kotchompoo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Worarat Kruasuwan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Orrakanya Amnuaykiatlert
- Mahidol University International Demonstration School, Mahidol University, Nakhon Pathom, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Arun Meyyazhagan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Life Sciences, Christ University, Bengaluru, India
| | - Awoniyi Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Rapeewan Settacomkul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Arunee Singhsnaeh
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Warawut Laolerd
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Iyarit Thaipisuttikul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR.
| |
Collapse
|
2
|
Hirahara Y, Yamaguchi M, Takase-Minegishi K, Kirino Y, Aoki S, Hirahara L, Obata S, Kasai M, Maeda A, Tsuchida N, Yoshimi R, Horita N, Nakajima H, Miyagi E. Pregnancy outcomes in patients with familial Mediterranean fever: systematic review and meta-analysis. Rheumatology (Oxford) 2024; 63:277-284. [PMID: 37594755 DOI: 10.1093/rheumatology/kead417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE The relationship between FMF and pregnancy outcomes remains unclear. This systematic review and meta-analysis aimed to clarify this association. METHODS Electronic databases-PubMed, Web of Science, Cochrane, and EMBASE-were searched on 20 December 2022, using specific search terms. Case-control, cohort, and randomized clinical trial studies comparing patients with FMF and healthy controls were considered eligible. We excluded systematic reviews, meta-analyses, case series with fewer than five cases, republished articles without new findings on pregnancy outcomes, studies targeting paternal FMF, and those not published in English. The results were summarized in the form of odds ratios (ORs) and 95% CIs, using a random-effects model. This study was registered in the University hospital Medical Information Network Clinical Trials Registry (Japan) as UMIN000049827. RESULTS The initial electronic search identified 611 records, of which 9 were included in this meta-analysis (177 735 pregnancies, 1242 with FMF, and 176 493 healthy controls). FMF was significantly associated with increased odds of preterm deliveries (OR, 1.67; 95% CI, 1.05-2.67; I2 = 22%) and insignificantly associated with increased odds of fetal growth restriction (OR, 1.45; 95% CI, 0.90-2.34; I2 = 0%) and hypertensive disorders during pregnancy (OR, 1.28; 95% CI, 0.87-1.87; I2 = 0%). CONCLUSION FMF was significantly associated with preterm delivery and insignificantly associated with fetal growth restriction and hypertensive disorders. All of the included studies were observational studies. Treatment characteristics were not fully collected from the articles, and further analysis of treatments for FMF in pregnancy is still warranted.
Collapse
Affiliation(s)
- Yuhya Hirahara
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Midori Yamaguchi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaoru Takase-Minegishi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shigeru Aoki
- Perinatal Center for Maternity and Neonates, Yokohama City University Medical Center, Yokohama, Japan
| | - Lisa Hirahara
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Soichiro Obata
- Perinatal Center for Maternity and Neonates, Yokohama City University Medical Center, Yokohama, Japan
| | - Michi Kasai
- Perinatal Center for Maternity and Neonates, Yokohama City University Medical Center, Yokohama, Japan
| | - Ayaka Maeda
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Farias-Jofre M, Romero R, Galaz J, Xu Y, Miller D, Garcia-Flores V, Arenas-Hernandez M, Winters AD, Berkowitz BA, Podolsky RH, Shen Y, Kanninen T, Panaitescu B, Glazier CR, Pique-Regi R, Theis KR, Gomez-Lopez N. Blockade of IL-6R prevents preterm birth and adverse neonatal outcomes. EBioMedicine 2023; 98:104865. [PMID: 37944273 PMCID: PMC10665693 DOI: 10.1016/j.ebiom.2023.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Preterm birth preceded by spontaneous preterm labour often occurs in the clinical setting of sterile intra-amniotic inflammation (SIAI), a condition that currently lacks treatment. METHODS Proteomic and scRNA-seq human data were analysed to evaluate the role of IL-6 and IL-1α in SIAI. A C57BL/6 murine model of SIAI-induced preterm birth was developed by the ultrasound-guided intra-amniotic injection of IL-1α. The blockade of IL-6R by using an aIL-6R was tested as prenatal treatment for preterm birth and adverse neonatal outcomes. QUEST-MRI evaluated brain oxidative stress in utero. Targeted transcriptomic profiling assessed maternal, foetal, and neonatal inflammation. Neonatal biometrics and neurodevelopment were tested. The neonatal gut immune-microbiome was evaluated using metagenomic sequencing and immunophenotyping. FINDINGS IL-6 plays a critical role in the human intra-amniotic inflammatory response, which is associated with elevated concentrations of the alarmin IL-1α. Intra-amniotic injection of IL-1α resembles SIAI, inducing preterm birth (7% vs. 50%, p = 0.03, Fisher's exact test) and neonatal mortality (18% vs. 56%, p = 0.02, Mann-Whitney U-test). QUEST-MRI revealed no foetal brain oxidative stress upon in utero IL-1α exposure (p > 0.05, mixed linear model). Prenatal treatment with aIL-6R abrogated IL-1α-induced preterm birth (50% vs. 7%, p = 0.03, Fisher's exact test) by dampening inflammatory processes associated with the common pathway of labour. Importantly, aIL-6R reduces neonatal mortality (56% vs. 22%, p = 0.03, Mann-Whitney U-test) by crossing from the mother to the amniotic cavity, dampening foetal organ inflammation and improving growth. Beneficial effects of prenatal IL-6R blockade carried over to neonatal life, improving survival, growth, neurodevelopment, and gut immune homeostasis. INTERPRETATION IL-6R blockade can serve as a strategy to treat SIAI, preventing preterm birth and adverse neonatal outcomes. FUNDING NICHD/NIH/DHHS, Contract HHSN275201300006C. WSU Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew D Winters
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MO, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine; Detroit, MI, USA
| | - Robert H Podolsky
- Division of Biostatistics and Design Methodology, Center for Translational Research, Children's National Hospital, Silver Spring, MD, USA
| | - Yimin Shen
- Department of Radiology, School of Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Catherine R Glazier
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Roger Pique-Regi
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MO, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MO, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|