1
|
Shannon I, Huertas N, White CL, Yang H, Nayak JL. Development of Influenza-Specific CD4 T Cell-Mediated Immunity in Children Following Inactivated Influenza Vaccination. J Pediatric Infect Dis Soc 2024; 13:505-512. [PMID: 39269455 PMCID: PMC11534002 DOI: 10.1093/jpids/piae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND While both cellular and humoral immunity are important in immunologic protection against influenza, how the influenza-specific CD4 T cell response is established in response to early vaccination remains inadequately understood. In this study, we sought to understand how the CD4 T cell response to inactivated influenza vaccine (IIV) is established and develops throughout early childhood. METHODS Influenza-specific CD4 T cell responses were quantified following IIV over 2 influenza seasons in 47 vaccinated children between 6 months and 8 years of age who had no documented history of natural influenza infection during the study. Peripheral blood mononuclear cells were stimulated with peptide pools encompassing the translated regions of the pH1, H3, HAB, and NP proteins, and CD4 T cell responses were assessed via multiparameter flow cytometry. RESULTS There was boosting of H3- and HAB-specific CD4 T cells but not cells specific for the pH1 HA protein post-vaccination. A positive correlation between age and the magnitude of the influenza-specific CD4 T cell response was seen, with an overall greater magnitude of IFNγ-producing cells in subjects ≥3 years of age. Changes in CD4 T cell functionality were also noted in older compared to younger children, with increases in CD4 T cells producing IFNγ and TNF or IL-2 as well as IFNγ alone. CONCLUSIONS Inactivated influenza vaccine elicits a CD4 T cell response to H3 and HAB, with increases in the magnitude of the CD4 T cell response and changes in cellular functionality throughout childhood. This suggests that repeated influenza vaccination contributes to the development of anti-influenza CD4 T cell memory in children.
Collapse
Affiliation(s)
- Ian Shannon
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Nelson Huertas
- Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Chantelle L White
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer L Nayak
- Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Lim WW, Feng S, Wong SS, Sullivan SG, Cowling BJ. Hemagglutination Inhibition Antibody Titers as Mediators of Influenza Vaccine Efficacy Against Symptomatic Influenza A(H1N1), A(H3N2), and B/Victoria Virus Infections. J Infect Dis 2024; 230:152-160. [PMID: 39052734 PMCID: PMC11272062 DOI: 10.1093/infdis/jiae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The hemagglutination inhibition antibody (HAI) titer contributes only a part of vaccine-induced protection against influenza virus infections. Using causal mediation analysis, we quantified the proportion of vaccine efficacy mediated by postvaccination HAI titers. METHODS We conducted causal mediation analyses using data from a randomized, active-comparator controlled, phase III, trial of an inactivated, split-virion seasonal quadrivalent influenza vaccine in children conducted from October 2010 to December 2011 in 8 countries. Vaccine efficacy was estimated using a weighted Cox proportional hazards model. Estimates were decomposed into the direct and indirect effects mediated by postvaccination HAI titers. RESULTS The proportions of vaccine efficacy mediated by postvaccination HAI titers were estimated to be 22% (95% confidence interval, 18%--47%) for influenza A(H1N1), 20% (16%-39%) for influenza A(H3N2), and 37% (26%-85%) for influenza B/Victoria. CONCLUSIONS HAI titers partially mediate influenza vaccine efficacy against influenza A(H1N1), A(H3N2), and B/Victoria. Our estimates were lower than in previous studies, possibly reflecting expected heterogeneity in antigenic similarity between vaccine and circulating viruses across seasons.
Collapse
Affiliation(s)
- Wey Wen Lim
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sook-San Wong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Epidemiology, University of California, California, Los Angeles, USA
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| |
Collapse
|
3
|
Schrock J, Yan M, Dolatyabi S, Patil V, Yadagiri G, Renu S, Ramesh A, Wood R, Hanson J, Yu Z, Renukaradhya GJ. Human Infant Fecal Microbiota Differentially Influences the Mucosal Immune Pathways Upon Influenza Infection in a Humanized Gnotobiotic Pig Model. Curr Microbiol 2024; 81:267. [PMID: 39003673 PMCID: PMC11247059 DOI: 10.1007/s00284-024-03785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
In this study, we evaluated the impact of human gut microbiota on the immune pathways in the respiratory tract using a gnotobiotic (Gn) piglet model. We humanized piglets with rural and urban infant fecal microbiota (RIFM and UIFM, respectively) and then infected them with a H1N1 swine influenza virus. We analyzed the microbial diversity and structure of the intestinal and respiratory tracts of the piglets before and after the influenza virus infection and measured the viral load and immune responses. We found that the viral load in the upper respiratory tract of UIFM transplanted piglets was higher than their rural cohorts (RIFM), while virus-specific antibody responses were comparable. The relative cytokine gene expression in the tracheobronchial (respiratory tract) and mesenteric (gastrointestinal) lymph nodes, lungs, blood, and spleen of RIFM and UIFM piglets revealed a trend in reciprocal regulation of proinflammatory, innate, and adaptive immune-associated cytokines as well as the frequency of T-helper/memory cells, cytotoxic T cells, and myeloid immune cell subsets. We also observed different phylum-level shifts of the fecal microbiota in response to influenza virus infection between the two piglet groups, suggesting the potential impact of the gut microbiota on the immune responses to influenza virus infection and lung microbiota. In conclusion, Gn piglets humanized with diverse infant fecal microbiota had differential immune regulation, with UIFM favoring the activation of proinflammatory immune mediators following an influenza virus infection compared to their rural RIFM cohorts. Furthermore, Gn piglets can be a useful model in investigating the impact of diverse human microbiota of the gastrointestinal tract, probably also the respiratory tract, on respiratory health and testing specific probiotic- or prebiotic-based therapeutics.
Collapse
Affiliation(s)
- Jennifer Schrock
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Ming Yan
- Department of Animal Sciences, CFAES, The Ohio State University, Columbus, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Sara Dolatyabi
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Veerupaxagouda Patil
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Ganesh Yadagiri
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Sankar Renu
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Anikethana Ramesh
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Ronna Wood
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Juliette Hanson
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Zhongtang Yu
- Department of Animal Sciences, CFAES, The Ohio State University, Columbus, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| | - Gourapura J Renukaradhya
- Department of Animal Sciences, Center for Food Animal Health (CFAH), College of Food Agricultural and Environmental Sciences (CFAES), 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
4
|
Fu S, Jia W, Li P, Cui J, Wang Y, Song C. Risk factors for pneumonia among children with coinfection of influenza A virus and Mycoplasma pneumoniae. Eur J Clin Microbiol Infect Dis 2024; 43:1437-1444. [PMID: 38789887 DOI: 10.1007/s10096-024-04854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE To investigate the clinical characteristics and risk factors for pneumonia in children co-infected with influenza A virus (IAV) and Mycoplasma pneumoniae (MP). METHODS Children who were diagnosed with IAV and MP infection between January and December, 2023 were enrolled and divided into a non-pneumonia group and a pneumonia group. Univariate analysis and logistic regression analysis were used to evaluate each index, and the risk factors for pneumonia caused by coinfection in the two groups were explored. RESULTS A total of 209 patients were enrolled, of which 107 and 102 patients were in the pneumonia and non-pneumonia groups, respectively. The patients in the pneumonia group were older and had a longer duration of fever (P < 0.05). Univariate analysis revealed that the median age, duration of fever, and CD3+, CD4+, CD8+ and IL-10 levels were significantly correlated with pneumonia (P < 0.05). Multivariate logistic regression analysis revealed that the median age, duration of fever, and CD4+, CD8+ and IL-10 levels were independent risk factors for pneumonia. Area under the curve of the five combined indicators in the ROC (receiver operator characteristic) analysis was 0.883, was higher than single factor. CONCLUSION Children with IAV and MP infection whose age older than 6.08 years, had a fever longer than 4 days, had a CD4+ count < 22.12%, had a CD8+ count < 35.21%, had an IL-10 concentration > 22.08 ng/ml were more likely to develop pneumonia.
Collapse
Affiliation(s)
- Shuqin Fu
- Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wanyu Jia
- Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Peng Li
- Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Junhao Cui
- Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yangji Wang
- Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chunlan Song
- Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
- , Zhengzhou, China.
| |
Collapse
|
5
|
Adams K, Weber ZA, Yang DH, Klein NP, DeSilva MB, Dascomb K, Irving SA, Naleway AL, Rao S, Gaglani M, Flannery B, Garg S, Kharbanda AB, Grannis SJ, Ong TC, Embi PJ, Natarajan K, Fireman B, Zerbo O, Goddard K, Timbol J, Hansen JR, Grisel N, Arndorfer J, Ball SW, Dunne MM, Kirshner L, Chung JR, Tenforde MW. Vaccine Effectiveness Against Pediatric Influenza-A-Associated Urgent Care, Emergency Department, and Hospital Encounters During the 2022-2023 Season: VISION Network. Clin Infect Dis 2024; 78:746-755. [PMID: 37972288 PMCID: PMC10954409 DOI: 10.1093/cid/ciad704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND During the 2022-2023 influenza season, the United States experienced the highest influenza-associated pediatric hospitalization rate since 2010-2011. Influenza A/H3N2 infections were predominant. METHODS We analyzed acute respiratory illness (ARI)-associated emergency department or urgent care (ED/UC) encounters or hospitalizations at 3 health systems among children and adolescents aged 6 months-17 years who had influenza molecular testing during October 2022-March 2023. We estimated influenza A vaccine effectiveness (VE) using a test-negative approach. The odds of vaccination among influenza-A-positive cases and influenza-negative controls were compared after adjusting for confounders and applying inverse-propensity-to-be-vaccinated weights. We developed overall and age-stratified VE models. RESULTS Overall, 13 547 of 44 787 (30.2%) eligible ED/UC encounters and 263 of 1862 (14.1%) hospitalizations were influenza-A-positive cases. Among ED/UC patients, 15.2% of influenza-positive versus 27.1% of influenza-negative patients were vaccinated; VE was 48% (95% confidence interval [CI], 44-52%) overall, 53% (95% CI, 47-58%) among children aged 6 months-4 years, and 38% (95% CI, 30-45%) among those aged 9-17 years. Among hospitalizations, 17.5% of influenza-positive versus 33.4% of influenza-negative patients were vaccinated; VE was 40% (95% CI, 6-61%) overall, 56% (95% CI, 23-75%) among children ages 6 months-4 years, and 46% (95% CI, 2-70%) among those 5-17 years. CONCLUSIONS During the 2022-2023 influenza season, vaccination reduced the risk of influenza-associated ED/UC encounters and hospitalizations by almost half (overall VE, 40-48%). Influenza vaccination is a critical tool to prevent moderate-to-severe influenza illness in children and adolescents.
Collapse
Affiliation(s)
- Katherine Adams
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary A Weber
- Department of Clinical Research, Westat, Rockville, Maryland, USA
| | - Duck-Hye Yang
- Department of Clinical Research, Westat, Rockville, Maryland, USA
| | - Nicola P Klein
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Malini B DeSilva
- Department of Research, HealthPartners Institute, Minneapolis, Minnesota, USA
| | - Kristin Dascomb
- Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Stephanie A Irving
- Department of Science Programs, Kaiser Permanente Center for Health Research, Portland, Oregon, USA
| | - Allison L Naleway
- Department of Science Programs, Kaiser Permanente Center for Health Research, Portland, Oregon, USA
| | - Suchitra Rao
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Manjusha Gaglani
- Department of Pediatrics, Section of Pediatric Infectious Diseases, Baylor Scott & White Health and Baylor College of Medicine, Temple, Texas, USA
- Department of Medical Education, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Brendan Flannery
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shikha Garg
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anupam B Kharbanda
- Department of Emergency Medicine, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Shaun J Grannis
- Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, Indiana, USA
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Toan C Ong
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter J Embi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Karthik Natarajan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
- Medical Informatics Services, New York-Presbyterian Hospital, New York, New York, USA
| | - Bruce Fireman
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Ousseny Zerbo
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Kristin Goddard
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Julius Timbol
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - John R Hansen
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Nancy Grisel
- Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Julie Arndorfer
- Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Sarah W Ball
- Department of Clinical Research, Westat, Rockville, Maryland, USA
| | - Margaret M Dunne
- Department of Clinical Research, Westat, Rockville, Maryland, USA
| | - Lindsey Kirshner
- Department of Clinical Research, Westat, Rockville, Maryland, USA
| | - Jessie R Chung
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark W Tenforde
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Li K, Thindwa D, Weinberger DM, Pitzer VE. The role of viral interference in shaping RSV epidemics following the 2009 H1N1 influenza pandemic. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.25.24303336. [PMID: 38464193 PMCID: PMC10925368 DOI: 10.1101/2024.02.25.24303336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Respiratory syncytial virus (RSV) primarily affects infants, young children, and older adults, with seasonal outbreaks in the United States (US) peaking around December or January. Despite the limited implementation of non-pharmaceutical interventions, disrupted RSV activity was observed in different countries following the 2009 influenza pandemic, suggesting possible viral interference from influenza. Although interactions between the influenza A/H1N1 pandemic virus and RSV have been demonstrated at an individual level, it remains unclear whether the disruption of RSV activity at the population level can be attributed to viral interference. In this work, we first evaluated changes in the timing and intensity of RSV activity across 10 regions of the US in the years following the 2009 influenza pandemic using dynamic time warping. We observed a reduction in RSV activity following the pandemic, which was associated with intensity of influenza activity in the region. We then developed an age-stratified, two-pathogen model to examine various hypotheses regarding viral interference mechanisms. Based on our model estimates, we identified three mechanisms through which influenza infections could interfere with RSV: 1) reducing susceptibility to RSV coinfection; 2) shortening the RSV infectious period in coinfected individuals; and 3) reducing RSV infectivity in coinfection. Our study offers statistical support for the occurrence of atypical RSV seasons following the 2009 influenza pandemic. Our work also offers new insights into the mechanisms of viral interference that contribute to disruptions in RSV epidemics and provides a model-fitting framework that enables the analysis of new surveillance data for studying viral interference at the population level.
Collapse
Affiliation(s)
- Ke Li
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Deus Thindwa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
7
|
Hu Q, Liang W, Yi Q, Zheng Y, Wang W, Wu Y. Risk factors for death associated with severe influenza in children and the impact of the COVID-19 pandemic on clinical characteristics. Front Pediatr 2023; 11:1249058. [PMID: 37772040 PMCID: PMC10522912 DOI: 10.3389/fped.2023.1249058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Background To summarize the clinical features of severe influenza in children and the high-risk factors for influenza-related deaths and to raise awareness among pediatricians. Methods A retrospective study of clinical manifestations, laboratory tests, and diagnosis and treatment of 243 children with severe influenza admitted to Shenzhen Children's Hospital from January 2009 to December 2022 was conducted. Univariate logistic regression analysis and Boruta analysis were also performed to identify potentially critical clinical characteristics associated with death, and clinically significant were used in further multivariate logistic regression analysis. Subject receiver operating characteristic (ROC) curves were applied to assess the efficacy of death-related independent risk factors to predict death from severe influenza. Results There were 169 male and 74 female patients with severe influenza, with a median age of 3 years and 2 months and 77.4% of patients under six. There were 46 cases (18.9%) in the death group. The most common pathogen was Influenza A virus (IAV) (81.5%). The most common complication in the death group was influenza-associated acute necrotizing encephalopathy (ANE [52.2%]). Severe influenza in children decreased significantly during the COVID-19 pandemic, with a median age of 5 years, a high predominance of neurological symptoms such as ANE (P = 0.001), and the most common pathogen being H3N2 (P < 0.001). D-dimer, acute respiratory distress syndrome (ARDS), and acute necrotizing encephalopathy (ANE) were significant independent risk factors for severe influenza-associated death. Furthermore, the ROC curves showed that the combined diagnosis of independent risk factors had significant early diagnostic value for severe influenza-related deaths. Conclusion Neurological disorders such as ANE are more significant in children with severe influenza after the COVID-19 pandemic. Influenza virus infection can cause serious multisystem complications such as ARDS and ANE, and D-dimer has predictive value for early diagnosis and determination of the prognosis of children with severe influenza.
Collapse
Affiliation(s)
- Qian Hu
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University School of Medicine, Shenzhen, China
| | - Wen Liang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University School of Medicine, Shenzhen, China
| | - Qiuwei Yi
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University School of Medicine, Shenzhen, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University School of Medicine, Shenzhen, China
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University School of Medicine, Shenzhen, China
| | - Yuhui Wu
- Department of Pediatric Intensive Care, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| |
Collapse
|
8
|
Karachaliou M, Damianaki I, Moudatsaki M, Margetaki K, Roumeliotaki T, Bempi V, Moudatsaki M, Chatzi LV, Vafeiadi M, Kogevinas M. Influenza Vaccination Coverage Rates and Determinants in Greek Children until the Age of Ten (2008-2019), the Rhea Mother-Child Cohort. Vaccines (Basel) 2023; 11:1241. [PMID: 37515056 PMCID: PMC10384674 DOI: 10.3390/vaccines11071241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In Greece, influenza vaccination is currently recommended for children with high-risk conditions. There are limited data on influenza vaccination uptake among Greek children with and without high-risk conditions. We aim to describe the annual influenza vaccination uptake until the age of ten in a population-based mother-child cohort and identify the factors influencing vaccination rates. METHODS Immunization data from the child's health cards at 4 and 10 years were available for 830 and 298 children participating in the Rhea cohort (2008-2019). We calculated vaccination coverage by age, winter season and among children with asthma and obesity for whom the vaccine is indicated. Univariable and multivariable stepwise logistic regression models were utilized to identify the association between several sociodemographic, lifestyle and health-related variables and vaccine uptake by age four. RESULTS By the ages of four and ten, 37% and 40% of the children, respectively, had received at least one influenza vaccination. Only 2% of the children were vaccinated for all winter seasons during their first four years of life. The vaccination rate was highest at the age of two and during the 2009-2010 season. Vaccination rates for children with asthma and obesity were 18.2% and 13.3% at age four and 8.3% and 2.9% at age ten. About 10% of all vaccines were administered after December and 24% of the children received only one dose upon initial vaccination. Children with younger siblings and those who had experienced more respiratory infections were more likely to be vaccinated by the age of four, while children exposed to smoking were less likely to be vaccinated. CONCLUSIONS Children in our study were more likely to be vaccinated against influenza at an early age with the peak occurring at the age of two. Nonetheless, annual vaccination uptake was uncommon. Vaccination rates of children with asthma and obesity were well below the national target of 75% for individuals with chronic conditions. Certain groups may merit increased attention in future vaccination campaigns such as children raised in families with unfavourable health behaviours.
Collapse
Affiliation(s)
| | | | - Maria Moudatsaki
- Department of Pediatrics, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Vicky Bempi
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Marina Moudatsaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Lida Vaia Chatzi
- Department of Preventive Medicine, Division of Environmental Health, University of Southern California, Los Angeles, CA 90033, USA
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Manolis Kogevinas
- Barcelona Institute for Global Health, 08036 Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, 28029 Madrid, Spain
- Campus del Mar, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| |
Collapse
|
9
|
Xuan L, Guo J, Xia D, Li L, Wang D, Chang Y. Albicanol antagonizes PFF-induced mitochondrial damage and reduces inflammatory factors by regulating innate immunity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115014. [PMID: 37196524 DOI: 10.1016/j.ecoenv.2023.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
As an environmental pollutant, profenofos (PFF) can seriously endanger human health through the food chain. Albicanol is a sesquiterpene compound with antioxidant, anti-inflammatory, and anti-aging properties. Previous studies have shown that Albicanol can antagonize apoptosis and genotoxicity caused by PFF exposure. However, the toxicity mechanism of PFF regulating hepatocyte immune function, apoptosis, and programmed necrosis and the role of Albicanol in this process have not been reported yet. In this study, grass carp hepatocytes (L8824) were treated with PFF (200 μM) or combined with Albicanol (5 ×10-5 μg mL-1) for 24 h to establish an experimental model. The results of JC-1 probe staining and Fluo-3 AM probe staining showed increased free calcium ions and decreased mitochondrial membrane potential in L8824 cells after PFF exposure, suggesting that PFF exposure may lead to mitochondrial damage. Real-time quantitative PCR and Western blot results showed that PFF exposure could increase the transcription of innate immunity-related factors (C3, Pardaxin 1, Hepcidin, INF-γ, IL-8, and IL-1β) in L8824 cells. PFF up-regulated the TNF/NF-κB signaling pathway and the expression of caspase-3, caspase-9, Bax, MLKL, RIPK1, and RIPK3 and down-regulated the expression of Caspase-8 and Bcl-2. Albicanol can antagonize the above-mentioned effects caused by PFF exposure. In conclusion, Albicanol antagonized the mitochondrial damage, apoptosis, and necroptosis of grass carp hepatocytes caused by PFF exposure by inhibiting the TNF/NF-κB pathway in innate immunity.
Collapse
Affiliation(s)
- Lihui Xuan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dexin Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lu Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Daining Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Chang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Hu Q, Liu B, Fan Y, Zheng Y, Wen F, Yu U, Wang W. Multi-omics association analysis reveals interactions between the oropharyngeal microbiome and the metabolome in pediatric patients with influenza A virus pneumonia. Front Cell Infect Microbiol 2022; 12:1011254. [PMID: 36389138 PMCID: PMC9651038 DOI: 10.3389/fcimb.2022.1011254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Children are at high risk for influenza A virus (IAV) infections, which can develop into severe illnesses. However, little is known about interactions between the microbiome and respiratory tract metabolites and their impact on the development of IAV pneumonia in children. Using a combination of liquid chromatography tandem mass spectrometry (LC-MS/MS) and 16S rRNA gene sequencing, we analyzed the composition and metabolic profile of the oropharyngeal microbiota in 49 pediatric patients with IAV pneumonia and 42 age-matched healthy children. The results indicate that compared to healthy children, children with IAV pneumonia exhibited significant changes in the oropharyngeal macrobiotic structure (p = 0.001), and significantly lower microbial abundance and diversity (p < 0.05). These changes came with significant disturbances in the levels of oropharyngeal metabolites. Intergroup differences were observed in 204 metabolites mapped to 36 metabolic pathways. Significantly higher levels of sphingolipid (sphinganine and phytosphingosine) and propanoate (propionic acid and succinic acid) metabolism were observed in patients with IAV pneumonia than in healthy controls. Using Spearman’s rank-correlation analysis, correlations between IAV pneumonia-associated discriminatory microbial genera and metabolites were evaluated. The results indicate significant correlations and consistency in variation trends between Streptococcus and three sphingolipid metabolites (phytosphingosine, sphinganine, and sphingosine). Besides these three sphingolipid metabolites, the sphinganine-to-sphingosine ratio and the joint analysis of the three metabolites indicated remarkable diagnostic efficacy in children with IAV pneumonia. This study confirmed significant changes in the characteristics and metabolic profile of the oropharyngeal microbiome in pediatric patients with IAV pneumonia, with high synergy between the two factors. Oropharyngeal sphingolipid metabolites may serve as potential diagnostic biomarkers of IAV pneumonia in children.
Collapse
Affiliation(s)
- Qian Hu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Baiming Liu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yanqun Fan
- Department of Trans-omics Research, Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Uet Yu,
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Uet Yu,
| |
Collapse
|