1
|
Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E, Grassi F, Boccia F. Artificial intelligence in fracture detection on radiographs: a literature review. Jpn J Radiol 2024:10.1007/s11604-024-01702-4. [PMID: 39538068 DOI: 10.1007/s11604-024-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fractures are one of the most common reasons of admission to emergency department affecting individuals of all ages and regions worldwide that can be misdiagnosed during radiologic examination. Accurate and timely diagnosis of fracture is crucial for patients, and artificial intelligence that uses algorithms to imitate human intelligence to aid or enhance human performs is a promising solution to address this issue. In the last few years, numerous commercially available algorithms have been developed to enhance radiology practice and a large number of studies apply artificial intelligence to fracture detection. Recent contributions in literature have described numerous advantages showing how artificial intelligence performs better than doctors who have less experience in interpreting musculoskeletal X-rays, and assisting radiologists increases diagnostic accuracy and sensitivity, improves efficiency, and reduces interpretation time. Furthermore, algorithms perform better when they are trained with big data on a wide range of fracture patterns and variants and can provide standardized fracture identification across different radiologist, thanks to the structured report. In this review article, we discuss the use of artificial intelligence in fracture identification and its benefits and disadvantages. We also discuss its current potential impact on the field of radiology and radiomics.
Collapse
Affiliation(s)
- Antonio Lo Mastro
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Enrico Grassi
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Russo
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Egidio Guerra
- Emergency Radiology Department, "Policlinico Riuniti Di Foggia", Foggia, Italy
| | - Francesca Grassi
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Boccia
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Retzepis NO, Avloniti A, Kokkotis C, Protopapa M, Stampoulis T, Gkachtsou A, Pantazis D, Balampanos D, Smilios I, Chatzinikolaou A. Identifying Key Factors for Predicting the Age at Peak Height Velocity in Preadolescent Team Sports Athletes Using Explainable Machine Learning. Sports (Basel) 2024; 12:287. [PMID: 39590889 PMCID: PMC11598806 DOI: 10.3390/sports12110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Maturation is a key factor in sports participation and often determines the young athletes' characterization as a talent. However, there is no evidence of practical models for understanding the factors that discriminate children according to maturity. Hence, this study aims to deepen the understanding of the factors that affect maturity in 11-year-old Team Sports Athletes by utilizing explainable artificial intelligence (XAI) models. We utilized three established machine learning (ML) classifiers and applied the Sequential Forward Feature Selection (SFFS) algorithm to each. In this binary classification task, the logistic regression (LR) classifier achieved a top accuracy of 96.67% using the seven most informative factors (Sitting Height, Father's Height, Body Fat, Weight, Height, Left and Right-Hand Grip Strength). The SHapley Additive exPlanations (SHAP) model was instrumental in identifying the contribution of each factor, offering key insights into variable importance. Independent sample t-tests on these selected factors confirmed their significance in distinguishing between the two classes. By providing detailed and personalized insights into child development, this integration has the potential to enhance the effectiveness of maturation prediction significantly. These advancements could lead to a transformative approach in young athletes' pediatric growth analysis, fostering better sports performance and developmental outcomes for children.
Collapse
Affiliation(s)
| | - Alexandra Avloniti
- School of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (N.-O.R.); (C.K.); (M.P.); (T.S.); (A.G.); (D.P.); (I.S.); (A.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Spadaccini M, Troya J, Khalaf K, Facciorusso A, Maselli R, Hann A, Repici A. Artificial Intelligence-assisted colonoscopy and colorectal cancer screening: Where are we going? Dig Liver Dis 2024; 56:1148-1155. [PMID: 38458884 DOI: 10.1016/j.dld.2024.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Colorectal cancer is a significant global health concern, necessitating effective screening strategies to reduce its incidence and mortality rates. Colonoscopy plays a crucial role in the detection and removal of colorectal neoplastic precursors. However, there are limitations and variations in the performance of endoscopists, leading to missed lesions and suboptimal outcomes. The emergence of artificial intelligence (AI) in endoscopy offers promising opportunities to improve the quality and efficacy of screening colonoscopies. In particular, AI applications, including computer-aided detection (CADe) and computer-aided characterization (CADx), have demonstrated the potential to enhance adenoma detection and optical diagnosis accuracy. Additionally, AI-assisted quality control systems aim to standardize the endoscopic examination process. This narrative review provides an overview of AI principles and discusses the current knowledge on AI-assisted endoscopy in the context of screening colonoscopies. It highlights the significant role of AI in improving lesion detection, characterization, and quality assurance during colonoscopy. However, further well-designed studies are needed to validate the clinical impact and cost-effectiveness of AI-assisted colonoscopy before its widespread implementation.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy.
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kareem Khalaf
- Division of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| |
Collapse
|
4
|
Gitto S, Serpi F, Albano D, Risoleo G, Fusco S, Messina C, Sconfienza LM. AI applications in musculoskeletal imaging: a narrative review. Eur Radiol Exp 2024; 8:22. [PMID: 38355767 PMCID: PMC10866817 DOI: 10.1186/s41747-024-00422-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
This narrative review focuses on clinical applications of artificial intelligence (AI) in musculoskeletal imaging. A range of musculoskeletal disorders are discussed using a clinical-based approach, including trauma, bone age estimation, osteoarthritis, bone and soft-tissue tumors, and orthopedic implant-related pathology. Several AI algorithms have been applied to fracture detection and classification, which are potentially helpful tools for radiologists and clinicians. In bone age assessment, AI methods have been applied to assist radiologists by automatizing workflow, thus reducing workload and inter-observer variability. AI may potentially aid radiologists in identifying and grading abnormal findings of osteoarthritis as well as predicting the onset or progression of this disease. Either alone or combined with radiomics, AI algorithms may potentially improve diagnosis and outcome prediction of bone and soft-tissue tumors. Finally, information regarding appropriate positioning of orthopedic implants and related complications may be obtained using AI algorithms. In conclusion, rather than replacing radiologists, the use of AI should instead help them to optimize workflow, augment diagnostic performance, and keep up with ever-increasing workload.Relevance statement This narrative review provides an overview of AI applications in musculoskeletal imaging. As the number of AI technologies continues to increase, it will be crucial for radiologists to play a role in their selection and application as well as to fully understand their potential value in clinical practice. Key points • AI may potentially assist musculoskeletal radiologists in several interpretative tasks.• AI applications to trauma, age estimation, osteoarthritis, tumors, and orthopedic implants are discussed.• AI should help radiologists to optimize workflow and augment diagnostic performance.
Collapse
Affiliation(s)
- Salvatore Gitto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Francesca Serpi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Risoleo
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | - Stefano Fusco
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy
| | - Carmelo Messina
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
5
|
Wu Q, Ma H, Sun J, Liu C, Fang J, Xie H, Zhang S. Application of deep-learning-based artificial intelligence in acetabular index measurement. Front Pediatr 2022; 10:1049575. [PMID: 36741093 PMCID: PMC9891291 DOI: 10.3389/fped.2022.1049575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To construct an artificial intelligence system to measure acetabular index and evaluate its accuracy in clinical application. METHODS A total of 10,219 standard anteroposterior pelvic radiographs were collected retrospectively from April 2014 to December 2018 in our hospital. Of these, 9,219 radiographs were randomly selected to train and verify the system. The remaining 1,000 radiographs were used to compare the system's and the clinicians' measurement results. All plain pelvic films were labeled by an expert committee through PACS system based on a uniform standard to measure acetabular index. Subsequently, eight other clinicians independently measured the acetabular index from 200 randomly selected radiographs from the test radiographs. Bland-Altman test was used for consistency analysis between the system and clinician measurements. RESULTS The test set included 1,000 cases (2,000 hips). Compared with the expert committee measurement, the 95% limits of agreement (95% LOA) of the system was -4.02° to 3.45° (bias = -0.27°, P < 0.05). The acetabular index measured by the system within all age groups, including normal and abnormal groups, also showed good credibility according to the Bland-Altman principle. Comparison of the measurement evaluations by the system and eight clinicians vs. that of, the expert committee, the 95% LOA of the clinician with the smallest measurement error was -2.76° to 2.56° (bias = -0.10°, P = 0.126). The 95% LOA of the system was -0.93° to 2.86° (bias = -0.03°, P = 0.647). The 95% LOA of the clinician with the largest measurement error was -3.41° to 4.25° (bias = 0.42°, P < 0.05). The measurement error of the system was only greater than that of a senior clinician. CONCLUSION The newly constructed artificial intelligence system could quickly and accurately measure the acetabular index of standard anteroposterior pelvic radiographs. There is good data consistency between the system in measuring standard anteroposterior pelvic radiographs. The accuracy of the system is closer to that of senior clinicians.
Collapse
Affiliation(s)
- Qingjie Wu
- Department of Pediatric Orthopedics, Anhui Provincial Children's Hospital, Hefei, China.,Fifth Clinical Medical College, Anhui Medical University, Hefei, China
| | - Hailong Ma
- Department of Pediatric Orthopedics, Anhui Provincial Children's Hospital, Hefei, China
| | - Jun Sun
- Department of Pediatric Orthopedics, Anhui Provincial Children's Hospital, Hefei, China.,Fifth Clinical Medical College, Anhui Medical University, Hefei, China
| | - Chuanbin Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Jihong Fang
- Department of Pediatric Orthopedics, Anhui Provincial Children's Hospital, Hefei, China
| | - Hongtao Xie
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Sicheng Zhang
- Department of Pediatric Orthopedics, Anhui Provincial Children's Hospital, Hefei, China.,Fifth Clinical Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|