1
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
2
|
Luo H, Lou KC, Xie LY, Zeng F, Zou JR. Pharmacotherapy of urethral stricture. Asian J Androl 2024; 26:1-9. [PMID: 37738151 PMCID: PMC10846832 DOI: 10.4103/aja202341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/21/2023] [Indexed: 09/24/2023] Open
Abstract
Urethral stricture is characterized by the chronic formation of fibrous tissue, leading to the narrowing of the urethral lumen. Despite the availability of various endoscopic treatments, the recurrence of urethral strictures remains a common challenge. Postsurgery pharmacotherapy targeting tissue fibrosis is a promising option for reducing recurrence rates. Although drugs cannot replace surgery, they can be used as adjuvant therapies to improve outcomes. In this regard, many drugs have been proposed based on the mechanisms underlying the pathophysiology of urethral stricture. Ongoing studies have obtained substantial progress in treating urethral strictures, highlighting the potential for improved drug effectiveness through appropriate clinical delivery methods. Therefore, this review summarizes the latest researches on the mechanisms related to the pathophysiology of urethral stricture and the drugs to provide a theoretical basis and new insights for the effective use and future advancements in drug therapy for urethral stricture.
Collapse
Affiliation(s)
- Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ke-Cheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ling-Yu Xie
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Fei Zeng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
| | - Jun-Rong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| |
Collapse
|
3
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Matoba K, Sekiguchi K, Nagai Y, Takeda Y, Takahashi H, Yokota T, Utsunomiya K, Nishimura R. Renal ROCK Activation and Its Pharmacological Inhibition in Patients With Diabetes. Front Pharmacol 2021; 12:738121. [PMID: 34557101 PMCID: PMC8454778 DOI: 10.3389/fphar.2021.738121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine/threonine kinase with essential roles in cytoskeletal functions. Substantial evidence implicates ROCK as a critical regulator in the inception and progression of diabetic nephropathy through a mechanism involving mesangial fibrosis, podocyte apoptosis, and endothelial inflammation. Despite these experimental observations, human data is lacking. Here we show that the phosphorylated form of myosin phosphatase targeting subunit 1 (MYPT1), a ROCK substrate, was increased in both the glomerular and tubulointerstitial areas in patients with histologically confirmed diabetic nephropathy. We also conducted a retrospective pilot analysis of data from patients with diabetes to assess the renoprotective effects of fasudil, an ATP-competitive ROCK inhibitor licensed in Japan for the prevention of vasospasm following subarachnoid hemorrhage. Fifteen subjects (male, n = 8; female, n = 7; age 65.7 ± 14.7 years; body height, 161.1 ± 12.6 cm; body weight, 57.6 ± 13.7 kg; body mass index, 22.4 ± 3.7 kg/m2) were enrolled to evaluate blood pressure and the renal outcome after fasudil treatment. Of note, proteinuria was significantly reduced at the end of the fasudil treatment without affecting the blood pressure or estimated glomerular filtration rate. Taken together, these findings suggest that the administration of fasudil could be associated with a better renal outcome by inhibiting the ROCK activity in patients with diabetes.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kensuke Sekiguchi
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Takahashi
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Wang L, Wang HL, Liu TT, Lan HY. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int J Mol Sci 2021; 22:7881. [PMID: 34360646 PMCID: PMC8345981 DOI: 10.3390/ijms22157881] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial due to the diverse role of TGF-β1 in DN. Thus, understanding the regulatory role and mechanisms of TGF-β in the pathogenesis of DN is the initial step towards the development of anti-TGF-β treatment for DN. In this review, we first discuss the diverse roles and signaling mechanisms of TGF-β in DN by focusing on the latent versus active TGF-β1, the TGF-β receptors, and the downstream individual Smad signaling molecules including Smad2, Smad3, Smad4, and Smad7. Then, we dissect the regulatory mechanisms of TGF-β/Smad signaling in the development of DN by emphasizing Smad-dependent non-coding RNAs including microRNAs and long-non-coding RNAs. Finally, the potential therapeutic strategies for DN by targeting TGF-β signaling with various therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Tong-Tong Liu
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
6
|
Li J, Liu H, Srivastava SP, Hu Q, Gao R, Li S, Kitada M, Wu G, Koya D, Kanasaki K. Endothelial FGFR1 (Fibroblast Growth Factor Receptor 1) Deficiency Contributes Differential Fibrogenic Effects in Kidney and Heart of Diabetic Mice. Hypertension 2020; 76:1935-1944. [PMID: 33131311 DOI: 10.1161/hypertensionaha.120.15587] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to organ fibrogenesis. We have reported that N-acetyl-seryl-aspartyl- lysyl-proline (AcSDKP) restored levels of diabetes mellitus-suppressed FGFR1 (fibroblast growth factor receptor 1), the endothelial receptor essential for combating EndMT. However, the molecular regulation and biological/pathological significance of the AcSDKP-FGFR1 relationship has not been elucidated yet. Here, we demonstrated that endothelial FGFR1 deficiency led to AcSDKP-resistant EndMT and severe fibrosis associated with EndMT-stimulated fibrogenic programming in neighboring cells. Diabetes mellitus induced severe kidney fibrosis in endothelial FGFR1-deficient mice (FGFR1fl/fl; VE-cadherin-Cre: FGFR1EKO) but not in control mice (FGFR1fl/fl); AcSDKP completely or partially suppressed kidney fibrosis in control or FGFR1EKO mice. Severe fibrosis was also induced in hearts of diabetic FGFR1EKO mice; however, AcSDKP had no effect on heart fibrosis in FGFR1EKO mice. AcSDKP also had no effect on EndMT in either kidney or heart but partially suppressed epithelial-to-mesenchymal transition in kidneys of diabetic FGFR1EKO mice. The medium from FGFR1-deficient endothelial cells stimulated TGFβ (transforming growth factor β)/Smad-dependent epithelial-to-mesenchymal transition in cultured human proximal tubule epithelial cell line, AcSDKP inhibited such epithelial-to-mesenchymal transition. These data demonstrated that endothelial FGFR1 is essential as an antifibrotic core molecule as the target of AcSDKP.
Collapse
Affiliation(s)
- Jinpeng Li
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Thyroid and Breast Surgery, Wuhan University Zhongnan Hospital, PR China (J.L., G.W.)
| | - Haijie Liu
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Swayam Prakash Srivastava
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Pediatrics Yale University School of Medicine, New Haven, CT (S.P.S.).,Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, CT (S.P.S.)
| | - Qiongying Hu
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Rongfen Gao
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shaolan Li
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Munehiro Kitada
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Wuhan University Zhongnan Hospital, PR China (J.L., G.W.)
| | - Daisuke Koya
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Keizo Kanasaki
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Internal Medicine 1, Faculty of Medicine, Shimane University, Japan (K.K.)
| |
Collapse
|
7
|
Mizunuma Y, Kanasaki K, Nitta K, Nakamura Y, Ishigaki Y, Takagaki Y, Kitada M, Li S, Liu H, Li J, Usui I, Aso Y, Koya D. CD-1 db/db mice: A novel type 2 diabetic mouse model with progressive kidney fibrosis. J Diabetes Investig 2020; 11:1470-1481. [PMID: 32472621 PMCID: PMC7610117 DOI: 10.1111/jdi.13311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/28/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Aims/Introduction To establish novel therapies to combat diabetic kidney disease, a human disease‐relevant animal model is essential. However, a type 2 diabetic mouse model presenting progressive kidney fibrosis has not yet been established. Kidneys of streptozotocin‐induced diabetic CD‐1 mice showed severe fibrosis compared with other backgrounds of mice associated with the suppression of antifibrotic peptide N‐acetyl‐seryl‐aspartyl‐lysyl‐proline. The BKS background (BKSdb/db) is often utilized for diabetic kidney disease research; the kidney fibrosis in the BKSdb/db phenotype is minimal. Materials and Methods We generated CD‐1db/db mice by backcrossing the db gene into the CD‐1 background, and analyzed phenotypic differences compared with BKSdb/db and CD‐1db/m mice. Results Male CD‐1db/db mice appeared to have elevated blood glucose levels compared with those of BKSdb/db mice. Fasting insulin levels declined in CD‐1db/db mice. Plasma cystatin C levels tended to be elevated in CD‐1db/db mice from 16 to 24 weeks‐of‐age. Male CD‐1db/db mice showed significantly progressive kidney and heart fibrosis from 16 to 24 weeks‐of‐age when compared with that of age‐matched BKSdb/db mice. The gene expression profile showed fibrogenic program‐associated genes in male CD‐1db/db mice. Male CD‐1db/db mice displayed significantly lower urine antifibrotic peptide N‐acetyl‐seryl‐aspartyl‐lysyl‐proline when compared to that of BKSdb/db at 24 weeks‐of‐age. The gene expression of prolyl oligopeptidase, the enzyme essential for antifibrotic peptide N‐acetyl‐seryl‐aspartyl‐lysyl‐proline production from thymosin β4, was significantly lower in the CD‐1 mice. Thymosin β4 levels were also lower in CD‐1 mice. Conclusions These results suggest that CD‐1db/db mice are a novel type 2 diabetic mouse model with progressive kidney and heart fibrosis.
Collapse
Affiliation(s)
- Yuiko Mizunuma
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Kyoko Nitta
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuta Takagaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shaolan Li
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Haijie Liu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Jinpeng Li
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
8
|
Kanasaki K. N-acetyl-seryl-aspartyl-lysyl-proline is a valuable endogenous antifibrotic peptide for kidney fibrosis in diabetes: An update and translational aspects. J Diabetes Investig 2020; 11:516-526. [PMID: 31997585 PMCID: PMC7232267 DOI: 10.1111/jdi.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous peptide that has been confirmed to show excellent organ-protective effects. Even though originally discovered as a modulator of hemotopoietic stem cells, during the recent two decades, AcSDKP has been recognized as valuable antifibrotic peptide. The antifibrotic mechanism of AcSDKP is not yet clear; we have established that AcSDKP could target endothelial-mesenchymal transition program through the induction of the endothelial fibroblast growth factor receptor signaling pathway. Also, recent reports suggested the clinical significance of AcSDKP. The aim of this review was to update recent advances of the mechanistic action of AcSDKP and discuss translational research aspects.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Internal Medicine 1Faculty of MedicineShimane UniversityIzumoJapan
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaJapan
- Division of Anticipatory Molecular Food Science and TechnologyKanazawa Medical UniversityUchinadaJapan
| |
Collapse
|
9
|
Sharma UC, Sonkawade SD, Spernyak JA, Sexton S, Nguyen J, Dahal S, Attwood KM, Singh AK, van Berlo JH, Pokharel S. A Small Peptide Ac-SDKP Inhibits Radiation-Induced Cardiomyopathy. Circ Heart Fail 2019; 11:e004867. [PMID: 30354563 DOI: 10.1161/circheartfailure.117.004867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Advances in radiotherapy for thoracic cancers have resulted in improvement of survival. However, radiation exposure to the heart can induce cardiotoxicity. No therapy is currently available to inhibit these untoward effects. We examined whether a small tetrapeptide, N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), can counteract radiation-induced cardiotoxicity by inhibiting macrophage-dependent inflammatory and fibrotic pathways. METHODS AND RESULTS After characterizing a rat model of cardiac irradiation with magnetic resonance imaging protocols, we examined the effects of Ac-SDKP in radiation-induced cardiomyopathy. We treated rats with Ac-SDKP for 18 weeks. We then compared myocardial contractile function and extracellular matrix by cardiac magnetic resonance imaging and the extent of inflammation, fibrosis, and Mac-2 (galectin-3) release by tissue analyses. Because Mac-2 is a crucial macrophage-derived mediator of fibrosis, we performed studies to determine Mac-2 synthesis by macrophages in response to radiation, and change in profibrotic responses by Mac-2 gene depleted cardiac fibroblasts after radiation. Cardiac irradiation diminished myocardial contractile velocities and enhanced extracellular matrix deposition. This was accompanied by macrophage infiltration, fibrosis, cardiomyocyte apoptosis, and cardiac Mac-2 expression. Ac-SDKP strongly inhibited these detrimental effects. Ac-SDKP migrated into the perinuclear cytoplasm of the macrophages and inhibited radiation-induced Mac-2 release. Cardiac fibroblasts lacking the Mac-2 gene showed reduced transforming growth factor β1, collagen I, and collagen III expression after radiation exposure. CONCLUSIONS Our study identifies novel cardioprotective effects of Ac-SDKP in a model of cardiac irradiation. These protective effects are exerted by inhibiting inflammation, fibrosis, and reducing macrophage activation. This study shows a therapeutic potential of this endogenously released peptide to counteract radiation-induced cardiomyopathy.
Collapse
Affiliation(s)
- Umesh C Sharma
- From the Division of Advanced Cardiovascular Imaging in Cardiology, Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY (U.C.S., S.D.S., S.D.)
| | - Swati D Sonkawade
- From the Division of Advanced Cardiovascular Imaging in Cardiology, Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY (U.C.S., S.D.S., S.D.)
| | | | | | - Juliane Nguyen
- Roswell Park Cancer Institute, Buffalo, NY. Department of Pharmaceutical Sciences, School of Pharmacy, Buffalo, NY (J.N.)
| | - Suraj Dahal
- From the Division of Advanced Cardiovascular Imaging in Cardiology, Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY (U.C.S., S.D.S., S.D.)
| | | | | | - Jop H van Berlo
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis (J.H.v.B.)
| | - Saraswati Pokharel
- Department of Pathology, Division of Thoracic Pathology and Oncology (S.P.)
| |
Collapse
|
10
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Liu TT, Guo L, Lin Y, Nie XW, Bian JS. Hydrogen Sulfide: Recent Progression and Perspectives for the Treatment of Diabetic Nephropathy. Molecules 2019; 24:molecules24152857. [PMID: 31390847 PMCID: PMC6696501 DOI: 10.3390/molecules24152857] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease develops in approximately 40% of diabetic patients and is a major cause of chronic kidney diseases (CKD) and end stage kidney disease (ESKD) worldwide. Hydrogen sulfide (H2S), the third gasotransmitter after nitric oxide (NO) and carbon monoxide (CO), is synthesized in nearly all organs, including the kidney. Though studies on H2S regulation of renal physiology and pathophysiology are still in its infancy, emerging evidence shows that H2S production by renal cells is reduced under disease states and H2S donors ameliorate kidney injury. Specifically, aberrant H2S level is implicated in various renal pathological conditions including diabetic nephropathy. This review presents the roles of H2S in diabetic renal disease and the underlying mechanisms for the protective effects of H2S against diabetic renal damage. H2S may serve as fundamental strategies to treat diabetic kidney disease. These H2S treatment modalities include precursors for H2S synthesis, H2S donors, and natural plant-derived compounds. Despite accumulating evidence from experimental studies suggests the potential role of the H2S signaling pathway in the treatment of diabetic nephropathy, these results need further clinical translation. Expanding understanding of H2S in the kidney may be vital to translate H2S to be a novel therapy for diabetic renal disease.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Meng-Yuan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Teng-Teng Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Lei Guo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ye Lin
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- National University of Singapore (Suzhou) Research Institute, Suzhou 215000, China.
| |
Collapse
|
11
|
Ji X, Tang Z, Shuai W, Zhang Z, Li J, Chen L, Cao J, Yin W. Endogenous peptide LYENRL prevents the activation of hypertrophic scar-derived fibroblasts by inhibiting the TGF-β1/Smad pathway. Life Sci 2019; 231:116674. [DOI: 10.1016/j.lfs.2019.116674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
|
12
|
Lan F, Hu Y, Tang D, Cai J, Zhang Q. Transcription coactivator p300 promotes inflammation by enhancing p65 subunit activation in type 2 diabetes nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1826-1834. [PMID: 31934006 PMCID: PMC6947128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND p300, a transcription co-activator, plays an important role in multicellular organisms and inflammation. However, the mechanism of p300 in type 2 diabetes nephropathy (T2DN) remains largely unknown. Our aim is to explore the mechanism of p300 in T2DN. METHODS A T2DN mice model was induced by db/db transgenic mice or a high fat diet for 24 weeks. The levels of IL-6 and TNF-α were examined by real-time PCR (RT-PCR) in the renal cortex and by an enzyme linked immunosorbent assay (ELISA) in the serum of the T2DN mice. p300 siRNA was used to knockdown the expression of p300, and His-tagged-p300 plasmid was used to overexpress the p300 protein level in podocytes. Hematoxylin-eosin staining (H&E) and Masson trichrome analysis were used to detect the kidney pathology in T2DN. RESULTS The levels of IL-6 and TNF-α were significantly increased in T2DN. p300 was significantly increased in T2DN. Consistently, p300 silencing significantly suppressed the inflammatory response and the overexpression of p300 significantly promoted the production of IL-6 and TNF-α in T2DN. CONCLUSIONS This study demonstrated that the production of IL-6 and TNF-α, and the expression of p300, were increased in T2DN. Furthermore, P300 significantly promoted the activation of the NF-κB subunit p65 through a direct association with p65 in T2DN, subsequently enhancing the production of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Fei Lan
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| | - Yv Hu
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| | - Dan Tang
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| | - Jing Cai
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| | - Qin Zhang
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| |
Collapse
|
13
|
Gao R, Kanasaki K, Li J, Kitada M, Okazaki T, Koya D. βklotho is essential for the anti-endothelial mesenchymal transition effects of N-acetyl-seryl-aspartyl-lysyl-proline. FEBS Open Bio 2019; 9:1029-1038. [PMID: 30972974 PMCID: PMC6487725 DOI: 10.1002/2211-5463.12638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial–mesenchymal transition (EndMT) has emerged as an essential bioprocess responsible for the development of organ fibrosis. We have previously reported that fibroblast growth factor receptor 1 (FGFR1) is involved in the anti‐EndMT effect of N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (AcSDKP). FGFR1 is expressed on the cell membrane and performs its biological function through interaction with co‐receptors, including βklotho (KLB). However, it remains unknown whether KLB is involved in the anti‐EndMT effects of AcSDKP. Here, we demonstrated that AcSDKP increased KLB expression in an FGFR1‐dependent manner and that KLB deficiency induced AcSDKP‐resistant EndMT via the induction of the mitogen‐activated protein kinase (MAPK) pathway. In cultured endothelial cells, AcSDKP increased KLB protein level in an FGFR1‐dependent manner through induction of the FGFR1–KLB complex. KLB suppression by small interfering RNA transfection did not affect FGFR1 levels and resulted in the induction of EndMT. In contrast to the EndMT observed under FGFR1 deficiency, the EndMT induced by KLB suppression was not accompanied by the induction of Smad3 phosphorylation; instead, KLB‐deficient cells exhibited induced activation of the MAPK/extracellular signal‐regulated kinase (ERK) kinase (MEK) and ERK pathways. Treatment with the specific MEK inhibitor U0126 diminished KLB deficiency‐induced EndMT. Consistent with this finding, AcSDKP did not suppress either EndMT or MEK/ERK activation induced by KLB deficiency. Application of either FGF19 or FGF21 synergistically augmented the anti‐EndMT effects of AcSDKP. Taken together, these results indicate that endogenous peptide AcSDKP exerts its activity through induction of the FGFR1–KLB complex in vascular endothelial cells.
Collapse
Affiliation(s)
- Rongfen Gao
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Department of Hematology & Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Keizo Kanasaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Jinpeng Li
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Munehiro Kitada
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Toshiro Okazaki
- Department of Hematology & Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
14
|
Nitta K, Nagai T, Mizunuma Y, Kitada M, Nakagawa A, Sakurai M, Toyoda M, Haneda M, Kanasaki K, Koya D. N-Acetyl-seryl-aspartyl-lysyl-proline is a potential biomarker of renal function in normoalbuminuric diabetic patients with eGFR ≥ 30 ml/min/1.73 m 2. Clin Exp Nephrol 2019; 23:1004-1012. [PMID: 30949886 DOI: 10.1007/s10157-019-01733-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND A biomarker, by which we can predict alterations of renal function in normoalbuminuric diabetic patients, is not available. Here, we report that endogenous anti-fibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) represents a potential biomarker to predict alterations in eGFR in normoalbuminuric diabetic patients. METHODS We analyzed 21 normoalbuminuric diabetic patients with eGFR ≥ 30 ml/min/1.73 m2 and measured AcSDKP levels in first morning void urine. We divided patients into two groups based on the median values: low or high urinary AcSDKP groups (uAcSDKP/Crlow or uAcSDKP/Crhigh). At baseline, no significant differences in sex, age, HbA1c, BMI, serum creatinine levels, etc., were observed between the two groups. RESULTS During ~ 4 years, the alteration in eGFR [ΔeGFRop (ΔeGFR observational periods)] was significantly stable in uAcSDKP/Crhigh group compared with uAcSDKP/Crlow group over time (P = 0.003, χ2 = 8.58). We also evaluated urine kidney injury molecule-1 (uKim-1) levels and found that ΔeGFRop was also stable in low uKim-1 group compared with high uKim-1 group over time (P = 0.004, χ2 = 8.38). Patients who fulfilled the criteria for both uAcSDKP/Crhigh and uKim-1low exhibited stable ΔeGFRop (P < 0.001, χ2 = 30.4) when compared to the remaining patients. Plasma AcSDKP (P = 0.015, χ2 = 5.94) and urine β2-microglobulin (P = 0.038, χ2 = 4.31) also display weak but significant predictor of ΔeGFRop as well. CONCLUSION AcSDKP represents a potentially useful biomarker to predict alterations in the renal function of patients with diabetes presenting normoalbuminuria.
Collapse
Affiliation(s)
- Kyoko Nitta
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Yuiko Mizunuma
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Atsushi Nakagawa
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Masaru Sakurai
- Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Masao Toyoda
- Internal Medicine, Division of Nephrology and Metabolism, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Masakazu Haneda
- Nishiumeda Clinic for Asian Medical Collaboration near JR Osaka Station, Maruito Nishi Umeda Building 3F, 3-3-45, Umeda Kita-ku, Osaka, 530-0001, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan. .,Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
15
|
Eriguchi M, Bernstein EA, Veiras LC, Khan Z, Cao DY, Fuchs S, McDonough AA, Toblli JE, Gonzalez-Villalobos RA, Bernstein KE, Giani JF. The Absence of the ACE N-Domain Decreases Renal Inflammation and Facilitates Sodium Excretion during Diabetic Kidney Disease. J Am Soc Nephrol 2018; 29:2546-2561. [PMID: 30185469 DOI: 10.1681/asn.2018030323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recent evidence emphasizes the critical role of inflammation in the development of diabetic nephropathy. Angiotensin-converting enzyme (ACE) plays an active role in regulating the renal inflammatory response associated with diabetes. Studies have also shown that ACE has roles in inflammation and the immune response that are independent of angiotensin II. ACE's two catalytically independent domains, the N- and C-domains, can process a variety of substrates other than angiotensin I. METHODS To examine the relative contributions of each ACE domain to the sodium retentive state, renal inflammation, and renal injury associated with diabetic kidney disease, we used streptozotocin to induce diabetes in wild-type mice and in genetic mouse models lacking either a functional ACE N-domain (NKO mice) or C-domain (CKO mice). RESULTS In response to a saline challenge, diabetic NKO mice excreted 32% more urinary sodium compared with diabetic wild-type or CKO mice. Diabetic NKO mice also exhibited 55% less renal epithelial sodium channel cleavage (a marker of channel activity), 55% less renal IL-1β, 53% less renal TNF-α, and 53% less albuminuria than diabetic wild-type mice. This protective phenotype was not associated with changes in renal angiotensin II levels. Further, we present evidence that the anti-inflammatory tetrapeptide N-acetyl-seryl-asparyl-lysyl-proline (AcSDKP), an ACE N-domain-specific substrate that accumulates in the urine of NKO mice, mediates the beneficial effects observed in the NKO. CONCLUSIONS These data indicate that increasing AcSDKP by blocking the ACE N-domain facilitates sodium excretion and ameliorates diabetic kidney disease independent of intrarenal angiotensin II regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastien Fuchs
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, California
| | - Alicia A McDonough
- Department of Integrative Anatomical Sciences, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, University of Buenos Aires, National Scientific and Technical Research Council, Buenos Aires, Argentina; and
| | - Romer A Gonzalez-Villalobos
- Departments of Biomedical Sciences and.,Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, Pennsylvania
| | - Kenneth E Bernstein
- Departments of Biomedical Sciences and.,Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | | |
Collapse
|
16
|
Juillerat-Jeanneret L, Aubert JD, Mikulic J, Golshayan D. Fibrogenic Disorders in Human Diseases: From Inflammation to Organ Dysfunction. J Med Chem 2018; 61:9811-9840. [DOI: 10.1021/acs.jmedchem.8b00294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - John-David Aubert
- Pneumology Division and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV), CH1011 Lausanne, Switzerland
| | - Josip Mikulic
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
17
|
Zhang L, Xu D, Li Q, Yang Y, Xu H, Wei Z, Wang R, Zhang W, Liu Y, Geng Y, Li S, Gao X, Yang F. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) attenuates silicotic fibrosis by suppressing apoptosis of alveolar type II epithelial cells via mediation of endoplasmic reticulum stress. Toxicol Appl Pharmacol 2018; 350:1-10. [PMID: 29684394 DOI: 10.1016/j.taap.2018.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023]
Abstract
Damage to alveolar epithelial cells (AECs) caused by long-term inhalation of large amounts of silica dust plays a significant role in the pathology of silicosis. The present study was undertaken to investigate the regulatory mechanism(s) involved in type II AEC damage from silicon dioxide (SiO2) as well as the mechanism(s) related to the prevention of silicosis by the antifibrotic tetra peptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). The 2-DE results showed that SiO2 induced endoplasmic reticulum (ER) stress in A549 cells. In addition, typical apoptotic characteristics were observed using a transmission electron microscope (TEM) in A549 cells stimulated by SiO2 and in type II AECs from silicotic rats. Mechanistic study showed that both Ac-SDKP and 4-phenylbutyrate (4-PBA), an inhibiter of ER stress, attenuated GRP78, phosphor-PERK, phosphor-eIF2α, CHOP and Caspase-12 protein expression in A549 cells stimulated by SiO2 and in type II AECs from silicotic rats. Treatment with Ac-SDKP and 4-PBA in vivo effectively inhibited collagen deposition in the lungs of silicotic rats. In summary, ER stress is involved in the apoptosis of type II AECs both in vitro and in vivo. Ac-SDKP effectively suppresses SiO2-induced apoptosis in type II AECs by attenuating the Caspase-12 and PERK/eIF2α/CHOP pathway activation caused by ER stress, thus preventing silicotic fibrosis.
Collapse
Affiliation(s)
- Lijuan Zhang
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Dingjie Xu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Qian Li
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yi Yang
- Department of educational affairs, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongqiu Wei
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Ruimin Wang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Wenli Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yan Liu
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yucong Geng
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shifeng Li
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xuemin Gao
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fang Yang
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| |
Collapse
|
18
|
Li J, Chen L, Li Q, Cao J, Gao Y, Li J. Comparative peptidomic profile between human hypertrophic scar tissue and matched normal skin for identification of endogenous peptides involved in scar pathology. J Cell Physiol 2018; 233:5962-5971. [PMID: 29244193 DOI: 10.1002/jcp.26407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2017] [Indexed: 01/28/2023]
Abstract
Endogenous peptides recently attract increasing attention for their participation in various biological processes. Their roles in the pathogenesis of human hypertrophic scar remains poorly understood. In this study, we used liquid chromatography-tandem mass spectrometry to construct a comparative peptidomic profiling between human hypertrophic scar tissue and matched normal skin. A total of 179 peptides were significantly differentially expressed in human hypertrophic scar tissue, with 95 upregulated and 84 downregulated peptides between hypertrophic scar tissue and matched normal skin. Further bioinformatics analysis (Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis) indicated that precursor proteins of these differentially expressed peptides correlate with cellular process, biological regulation, cell part, binding and structural molecule activity ribosome, and PPAR signaling pathway occurring during pathological changes of hypertrophic scar. Based on prediction database, we found that 78 differentially expressed peptides shared homology with antimicrobial peptides and five matched known immunomodulatory peptides. In conclusion, our results show significantly altered expression profiles of peptides in human hypertrophic scar tissue. These peptides may participate in the etiology of hypertrophic scar and provide beneficial scheme for scar evaluation and treatments.
Collapse
Affiliation(s)
- Jingyun Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ling Chen
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qian Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Cao
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanli Gao
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jun Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
19
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Fibroblast activation protein-α in fibrogenic disorders and cancer: more than a prolyl-specific peptidase? Expert Opin Ther Targets 2017; 21:977-991. [DOI: 10.1080/14728222.2017.1370455] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CHUV and UNIL, University Institute of Pathology, Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters, Paris, France
- Hybrigenics Corporation, Cambridge Innovation Center, Cambridge, MA, USA
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
20
|
Li J, Shi S, Srivastava SP, Kitada M, Nagai T, Nitta K, Kohno M, Kanasaki K, Koya D. FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway. Cell Death Dis 2017; 8:e2965. [PMID: 28771231 PMCID: PMC5596544 DOI: 10.1038/cddis.2017.353] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to organ fibrogenesis, and we have reported that the anti-EndMT effect of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is associated with restoring expression of diabetes-suppressed fibroblast growth factor receptor (FGFR), the key anti-EndMT molecule. FGFR1 is the key inhibitor of EndMT via the suppression of the transforming growth factor β (TGFβ) signaling pathway, and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) inhibits integrin β1, a key factor in activating TGFβ signaling and EndMT. Here, we showed that the close proximity between AcSDKP and FGFR1 was essential for the suppression of TGFβ/smad signaling and EndMT associated with MAP4K4 phosphorylation (P-MAP4K4) in endothelial cells. In cultured human dermal microvascular endothelial cells (HMVECs), the anti-EndMT and anti-TGFβ/smad effects of AcSDKP were lost following treatment with a neutralizing FGFR1 antibody (N-FGFR1) or transfection of FRS2 siRNA. The physical interaction between FGFR1 and P-MAP4K4 in HMVECs was confirmed by proximity ligation analysis and an immunoprecipitation assay. AcSDKP induced P-MAP4K4 in HMVECs, which was significantly inhibited by treatment with either N-FGFR1 or FRS2 siRNA. Furthermore, MAP4K4 knockdown using specific siRNAs induced smad3 phosphorylation and EndMT in HMVECs, which was not suppressed by AcSDKP. Streptozotocin-induced diabetic CD-1 mice exhibited suppression of both FGFR1 and P-MAP4K4 expression levels associated with the induction of TGFβ/smad3 signaling and EndMT in their hearts and kidneys; those were restored by AcSDKP treatment. These data demonstrate that the AcSDKP-FGFR1-MAP4K4 axis has an important role in combating EndMT-associated fibrotic disorders.
Collapse
Affiliation(s)
- Jinpeng Li
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | | | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Kyoko Nitta
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Miyuki Kohno
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
21
|
Li X, Wang L, Chen C. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Sci Rep 2017; 7:5872. [PMID: 28724974 PMCID: PMC5517632 DOI: 10.1038/s41598-017-06318-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the effects of exogenous thymosin β4 (TB4) on carbon tetrachloride (CCl4)-induced acute liver injury and fibrosis in rodent animals. Results showed that both in mice and rats CCl4 rendered significant increases in serum alanine aminotransferase and aspartate aminotransferase, hepatic malondialdehyde formation, decreases in antioxidants including superoxide dismutase and glutathione, and up-regulated expressions of transforming growth factor-β1, α-smooth muscle actin, tumor necrosis factor-α and interleukin-1β in the liver tissues. Hydroxyproline contents in the rat livers were increased by CCl4. Histopathological examinations indicated that CCl4 induced extensive necrosis in mice livers and pseudo-lobule formations, collagen deposition in rats livers. However, all these changes in mice and rats were significantly attenuated by exogenous TB4 treatment. Furthermore, up-regulations of nuclear factor-κB p65 protein expression by CCl4 treatment in mice and rats livers were also remarkably reduced by exogenous TB4 administration. Taken together, findings in this study suggested that exogenous TB4 might prevent CCl4-induced acute liver injury and subsequent fibrosis through alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiankui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| | - Lei Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cai Chen
- Teaching and Research Centre, Faculty of Medicine, Xinyang Vocational and Technical College, Xinyang, China
| |
Collapse
|
22
|
Srivastava SP, Shi S, Kanasaki M, Nagai T, Kitada M, He J, Nakamura Y, Ishigaki Y, Kanasaki K, Koya D. Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis. Sci Rep 2016; 6:29884. [PMID: 27425816 PMCID: PMC4947922 DOI: 10.1038/srep29884] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous antifibrotic peptide. We found that suppression of AcSDKP and induction of dipeptidyl peptidase-4 (DPP-4), which is associated with insufficient levels of antifibrotic microRNA (miR)s in kidneys, were imperative to understand the mechanisms of fibrosis in the diabetic kidneys. Analyzing streptozotocin (STZ)-induced diabetic mouse strains, diabetic CD-1 mice with fibrotic kidneys could be differentiated from less-fibrotic diabetic 129Sv mice by suppressing AcSDKP and antifibrotic miRs (miR-29s and miR-let-7s), as well as by the prominent induction of DPP-4 protein expression/activity and endothelial to mesenchymal transition. In diabetic CD-1 mice, these alterations were all reversed by AcSDKP treatment. Transfection studies in culture endothelial cells demonstrated crosstalk regulation of miR-29s and miR-let-7s against mesenchymal activation program; such bidirectional regulation could play an essential role in maintaining the antifibrotic program of AcSDKP. Finally, we observed that AcSDKP suppression in fibrotic mice was associated with induction of both interferon-γ and transforming growth factor-β signaling, crucial molecular pathways that disrupt antifibrotic miRs crosstalk. The present study provides insight into the physiologically relevant antifibrotic actions of AcSDKP via antifibrotic miRs; restoring such antifibrotic programs could demonstrate potential utility in combating kidney fibrosis in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Sen Shi
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Megumi Kanasaki
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takako Nagai
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Munehiro Kitada
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Jianhua He
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Keizo Kanasaki
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Daisuke Koya
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
23
|
Zhang Y, Zhang ZG, Chopp M, Meng Y, Zhang L, Mahmood A, Xiong Y. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg 2016; 126:782-795. [PMID: 28245754 DOI: 10.3171/2016.3.jns152699] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The authors' previous studies have suggested that thymosin beta 4 (Tβ4), a major actin-sequestering protein, improves functional recovery after neural injury. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an active peptide fragment of Tβ4. Its effect as a treatment of traumatic brain injury (TBI) has not been investigated. Thus, this study was designed to determine whether AcSDKP treatment improves functional recovery in rats after TBI. METHODS Young adult male Wistar rats were randomly divided into the following groups: 1) sham group (no injury); 2) TBI + vehicle group (0.01 N acetic acid); and 3) TBI + AcSDKP (0.8 mg/kg/day). TBI was induced by controlled cortical impact over the left parietal cortex. AcSDKP or vehicle was administered subcutaneously starting 1 hour postinjury and continuously for 3 days using an osmotic minipump. Sensorimotor function and spatial learning were assessed using a modified Neurological Severity Score and Morris water maze tests, respectively. Some of the animals were euthanized 1 day after injury, and their brains were processed for measurement of fibrin accumulation and neuroinflammation signaling pathways. The remaining animals were euthanized 35 days after injury, and brain sections were processed for measurement of lesion volume, hippocampal cell loss, angiogenesis, neurogenesis, and dendritic spine remodeling. RESULTS Compared with vehicle treatment, AcSDKP treatment initiated 1 hour postinjury significantly improved sensorimotor functional recovery (Days 7-35, p < 0.05) and spatial learning (Days 33-35, p < 0.05), reduced cortical lesion volume, and hippocampal neuronal cell loss, reduced fibrin accumulation and activation of microglia/macrophages, enhanced angiogenesis and neurogenesis, and increased the number of dendritic spines in the injured brain (p < 0.05). AcSDKP treatment also significantly inhibited the transforming growth factor-β1/nuclear factor-κB signaling pathway. CONCLUSIONS AcSDKP treatment initiated 1 hour postinjury provides neuroprotection and neurorestoration after TBI, indicating that this small tetrapeptide has promising therapeutic potential for treatment of TBI. Further investigation of the optimal dose and therapeutic window of AcSDKP treatment for TBI and the associated underlying mechanisms is therefore warranted.
Collapse
Affiliation(s)
| | | | - Michael Chopp
- Neurology, Henry Ford Hospital, Detroit; and.,Department of Physics, Oakland University, Rochester, Michigan
| | | | - Li Zhang
- Neurology, Henry Ford Hospital, Detroit; and
| | | | - Ye Xiong
- Departments of 1 Neurosurgery and
| |
Collapse
|
24
|
Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9172157. [PMID: 27088094 PMCID: PMC4818806 DOI: 10.1155/2016/9172157] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/14/2016] [Indexed: 01/03/2023]
Abstract
Kidney fibrosis is the final common pathway of progressive kidney diseases including diabetic nephropathy. Here, we report that the endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), the substrate of angiotensin-converting enzyme (ACE), is an orally available peptide drug used to cure kidney fibrosis in diabetic mice. We utilized two mouse models of diabetic nephropathy, streptozotocin- (STZ-) induced type 1 diabetic CD-1 mice and type 2 diabetic nephropathy model db/db mice. Intervention with the ACE inhibitor imidapril, oral AcSDKP, or imidapril + oral AcSDKP combination therapy increased urine AcSDKP levels. AcSDKP levels were significantly higher in the combination group compared to those of the other groups. AcSDKP oral administration, either AcSDKP alone or in addition to imidapril, ameliorated glomerulosclerosis and tubulointerstitial fibrosis. Plasma cystatin C levels were higher in both models, at euthanasia, and were restored by all the treatment groups. The levels of antifibrotic miRs, such as miR-29 or let-7, were suppressed in the kidneys of both models; all treatments, especially the combination of imidapril + oral AcSDKP, restored the antifibrotic miR levels to a normal value or even higher. AcSDKP may be an oral antifibrotic peptide drug that would be relevant to combating fibroproliferative kidney diseases such as diabetic nephropathy.
Collapse
|
25
|
Fryer RM, Boustany-Kari CM, MacDonnell SM. Engaging novel cell types, protein targets and efficacy biomarkers in the treatment of diabetic nephropathy. Front Pharmacol 2014; 5:185. [PMID: 25147524 PMCID: PMC4124518 DOI: 10.3389/fphar.2014.00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ryan M Fryer
- Boehringer Ingelheim Pharmaceuticals, Inc., Cardiometabolic Diseases Research Ridgefield, CT, USA
| | - Carine M Boustany-Kari
- Boehringer Ingelheim Pharmaceuticals, Inc., Cardiometabolic Diseases Research Ridgefield, CT, USA
| | - Scott M MacDonnell
- Boehringer Ingelheim Pharmaceuticals, Inc., Cardiometabolic Diseases Research Ridgefield, CT, USA
| |
Collapse
|
26
|
The role of ubiquitination and sumoylation in diabetic nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:160692. [PMID: 24991536 PMCID: PMC4065738 DOI: 10.1155/2014/160692] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/19/2014] [Indexed: 01/14/2023]
Abstract
Diabetic nephropathy (DN) is a common and characteristic microvascular complication of diabetes; the mechanisms that cause DN have not been clarified, and the epigenetic mechanism was promised in the pathology of DN. Furthermore, ubiquitination and small ubiquitin-like modifier (SUMO) were involved in the progression of DN. MG132, as a ubiquitin proteasome, could improve renal injury by regulating several signaling pathways, such as NF-κB, TGF-β, Nrf2-oxidative stress, and MAPK. In this review, we summarize how ubiquitination and sumoylation may contribute to the pathology of DN, which may be a potential treatment strategy of DN.
Collapse
|