1
|
Zhu J, Zhang Y, Zhao Y, Zhang J, Hao K, He H. Translational Pharmacokinetic/Pharmacodynamic Modeling and Simulation of Oxaliplatin and Irinotecan in Colorectal Cancer. Pharmaceutics 2023; 15:2274. [PMID: 37765243 PMCID: PMC10535808 DOI: 10.3390/pharmaceutics15092274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the recent advances in this field, there are limited methods for translating organoid-based study results to clinical response. The goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to facilitate the translation, using oxaliplatin and irinotecan treatments with colorectal cancer (CRC) as examples. The PK models were developed using qualified oxaliplatin and irinotecan PK data from the literature. The PD models were developed based on antitumor efficacy data of SN-38 and oxaliplatin evaluated in vitro using tumor organoids. To predict the clinical response, translational scaling of the models was established by incorporating predicted ultrafiltration platinum in plasma or SN-38 in tumors to PD models as the driver of efficacy. The final PK/PD model can predict PK profiles and responses following treatments with oxaliplatin or irinotecan. After generation of virtual patient cohorts, this model simulated their tumor shrinkages following treatments, which were used in analyzing the efficacies of the two treatments. Consistent with the published clinical trials, the model simulation suggested similar patient responses following the treatments of oxaliplatin and irinotecan with regards to the probabilities of progression-free survival (HR = 1.05, 95%CI [0.97;1.15]) and the objective response rate (OR = 1.15, 95%CI [1.00;1.32]). This proposed translational PK/PD modeling approach provides a significant tool for predicting clinical responses of different agents, which may help decision-making in drug development and guide clinical trial design.
Collapse
Affiliation(s)
- Jinwei Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Yicui Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Kun Hao
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Cheng Y, Straube R, Alnaif AE, Huang L, Leil TA, Schmidt BJ. Virtual Populations for Quantitative Systems Pharmacology Models. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:129-179. [PMID: 35437722 DOI: 10.1007/978-1-0716-2265-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quantitative systems pharmacology (QSP) places an emphasis on dynamic systems modeling, incorporating considerations from systems biology modeling and pharmacodynamics. The goal of QSP is often to quantitatively predict the effects of clinical therapeutics, their combinations, and their doses on clinical biomarkers and endpoints. In order to achieve this goal, strategies for incorporating clinical data into model calibration are critical. Virtual population (VPop) approaches facilitate model calibration while faced with challenges encountered in QSP model application, including modeling a breadth of clinical therapies, biomarkers, endpoints, utilizing data of varying structure and source, capturing observed clinical variability, and simulating with models that may require more substantial computational time and resources than often found in pharmacometrics applications. VPops are frequently developed in a process that may involve parameterization of isolated pathway models, integration into a larger QSP model, incorporation of clinical data, calibration, and quantitative validation that the model with the accompanying, calibrated VPop is suitable to address the intended question or help with the intended decision. Here, we introduce previous strategies for developing VPops in the context of a variety of therapeutic and safety areas: metabolic disorders, drug-induced liver injury, autoimmune diseases, and cancer. We introduce methodological considerations, prior work for sensitivity analysis and VPop algorithm design, and potential areas for future advancement. Finally, we give a more detailed application example of a VPop calibration algorithm that illustrates recent progress and many of the methodological considerations. In conclusion, although methodologies have varied, VPop strategies have been successfully applied to give valid clinical insights and predictions with the assistance of carefully defined and designed calibration and validation strategies. While a uniform VPop approach for all potential QSP applications may be challenging given the heterogeneity in use considerations, we anticipate continued innovation will help to drive VPop application for more challenging cases of greater scale while developing new rigorous methodologies and metrics.
Collapse
Affiliation(s)
- Yougan Cheng
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,Daiichi Sankyo, Inc., Pennington, NJ, USA
| | - Ronny Straube
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA
| | - Abed E Alnaif
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,EMD Serono, Billerica, MA, USA
| | - Lu Huang
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA
| | - Tarek A Leil
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,Daiichi Sankyo, Inc., Pennington, NJ, USA
| | | |
Collapse
|
3
|
Chelliah V, Lazarou G, Bhatnagar S, Gibbs JP, Nijsen M, Ray A, Stoll B, Thompson RA, Gulati A, Soukharev S, Yamada A, Weddell J, Sayama H, Oishi M, Wittemer-Rump S, Patel C, Niederalt C, Burghaus R, Scheerans C, Lippert J, Kabilan S, Kareva I, Belousova N, Rolfe A, Zutshi A, Chenel M, Venezia F, Fouliard S, Oberwittler H, Scholer-Dahirel A, Lelievre H, Bottino D, Collins SC, Nguyen HQ, Wang H, Yoneyama T, Zhu AZX, van der Graaf PH, Kierzek AM. Quantitative Systems Pharmacology Approaches for Immuno-Oncology: Adding Virtual Patients to the Development Paradigm. Clin Pharmacol Ther 2020; 109:605-618. [PMID: 32686076 PMCID: PMC7983940 DOI: 10.1002/cpt.1987] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno‐oncology (IO) the aim is to direct the patient’s own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD‐L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug‐development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds’ pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Avijit Ray
- Abbvie Inc., North Chicago, Illinois, USA
| | | | | | - Abhishek Gulati
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Serguei Soukharev
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Akihiro Yamada
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Jared Weddell
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Hiroyuki Sayama
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Masayo Oishi
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | | | | | | | | | | | | | | | - Irina Kareva
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | | | - Alex Rolfe
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | - Anup Zutshi
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | | | | | | | | | | | | | - Dean Bottino
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Sabrina C Collins
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Hoa Q Nguyen
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Haiqing Wang
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Tomoki Yoneyama
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Andy Z X Zhu
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
4
|
Ermakov S, Schmidt BJ, Musante CJ, Thalhauser CJ. A Survey of Software Tool Utilization and Capabilities for Quantitative Systems Pharmacology: What We Have and What We Need. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 8:62-76. [PMID: 30417600 PMCID: PMC6389347 DOI: 10.1002/psp4.12373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
Quantitative systems pharmacology (QSP) is a rapidly emerging discipline with application across a spectrum of challenges facing the pharmaceutical industry, including mechanistically informed prioritization of target pathways and combinations in discovery, target population, and dose expansion decisions early in clinical development, and analyses for regulatory authorities late in clinical development. QSP's development has influences from physiologic modeling, systems biology, physiologically‐based pharmacokinetic modeling, and pharmacometrics. Given a varied scientific heritage, a variety of tools to accomplish the demands of model development, application, and model‐based analysis of available data have been developed. We report the outcome from a community survey and resulting analysis of how modelers view the impact and growth of QSP, how they utilize existing tools, and capabilities they need improved to further accelerate their impact on drug development. These results serve as a benchmark and roadmap for advancements to the QSP tool set.
Collapse
|
5
|
gPKPDSim: a SimBiology ®-based GUI application for PKPD modeling in drug development. J Pharmacokinet Pharmacodyn 2018; 45:259-275. [PMID: 29302838 PMCID: PMC5845055 DOI: 10.1007/s10928-017-9562-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/16/2017] [Indexed: 11/14/2022]
Abstract
Modeling and simulation (M&S) is increasingly used in drug development to characterize pharmacokinetic-pharmacodynamic (PKPD) relationships and support various efforts such as target feasibility assessment, molecule selection, human PK projection, and preclinical and clinical dose and schedule determination. While model development typically require mathematical modeling expertise, model exploration and simulations could in many cases be performed by scientists in various disciplines to support the design, analysis and interpretation of experimental studies. To this end, we have developed a versatile graphical user interface (GUI) application to enable easy use of any model constructed in SimBiology® to execute various common PKPD analyses. The MATLAB®-based GUI application, called gPKPDSim, has a single screen interface and provides functionalities including simulation, data fitting (parameter estimation), population simulation (exploring the impact of parameter variability on the outputs of interest), and non-compartmental PK analysis. Further, gPKPDSim is a user-friendly tool with capabilities including interactive visualization, exporting of results and generation of presentation-ready figures. gPKPDSim was designed primarily for use in preclinical and translational drug development, although broader applications exist. gPKPDSim is a MATLAB®-based open-source application and is publicly available to download from MATLAB® Central™. We illustrate the use and features of gPKPDSim using multiple PKPD models to demonstrate the wide applications of this tool in pharmaceutical sciences. Overall, gPKPDSim provides an integrated, multi-purpose user-friendly GUI application to enable efficient use of PKPD models by scientists from various disciplines, regardless of their modeling expertise.
Collapse
|
6
|
Rao RT, Scherholz ML, Hartmanshenn C, Bae SA, Androulakis IP. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology. Comput Chem Eng 2017; 107:100-110. [PMID: 29353945 DOI: 10.1016/j.compchemeng.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.
Collapse
Affiliation(s)
- Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Megerle L Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Seul-A Bae
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854.,Department of Biomedical Engineering, Rutgers The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
7
|
Cheng Y, Thalhauser CJ, Smithline S, Pagidala J, Miladinov M, Vezina HE, Gupta M, Leil TA, Schmidt BJ. QSP Toolbox: Computational Implementation of Integrated Workflow Components for Deploying Multi-Scale Mechanistic Models. AAPS JOURNAL 2017; 19:1002-1016. [PMID: 28540623 DOI: 10.1208/s12248-017-0100-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
Quantitative systems pharmacology (QSP) modeling has become increasingly important in pharmaceutical research and development, and is a powerful tool to gain mechanistic insights into the complex dynamics of biological systems in response to drug treatment. However, even once a suitable mathematical framework to describe the pathophysiology and mechanisms of interest is established, final model calibration and the exploration of variability can be challenging and time consuming. QSP models are often formulated as multi-scale, multi-compartment nonlinear systems of ordinary differential equations. Commonly accepted modeling strategies, workflows, and tools have promise to greatly improve the efficiency of QSP methods and improve productivity. In this paper, we present the QSP Toolbox, a set of functions, structure array conventions, and class definitions that computationally implement critical elements of QSP workflows including data integration, model calibration, and variability exploration. We present the application of the toolbox to an ordinary differential equations-based model for antibody drug conjugates. As opposed to a single stepwise reference model calibration, the toolbox also facilitates simultaneous parameter optimization and variation across multiple in vitro, in vivo, and clinical assays to more comprehensively generate alternate mechanistic hypotheses that are in quantitative agreement with available data. The toolbox also includes scripts for developing and applying virtual populations to mechanistic exploration of biomarkers and efficacy. We anticipate that the QSP Toolbox will be a useful resource that will facilitate implementation, evaluation, and sharing of new methodologies in a common framework that will greatly benefit the community.
Collapse
Affiliation(s)
- Yougan Cheng
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA
| | - Craig J Thalhauser
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA
| | - Shepard Smithline
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA
| | - Jyotsna Pagidala
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA
| | - Marko Miladinov
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA
| | - Heather E Vezina
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA
| | - Manish Gupta
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA
| | - Tarek A Leil
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA
| | - Brian J Schmidt
- Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey, 08543-4000, USA.
| |
Collapse
|
8
|
Abstract
Quantitative Systems Pharmacology (QSP) is receiving increased attention. As the momentum builds and the expectations grow it is important to (re)assess and formalize the basic concepts and approaches. In this short review, I argue that QSP, in addition to enabling the rational integration of data and development of complex models, maybe more importantly, provides the foundations for developing an integrated framework for the assessment of drugs and their impact on disease within a broader context expanding the envelope to account in great detail for physiology, environment and prior history. I articulate some of the critical enablers, major obstacles and exciting opportunities manifesting themselves along the way. Charting such overarching themes will enable practitioners to identify major and defining factors as the field progressively moves towards personalized and precision health care delivery.
Collapse
Affiliation(s)
- Ioannis P Androulakis
- Biomedical Engineering Department, Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
9
|
Leil TA, Ermakov S. Editorial: The emerging discipline of quantitative systems pharmacology. Front Pharmacol 2015; 6:129. [PMID: 26175687 PMCID: PMC4485322 DOI: 10.3389/fphar.2015.00129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/12/2015] [Indexed: 01/12/2023] Open
Affiliation(s)
- Tarek A Leil
- Bristol-Myers Squibb, Clinical Pharmacology and Pharmacometrics/Exploratory Clinical and Translational Research Princeton, NJ, USA
| | - Sergey Ermakov
- Bristol-Myers Squibb, Clinical Pharmacology and Pharmacometrics/Exploratory Clinical and Translational Research Princeton, NJ, USA
| |
Collapse
|