1
|
Paixao IC, Mizutani N, Matsuda M, Andriani RT, Kawai T, Nakagawa A, Okochi Y, Okamura Y. Role of K364 next to the active site cysteine in voltage-dependent phosphatase activity of Ci-VSP. Biophys J 2023:S0006-3495(23)00038-3. [PMID: 36680342 DOI: 10.1016/j.bpj.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/16/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Voltage-sensing phosphatase (VSP) consists of the voltage sensor domain (VSD) similar to that of voltage-gated ion channels and the cytoplasmic phosphatase region with remarkable similarity to the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Membrane depolarization activates VSD, leading to dephosphorylation of three species of phosphoinositides (phosphatidylinositol phosphates (PIPs)), PI(3,4,5)P3, PI(4,5)P2, and PI(3,4)P2. VSP dephosphorylates 3- and 5-phosphate of PIPs, unlike PTEN, which shows rigid 3-phosphate specificity. In this study, a bioinformatics search showed that some mammals have VSP orthologs with amino acid diversity in the active center motif, Cx5R, which is highly conserved among protein tyrosine phosphatases and PTEN-related phosphatases; lysine next to the active site cysteine in the Cx5R motif was substituted for methionine in VSP orthologs of Tasmanian devil, koala, and prairie deer mouse, and leucine in opossum. Since lysine at the corresponding site in PTEN is known to be critical for enzyme activities, we attempted to address the significance of amino acid diversity among VSP orthologs at this site. K364 was changed to different amino acids in sea squirt VSP (Ci-VSP), and voltage-dependent phosphatase activity in Xenopus oocyte was studied using fluorescent probes for PI(4,5)P2 and PI(3,4)P2. All mutants retained both 5-phosphatase and 3-phosphatase activity, indicating that lysine at this site is dispensable for 3-phosphatase activity, unlike PTEN. Notably, K364M mutant showed increased activity both of 5-phosphatase and 3-phosphatase compared with the wild type (WT). It also showed slower kinetics of voltage sensor motion. Malachite green assay of K364M mutant did not show significant difference of phosphatase activity from WT, suggesting tighter interaction between substrate binding and voltage sensing. Mutation corresponding to K364M in the zebrafish VSP led to enhanced voltage-dependent dephosphorylation of PI(4,5)P2. Further studies will provide clues to understanding of substrate preference in PIPs phosphatases as well as to customization of a molecular tool.
Collapse
Affiliation(s)
- Ian Costa Paixao
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Natsuki Mizutani
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Matsuda
- Department Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory for Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Rizki Tsari Andriani
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Medicine, Osaka University JSPS International Research Fellow, Suita, Japan
| | - Takafumi Kawai
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Nakagawa
- Laboratory for Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Yoshifumi Okochi
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yasushi Okamura
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Mizutani N, Kawanabe A, Jinno Y, Narita H, Yonezawa T, Nakagawa A, Okamura Y. Interaction between S4 and the phosphatase domain mediates electrochemical coupling in voltage-sensing phosphatase (VSP). Proc Natl Acad Sci U S A 2022; 119:e2200364119. [PMID: 35733115 PMCID: PMC9245683 DOI: 10.1073/pnas.2200364119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) consists of a voltage sensor domain (VSD) and a cytoplasmic catalytic region (CCR), which is similar to phosphatase and tensin homolog (PTEN). How the VSD regulates the innate enzyme component of VSP remains unclear. Here, we took a combined approach that entailed the use of electrophysiology, fluorometry, and structural modeling to study the electrochemical coupling in Ciona intestinalis VSP. We found that two hydrophobic residues at the lowest part of S4 play an essential role in the later transition of VSD-CCR coupling. Voltage clamp fluorometry and disulfide bond locking indicated that S4 and its neighboring linker move as one helix (S4-linker helix) and approach the hydrophobic spine in the CCR, a structure located near the cell membrane and also conserved in PTEN. We propose that the hydrophobic spine operates as a hub for translating an electrical signal into a chemical one in VSP.
Collapse
Affiliation(s)
- Natsuki Mizutani
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kawanabe
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuka Jinno
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotaka Narita
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Yonezawa
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Zhou X, Mehta S, Zhang J. AktAR and Akt-STOPS: Genetically Encodable Molecular Tools to Visualize and Perturb Akt Kinase Activity at Different Subcellular Locations in Living Cells. Curr Protoc 2022; 2:e416. [PMID: 35532280 PMCID: PMC9093046 DOI: 10.1002/cpz1.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The serine/threonine protein kinase Akt integrates diverse upstream inputs to regulate cell survival, growth, metabolism, migration, and differentiation. Mounting evidence suggests that Akt activity is differentially regulated depending on its subcellular location, which can include the plasma membrane, endomembrane, and nuclear compartment. This spatial control of Akt activity is critical for achieving signaling specificity and proper physiological functions, and deregulation of compartment-specific Akt signaling is implicated in various diseases, including cancer and diabetes. Understanding the spatial coordination of the signaling network centered around this key kinase and the underlying regulatory mechanisms requires precise tracking of Akt activity at distinct subcellular compartments within its native biological contexts. To address this challenge, new molecular tools are being developed, enabling us to directly interrogate the spatiotemporal regulation of Akt in living cells. These include, for instance, the newly developed genetically encodable fluorescent-protein-based Akt kinase activity reporter (AktAR2), which serves as a substrate surrogate of Akt kinase and translates Akt-specific phosphorylation into a quantifiable change in Förster resonance energy transfer (FRET). In addition, we developed the Akt substrate tandem occupancy peptide sponge (Akt-STOPS), which allows biochemical perturbation of subcellular Akt activity. Both molecular tools can be readily targeted to distinct subcellular localizations. Here, we describe a workflow to study Akt kinase activity at different subcellular locations in living cells. We provide a protocol for using genetically targeted AktAR2 and Akt-STOPS, along with fluorescence imaging in living NIH3T3 cells, to visualize and perturb, respectively, the activity of endogenous Akt kinase at different subcellular compartments. We further describe a protocol for using chemically inducible dimerization (CID) to control the plasma membrane-specific inhibition of Akt activity in real time. Lastly, we describe a protocol for maintaining NIH3T3 cells in culture, a cell line known to exhibit robust Akt activity. In all, this approach enables interrogation of spatiotemporal regulation and functions of Akt, as well as the intricate signaling networks in which it is embedded, at specific subcellular locations. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Visualizing and perturbing subcellular Akt kinase activity using AktAR and Akt-STOPS Basic Protocol 2: Using chemically inducible dimerization (CID) to control inhibition of Akt at the plasma membrane Support Protocol: Maintaining NIH3T3 cells in culture.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California.,Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California.,Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
4
|
Myelin-associated glycoprotein activation triggers glutamate uptake by oligodendrocytes in vitro and contributes to ameliorate glutamate-mediated toxicity in vivo. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166324. [PMID: 34954343 DOI: 10.1016/j.bbadis.2021.166324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Myelin-associated glycoprotein (MAG) is a key molecule involved in the nurturing effect of myelin on ensheathed axons. MAG also inhibits axon outgrowth after injury. In preclinical stroke models, administration of a function-blocking anti-MAG monoclonal antibody (mAb) aimed to improve axon regeneration demonstrated reduced lesion volumes and a rapid clinical improvement, suggesting a mechanism of immediate neuroprotection rather than enhanced axon regeneration. In addition, it has been reported that antibody-mediated crosslinking of MAG can protect oligodendrocytes (OLs) against glutamate (Glu) overload by unknown mechanisms. PURPOSE To unravel the molecular mechanisms underlying the protective effect of anti-MAG therapy with a focus on neuroprotection against Glu toxicity. RESULTS MAG activation (via antibody crosslinking) triggered the clearance of extracellular Glu by its uptake into OLs via high affinity excitatory amino acid transporters. This resulted not only in protection of OLs but also nearby neurons. MAG activation led to a PKC-dependent activation of factor Nrf2 (nuclear-erythroid related factor-2) leading to antioxidant responses including increased mRNA expression of metabolic enzymes from the glutathione biosynthetic pathway and the regulatory chain of cystine/Glu antiporter system xc- increasing reduced glutathione (GSH), the main antioxidant in cells. The efficacy of early anti-MAG mAb administration was demonstrated in a preclinical model of excitotoxicity induced by intrastriatal Glu administration and extended to a model of Experimental Autoimmune Encephalitis showing axonal damage secondary to demyelination. CONCLUSIONS MAG activation triggers Glu uptake into OLs under conditions of Glu overload and induces a robust protective antioxidant response.
Collapse
|
5
|
Optimized Tuning of Auditory Inner Hair Cells to Encode Complex Sound through Synergistic Activity of Six Independent K + Current Entities. Cell Rep 2021; 32:107869. [PMID: 32640234 DOI: 10.1016/j.celrep.2020.107869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Auditory inner hair cells (IHCs) convert sound vibrations into receptor potentials that drive synaptic transmission. For the precise encoding of sound qualities, receptor potentials are shaped by K+ conductances tuning the properties of the IHC membrane. Using patch-clamp and computational modeling, we unravel this membrane specialization showing that IHCs express an exclusive repertoire of six voltage-dependent K+ conductances mediated by Kv1.8, Kv7.4, Kv11.1, Kv12.1, and BKCa channels. All channels are active at rest but are triggered differentially during sound stimulation. This enables non-saturating tuning over a far larger potential range than in IHCs expressing fewer current entities. Each conductance contributes to optimizing responses, but the combined activity of all channels synergistically improves phase locking and the dynamic range of intensities that IHCs can encode. Conversely, hypothetical simpler IHCs appear limited to encode only certain aspects (frequency or intensity). The exclusive channel repertoire of IHCs thus constitutes an evolutionary adaptation to encode complex sound through multifaceted receptor potentials.
Collapse
|
6
|
Tsutsui H, Mizutani N, Okamura Y. Engineering voltage sensing phosphatase (VSP). Methods Enzymol 2021; 654:85-114. [PMID: 34120726 DOI: 10.1016/bs.mie.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage sensing phosphatase (VSP), consists of a voltage sensor domain (VSD) like that found in voltage-gated ion channels and a phosphoinositide (PIP) phosphatase region exhibiting remarkable structural similarity to a tumor suppressor enzyme, PTEN. Membrane depolarization activates the enzyme activity through tight coupling between the VSD and enzyme region. The VSD of VSP has a unique nature; it is a self-contained module that can be transferred to other proteins, conferring voltage sensitivity. Thanks to this nature, numerous versions of gene-encoded voltage indicators (GEVIs) have been developed through combination of a fluorescent protein with the VSD of VSP. In addition, VSP itself can also serve as a tool to alter PIP levels in cells. Cellular levels of PIPs, PI(4,5)P2 in particular, can be acutely and transiently reduced using a simple voltage protocol after heterologous expression of VSP. Recent progress in our understanding of the molecular structure and mechanisms underlying VSP facilitates optimization of its molecular properties for its use as a molecular tool.
Collapse
Affiliation(s)
- Hidekazu Tsutsui
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan.
| | - Natsuki Mizutani
- Graduate School of Medicine, Japan Advanced Institute of Science and Technology (JAIST), Osaka University, Suita, Osaka, Japan
| | - Yasushi Okamura
- Graduate School of Medicine, Japan Advanced Institute of Science and Technology (JAIST), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
7
|
Okamura Y, Kawanabe A, Kawai T. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiol Rev 2019; 98:2097-2131. [PMID: 30067160 DOI: 10.1152/physrev.00056.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) contains a voltage sensor domain (VSD) similar to that in voltage-gated ion channels, and a phosphoinositide phosphatase region similar to phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The VSP gene is conserved from unicellular organisms to higher vertebrates. Membrane depolarization induces electrical driven conformational rearrangement in the VSD, which is translated into catalytic enzyme activity. Biophysical and structural characterization has revealed details of the mechanisms underlying the molecular functions of VSP. Coupling between the VSD and the enzyme is tight, such that enzyme activity is tuned in a graded fashion to the membrane voltage. Upon VSP activation, multiple species of phosphoinositides are simultaneously altered, and the profile of enzyme activity depends on the history of the membrane potential. VSPs have been the obvious candidate link between membrane potential and phosphoinositide regulation. However, patterns of voltage change regulating VSP in native cells remain largely unknown. This review addresses the current understanding of the biophysical biochemical properties of VSP and provides new insight into the proposed functions of VSP.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Akira Kawanabe
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Takafumi Kawai
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| |
Collapse
|
8
|
Leitner MG, Hobiger K, Mavrantoni A, Feuer A, Oberwinkler J, Oliver D, Halaszovich CR. A126 in the active site and TI167/168 in the TI loop are essential determinants of the substrate specificity of PTEN. Cell Mol Life Sci 2018; 75:4235-4250. [PMID: 29987362 PMCID: PMC6182344 DOI: 10.1007/s00018-018-2867-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023]
Abstract
PTEN prevents tumor genesis by antagonizing the PI3 kinase/Akt pathway through D3 site phosphatase activity toward PI(3,4)P2 and PI(3,4,5)P3. The structural determinants of this important specificity remain unknown. Interestingly, PTEN shares remarkable homology to voltage-sensitive phosphatases (VSPs) that dephosphorylate D5 and D3 sites of PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3. Since the catalytic center of PTEN and VSPs differ markedly only in TI/gating loop and active site motif, we wondered whether these differences explained the variation of their substrate specificity. Therefore, we introduced mutations into PTEN to mimic corresponding sequences of VSPs and studied phosphatase activity in living cells utilizing engineered, voltage switchable PTENCiV, a Ci-VSP/PTEN chimera that retains D3 site activity of the native enzyme. Substrate specificity of this enzyme was analyzed with whole-cell patch clamp in combination with total internal reflection fluorescence microscopy and genetically encoded phosphoinositide sensors. In PTENCiV, mutating TI167/168 in the TI loop into the corresponding ET pair of VSPs induced VSP-like D5 phosphatase activity toward PI(3,4,5)P3, but not toward PI(4,5)P2. Combining TI/ET mutations with an A126G exchange in the active site removed major sequence variations between PTEN and VSPs and resulted in D5 activity toward PI(4,5)P2 and PI(3,4,5)P3 of PTENCiV. This PTEN mutant thus fully reproduced the substrate specificity of native VSPs. Importantly, the same combination of mutations also induced D5 activity toward PI(3,4,5)P3 in native PTEN demonstrating that the same residues determine the substrate specificity of the tumor suppressor in living cells. Reciprocal mutations in VSPs did not alter their substrate specificity, but reduced phosphatase activity. In summary, A126 in the active site and TI167/168 in the TI loop are essential determinants of PTEN's substrate specificity, whereas additional features might contribute to the enzymatic activity of VSPs.
Collapse
Affiliation(s)
- Michael G Leitner
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Kirstin Hobiger
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Angeliki Mavrantoni
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Anja Feuer
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Johannes Oberwinkler
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
- DFG Research Training Group GRK 2213, Membrane Plasticity in Tissue Development and Remodeling, Philipps-University Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg/Giessen, Germany
| | - Christian R Halaszovich
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany.
| |
Collapse
|
9
|
Leitner MG, Thallmair V, Wilke BU, Neubert V, Kronimus Y, Halaszovich CR, Oliver D. The N-terminal homology (ENTH) domain of Epsin 1 is a sensitive reporter of physiological PI(4,5)P 2 dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:433-442. [PMID: 30670192 DOI: 10.1016/j.bbalip.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/18/2018] [Accepted: 08/04/2018] [Indexed: 11/15/2022]
Abstract
Phospholipase Cβ (PLCβ)-induced depletion of phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2) transduces a plethora of signals into cellular responses. Importance and diversity of PI(4,5)P2-dependent processes led to strong need for biosensors of physiological PI(4,5)P2 dynamics applicable in live-cell experiments. Membrane PI(4,5)P2 can be monitored with fluorescently-labelled phosphoinositide (PI) binding domains that associate to the membrane depending on PI(4,5)P2 levels. The pleckstrin homology domain of PLCδ1 (PLCδ1-PH) and the C-terminus of tubby protein (tubbyCT) are two such sensors widely used to study PI(4,5)P2 signaling. However, certain limitations apply to both: PLCδ1-PH binds cytoplasmic inositol-1,4,5-trisphosphate (IP3) produced from PI(4,5)P2 through PLCβ, and tubbyCT responses do not faithfully report on PLCβ-dependent PI(4,5)P2 dynamics. In searching for an improved biosensor, we fused N-terminal homology domain of Epsin1 (ENTH) to GFP and examined use of this construct as genetically-encoded biosensor for PI(4,5)P2 dynamics in living cells. We utilized recombinant tools to manipulate PI or Gq protein-coupled receptors (GqPCR) to stimulate PLCβ signaling and characterized PI binding properties of ENTH-GFP with total internal reflection (TIRF) and confocal microscopy. ENTH-GFP specifically recognized membrane PI(4,5)P2 without interacting with IP3, as demonstrated by dialysis of cells with the messenger through a patch pipette. Utilizing Ci-VSP to titrate PI(4,5)P2 levels, we found that ENTH-GFP had low PI(4,5)P2 affinity. Accordingly, ENTH-GFP was highly sensitive to PLCβ-dependent PI(4,5)P2 depletion, and in contrast to PLCδ1-PH, overexpression of ENTH-GFP did not attenuate GqPCR signaling. Taken together, ENTH-GFP detects minute changes of PI(4,5)P2 levels and provides an important complementation of experimentally useful reporters of PI(4,5)P2 dynamics in physiological pathways.
Collapse
Affiliation(s)
- Michael G Leitner
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Bettina U Wilke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Valentin Neubert
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Yannick Kronimus
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Christian R Halaszovich
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University, Germany; Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
| |
Collapse
|
10
|
Rayaprolu V, Royal P, Stengel K, Sandoz G, Kohout SC. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity. J Gen Physiol 2018; 150:683-696. [PMID: 29695412 PMCID: PMC5940254 DOI: 10.1085/jgp.201812064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 01/27/2023] Open
Abstract
The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) was not thought to multimerize. Rayaprolu et al. show that Ci-VSP exists as a dimer and that this interaction lowers the voltage dependence of activation and alters substrate specificity. Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P3 or PI(3,4)P2. Our results indicate that dimerization plays a significant role in Ci-VSP function.
Collapse
Affiliation(s)
- Vamseedhar Rayaprolu
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT
| | - Perrine Royal
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, iBV, Université Côte d'Azur, Valbonne, France.,Laboratory of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Karen Stengel
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT
| | - Guillaume Sandoz
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, iBV, Université Côte d'Azur, Valbonne, France.,Laboratory of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Susy C Kohout
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT
| |
Collapse
|
11
|
Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 2017; 114:E6410-E6419. [PMID: 28716904 DOI: 10.1073/pnas.1620598114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.
Collapse
|
12
|
Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence. Proc Natl Acad Sci U S A 2016; 113:E3686-95. [PMID: 27222577 DOI: 10.1073/pnas.1606472113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation, emphasizing that VSPs can cleave the 3-phosphate of PI(3,4,5)P3.
Collapse
|
13
|
Allosteric substrate switching in a voltage-sensing lipid phosphatase. Nat Chem Biol 2016; 12:261-7. [PMID: 26878552 PMCID: PMC4798927 DOI: 10.1038/nchembio.2022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/31/2015] [Indexed: 11/29/2022]
Abstract
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis.
Collapse
|
14
|
Kohout SC, Villalba-Galea CA. Editorial: Phosphoinositides and their phosphatases: Linking electrical and chemical signals in biological processes. Front Pharmacol 2015. [PMID: 26217228 PMCID: PMC4495603 DOI: 10.3389/fphar.2015.00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Susy C Kohout
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
15
|
Rjasanow A, Leitner MG, Thallmair V, Halaszovich CR, Oliver D. Ion channel regulation by phosphoinositides analyzed with VSPs-PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility. Front Pharmacol 2015; 6:127. [PMID: 26150791 PMCID: PMC4472987 DOI: 10.3389/fphar.2015.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
Abstract
The activity of many proteins depends on the phosphoinositide (PI) content of the membrane. E.g., dynamic changes of the concentration of PI(4,5)P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5)P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids. Voltage-sensitive phosphatases (VSPs) turn over PI(4,5)P2 to PI(4)P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5)P2. Because cellular PI(4,5)P2 is resynthesized rapidly, steady state PI(4,5)P2 changes with the degree of VSP activation and thus depends on membrane potential. Here we show that titration of endogenous PI(4,5)P2 with Ci-VSP allows for the quantification of relative PI(4,5)P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5)P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5)P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5)P2 and PI(4)P was insensitive to VSP. Surprisingly, despite comparable PI(4,5)P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5)P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5)P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5)P2 that differ in their accessibility to PLC and VSPs.
Collapse
Affiliation(s)
- Alexandra Rjasanow
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany ; Institute of Physiology, University of Freiburg Freiburg, Germany
| | - Michael G Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany
| | - Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany
| | - Christian R Halaszovich
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany
| |
Collapse
|