1
|
Rayaprolu V, Miettinen HM, Baker WD, Young VC, Fisher M, Mueller G, Rankin WO, Kelley JT, Ratzan WJ, Leong LM, Davisson JA, Baker BJ, Kohout SC. Hydrophobic residues in S1 modulate enzymatic function and voltage sensing in voltage-sensing phosphatase. J Gen Physiol 2024; 156:e202313467. [PMID: 38771271 PMCID: PMC11109755 DOI: 10.1085/jgp.202313467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The voltage-sensing domain (VSD) is a four-helix modular protein domain that converts electrical signals into conformational changes, leading to open pores and active enzymes. In most voltage-sensing proteins, the VSDs do not interact with one another, and the S1-S3 helices are considered mainly scaffolding, except in the voltage-sensing phosphatase (VSP) and the proton channel (Hv). To investigate its contribution to VSP function, we mutated four hydrophobic amino acids in S1 to alanine (F127, I131, I134, and L137), individually or in combination. Most of these mutations shifted the voltage dependence of activity to higher voltages; however, not all substrate reactions were the same. The kinetics of enzymatic activity were also altered, with some mutations significantly slowing down dephosphorylation. The voltage dependence of VSD motions was consistently shifted to lower voltages and indicated a second voltage-dependent motion. Additionally, none of the mutations broke the VSP dimer, indicating that the S1 impact could stem from intra- and/or intersubunit interactions. Lastly, when the same mutations were introduced into a genetically encoded voltage indicator, they dramatically altered the optical readings, making some of the kinetics faster and shifting the voltage dependence. These results indicate that the S1 helix in VSP plays a critical role in tuning the enzyme's conformational response to membrane potential transients and influencing the function of the VSD.
Collapse
Affiliation(s)
- Vamseedhar Rayaprolu
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heini M. Miettinen
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - William D. Baker
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Victoria C. Young
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Matthew Fisher
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Gwendolyn Mueller
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - William O. Rankin
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - John T. Kelley
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - William J. Ratzan
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lee Min Leong
- Division of Bio-Medical Science and Technology, KIST School, Brain Science Institute, Korea Institute of Science and Technology (KIST), Korea University of Science and Technology (UST), Seoul, South Korea
| | - Joshua A. Davisson
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Bradley J. Baker
- Division of Bio-Medical Science and Technology, KIST School, Brain Science Institute, Korea Institute of Science and Technology (KIST), Korea University of Science and Technology (UST), Seoul, South Korea
| | - Susy C. Kohout
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
2
|
Ratanayotha A, Iida A, Nomura J, Hondo E, Okamura Y, Kawai T. Insight into the function of voltage-sensing phosphatase in hindgut-derived pseudoplacenta of a viviparous teleost Xenotoca eiseni. Am J Physiol Regul Integr Comp Physiol 2024; 326:R461-R471. [PMID: 38557151 DOI: 10.1152/ajpregu.00038.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Nutrient absorption is essential for animal survival and development. Our previous study on zebrafish reported that nutrient absorption in lysosome-rich enterocytes (LREs) is promoted by the voltage-sensing phosphatase (VSP), which regulates phosphoinositide (PIP) homeostasis via electrical signaling in biological membranes. However, it remains unknown whether this VSP function is shared by different absorptive tissues in other species. Here, we focused on the function of VSP in a viviparous teleost Xenotoca eiseni, whose intraovarian embryos absorb nutrients from the maternal ovarian fluid through a specialized hindgut-derived pseudoplacental structure called trophotaenia. Xenotoca eiseni VSP (Xe-VSP) is expressed in trophotaenia epithelium, an absorptive tissue functionally similar to zebrafish LREs. Notably, the apical distribution of Xe-VSP in trophotaenia epithelial cells closely resembles zebrafish VSP (Dr-VSP) distribution in zebrafish LREs, suggesting a shared role for VSP in absorptive tissues between the two species. Electrophysiological analysis using a heterologous expression system revealed that Xe-VSP preserves functional voltage sensors and phosphatase activity with the leftward shifted voltage sensitivity compared with zebrafish VSP (Dr-VSP). We also identified a single amino acid variation in the S4 helix of Xe-VSP as one of the factors contributing to the leftward shifted voltage sensitivity. This study highlights the biological variation and significance of VSP in various animal species, as well as hinting at the potential role of VSP in nutrient absorption in X. eiseni trophotaenia.NEW & NOTEWORTHY We investigate the voltage-sensing phosphatase (VSP) in Xenotoca eiseni, a viviparous fish whose intraovarian embryos utilize trophotaenia for nutrient absorption. Although X. eiseni VSP (Xe-VSP) shares key features with known VSPs, its distinct voltage sensitivity arises from species-specific amino acid variation. Xe-VSP in trophotaenia epithelium suggests its involvement in nutrient absorption, similar to VSP in zebrafish enterocytes and potentially in species with similar absorptive cells. Our findings highlight the potential role of VSP across species.
Collapse
Affiliation(s)
- Adisorn Ratanayotha
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atsuo Iida
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Jumpei Nomura
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Eiichi Hondo
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Rayaprolu V, Miettinen HM, Baker W, Young VC, Fisher M, Mueller G, Rankin WO, Kelley JJ, Ratzan W, Leong LM, Davisson JA, Baker BJ, Kohout SC. S1 hydrophobic residues modulate voltage sensing phosphatase enzymatic function and voltage sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573443. [PMID: 38234747 PMCID: PMC10793425 DOI: 10.1101/2023.12.27.573443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The voltage sensing domain (VSD) is a four-helix modular protein domain that converts electrical signals into conformational changes, leading to open pores and active enzymes. In most voltage sensing proteins, the VSDs do not interact with one another and the S1-S3 helices are considered mainly as scaffolding. The two exceptions are the voltage sensing phosphatase (VSP) and the proton channel (Hv). VSP is a voltage-regulated enzyme and Hvs are channels that only have VSDs. To investigate the S1 contribution to VSP function, we individually mutated four hydrophobic amino acids in S1 to alanine (F127, I131, I134 and L137). We also combined these mutations to generate quadruple mutation designated S1-Q. Most of these mutations shifted the voltage dependence of activity to higher voltages though interestingly, not all substrate reactions were the same. The kinetics of enzymatic activity were also altered with some mutations significantly slowing down dephosphorylation. The voltage dependence of VSD motions were consistently shifted to lower voltages and indicated a second voltage dependent motion. Co-immunoprecipitation demonstrated that none of the mutations broke the VSP dimer indicating that the S1 impact could stem from intrasubunit and/or intersubunit interactions. Lastly, when the same alanine mutations were introduced into a genetically encoded voltage indicator, they dramatically altered the optical readings, making some of the kinetics faster and shifting the voltage dependence. These results indicate that the S1 helix in VSP plays a critical role in tuning the enzymes conformational response to membrane potential transients and influencing the function of the VSD.
Collapse
|
4
|
Thallmair V, Schultz L, Evers S, Jolie T, Goecke C, Leitner MG, Thallmair S, Oliver D. Localization of the tubby domain, a PI(4,5)P2 biosensor, to E-Syt3-rich endoplasmic reticulum-plasma membrane junctions. J Cell Sci 2023; 136:jcs260848. [PMID: 37401342 PMCID: PMC10445746 DOI: 10.1242/jcs.260848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] acts as a signaling lipid at the plasma membrane (PM) with pleiotropic regulatory actions on multiple cellular processes. Signaling specificity might result from spatiotemporal compartmentalization of the lipid and from combinatorial binding of PI(4,5)P2 effector proteins to additional membrane components. Here, we analyzed the spatial distribution of tubbyCT, a paradigmatic PI(4,5)P2-binding domain, in live mammalian cells by total internal reflection fluorescence (TIRF) microscopy and molecular dynamics simulations. We found that unlike other well-characterized PI(4,5)P2 recognition domains, tubbyCT segregates into distinct domains within the PM. TubbyCT enrichment occurred at contact sites between PM and endoplasmic reticulum (ER) (i.e. at ER-PM junctions) as shown by colocalization with ER-PM markers. Localization to these sites was mediated in a combinatorial manner by binding to PI(4,5)P2 and by interaction with a cytosolic domain of extended synaptotagmin 3 (E-Syt3), but not other E-Syt isoforms. Selective localization to these structures suggests that tubbyCT is a novel selective reporter for a ER-PM junctional pool of PI(4,5)P2. Finally, we found that association with ER-PM junctions is a conserved feature of tubby-like proteins (TULPs), suggesting an as-yet-unknown function of TULPs.
Collapse
Affiliation(s)
- Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
| | - Lea Schultz
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Saskia Evers
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Theresa Jolie
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Christian Goecke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Michael G. Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH&Co.KG, Birkendorfer Str. 65, 88400 Biberach an der Riß, Germany
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Material, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, 35032 Marburg, Germany
| |
Collapse
|
5
|
Critical contributions of pre-S1 shoulder and distal TRP box in DAG-activated TRPC6 channel by PIP 2 regulation. Sci Rep 2022; 12:10766. [PMID: 35750783 PMCID: PMC9232555 DOI: 10.1038/s41598-022-14766-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2) regulates the activities of numerous membrane proteins, including diacylglycerol(DAG)-activated TRPC3/6/7 channels. Although PIP2 binding is known to support DAG-activated TRP channel activity, its binding site remains unknown. We screened for PIP2 binding sites within TRPC6 channels through extensive mutagenesis. Using voltage-sensitive phosphatase (DrVSP), we found that Arg437 and Lys442, located in the channel’s pre-S1 domain/shoulder, are crucial for interaction with PIP2. To gain structural insights, we conducted computer protein–ligand docking simulations with the pre-S1 domain/shoulder of TRPC6 channels. Further, the functional significance of PIP2 binding to the pre-S1 shoulder was assessed for receptor-operated channel functions, cross-reactivity to DAG activation, and the kinetic model simulation. These results revealed that basic residues in the pre-S1 domain/shoulder play a central role in the regulation of PIP2-dependent gating. In addition, neutralizing mutation of K771 in the distal TRP box reversed the effect of PIP2 depletion from inhibiting to potentiating channel activity. A similar effect was seen in TRPV1 channels, which suggests that TRPC6 possesses a common but robust polarity switch mediating the PIP2-dependent effect. Overall, these mutagenesis studies reveal functional and structural insights for how basic residues and channel segments in TRP channels are controlled through phosphoinositides recognition.
Collapse
|
6
|
Pipatpolkai T, Quetschlich D, Stansfeld PJ. From Bench to Biomolecular Simulation: Phospholipid Modulation of Potassium Channels. J Mol Biol 2021; 433:167105. [PMID: 34139216 PMCID: PMC8361781 DOI: 10.1016/j.jmb.2021.167105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/05/2022]
Abstract
Potassium (K+) ion channels are crucial in numerous cellular processes as they hyperpolarise a cell through K+ conductance, returning a cell to its resting potential. K+ channel mutations result in multiple clinical complications such as arrhythmia, neonatal diabetes and migraines. Since 1995, the regulation of K+ channels by phospholipids has been heavily studied using a range of interdisciplinary methods such as cellular electrophysiology, structural biology and computational modelling. As a result, K+ channels are model proteins for the analysis of protein-lipid interactions. In this review, we will focus on the roles of lipids in the regulation of K+ channels, and how atomic-level structures, along with experimental techniques and molecular simulations, have helped guide our understanding of the importance of phospholipid interactions.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK; Department of Physiology Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK
| | - Daniel Quetschlich
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK; Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
7
|
Kawanabe A, Mizutani N, Polat OK, Yonezawa T, Kawai T, Mori MX, Okamura Y. Engineering an enhanced voltage-sensing phosphatase. J Gen Physiol 2021; 152:133870. [PMID: 32167537 PMCID: PMC7201886 DOI: 10.1085/jgp.201912491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/05/2019] [Accepted: 02/16/2020] [Indexed: 01/11/2023] Open
Abstract
Voltage-sensing phosphatases (VSP) consist of a membrane-spanning voltage sensor domain and a cytoplasmic region that has enzymatic activity toward phosphoinositides (PIs). VSP enzyme activity is regulated by membrane potential, and its activation leads to rapid and reversible alteration of cellular PIP levels. These properties enable VSPs to be used as a tool for studying the effects of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) binding to ion channels and transporters. For example, by applying simple changes in the membrane potential, Danio rerio VSP (Dr-VSP) has been used effectively to manipulate PI(4,5)P2 in mammalian cells with few, if any, side effects. In the present study, we report an enhanced version of Dr-VSP as an improved molecular tool for depleting PI(4,5)P2 from cultured mammalian cells. We modified Dr-VSP in two ways. Its voltage-dependent phosphatase activity was enhanced by introducing an aromatic residue at the position of Leu-223 within a membrane-interacting region of the phosphatase domain called the hydrophobic spine. In addition, selective plasma membrane targeting of Dr-VSP was facilitated by fusion with the N-terminal region of Ciona intestinalis VSP. This modified Dr-VSP (CiDr-VSPmChe L223F, or what we call eVSP) induced more drastic voltage-evoked changes in PI(4,5)P2 levels, using the activities of Kir2.1, KCNQ2/3, and TRPC6 channels as functional readouts. eVSP is thus an improved molecular tool for evaluating the PI(4,5)P2 sensitivity of ion channels in living cells.
Collapse
Affiliation(s)
- Akira Kawanabe
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Natsuki Mizutani
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Onur K Polat
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomoko Yonezawa
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Vera E, Cornejo I, Niemeyer MI, Sepúlveda FV, Cid LP. Altered phosphatidylinositol regulation of mutant inwardly rectifying K + Kir7.1 channels associated with inherited retinal degeneration disease. J Physiol 2020; 599:593-608. [PMID: 33219695 DOI: 10.1113/jp280681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Kir7.1 K+ channel expressed in retinal pigment epithelium is mutated in inherited retinal degeneration diseases. We study Kir7.1 in heterologous expression to test the hypothesis that pathological R162 mutation to neutral amino acids results in loss of a crucial site that binds PI(4,5)P2 . Although R162W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. In addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and is essential for channel activity. R162 substitution with a large, neutral side chain like Trp exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in a cell expressing the same amount of mutant and wild-type channels. ABSTRACT Mutations in the Kir7.1 K+ channel, highly expressed in retinal pigment epithelium, have been linked to inherited retinal degeneration diseases. Examples are mutations changing Arg 162 to Trp in snowflake vitreoretinal degeneration (SVD) and Gln in retinitis pigmentosa. R162 is believed to be part of a site that binds PI(4,5)P2 and stabilises the open state. We have tested the hypothesis that R162 mutation to neutral amino acids will result in the loss of this crucial interaction to the detriment of channel function. Our findings indicate that although R612W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Cys chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. Experiments titrating the levels of plasma membrane PI(4,5)P2 with voltage-dependent phosphatase DrVSP reveal that, in addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and ensures channel activity. Finally, the use of a concatemeric approach shows that substitution of R162 with a large, neutral side chain mimicking a Trp residue exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in heterozygous cells carrying the SVD mutation. Our results suggest that if mutations in the human KCNJ13 gene resulting in the neutralisation of R162 and Kir7.1 malfunction led to retinal degeneration diseases, their severity might depend on the nature of the side chain of the replacing amino acid.
Collapse
Affiliation(s)
- Erwin Vera
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | | | | | | | - L Pablo Cid
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
9
|
Handklo-Jamal R, Meisel E, Yakubovich D, Vysochek L, Beinart R, Glikson M, McMullen JR, Dascal N, Nof E, Oz S. Andersen-Tawil Syndrome Is Associated With Impaired PIP 2 Regulation of the Potassium Channel Kir2.1. Front Pharmacol 2020; 11:672. [PMID: 32499698 PMCID: PMC7243181 DOI: 10.3389/fphar.2020.00672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) type-1 is associated with loss-of-function mutations in KCNJ2 gene. KCNJ2 encodes the tetrameric inward-rectifier potassium channel Kir2.1, important to the resting phase of the cardiac action potential. Kir-channels' activity requires interaction with the agonist phosphatidylinositol-4,5-bisphosphate (PIP2). Two mutations were identified in ATS patients, V77E in the cytosolic N-terminal "slide helix" and M307V in the C-terminal cytoplasmic gate structure "G-loop." Current recordings in Kir2.1-expressing HEK cells showed that each of the two mutations caused Kir2.1 loss-of-function. Biotinylation and immunostaining showed that protein expression and trafficking of Kir2.1 to the plasma membrane were not affected by the mutations. To test the functional effect of the mutants in a heterozygote set, Kir2.1 dimers were prepared. Each dimer was composed of two Kir2.1 subunits joined with a flexible linker (i.e. WT-WT, WT dimer; WT-V77E and WT-M307V, mutant dimer). A tetrameric assembly of Kir2.1 is expected to include two dimers. The protein expression and the current density of WT dimer were equally reduced to ~25% of the WT monomer. Measurements from HEK cells and Xenopus oocytes showed that the expression of either WT-V77E or WT-M307V yielded currents of only about 20% compared to the WT dimer, supporting a dominant-negative effect of the mutants. Kir2.1 sensitivity to PIP2 was examined by activating the PIP2 specific voltage-sensitive phosphatase (VSP) that induced PIP2 depletion during current recordings, in HEK cells and Xenopus oocytes. PIP2 depletion induced a stronger and faster decay in Kir2.1 mutant dimers current compared to the WT dimer. BGP-15, a drug that has been demonstrated to have an anti-arrhythmic effect in mice, stabilized the Kir2.1 current amplitude following VSP-induced PIP2 depletion in cells expressing WT or mutant dimers. This study underlines the implication of mutations in cytoplasmic regions of Kir2.1. A newly developed calibrated VSP activation protocol enabled a quantitative assessment of changes in PIP2 regulation caused by the mutations. The results suggest an impaired function and a dominant-negative effect of the Kir2.1 variants that involve an impaired regulation by PIP2. This study also demonstrates that BGP-15 may be beneficial in restoring impaired Kir2.1 function and possibly in treating ATS symptoms.
Collapse
Affiliation(s)
| | - Eshcar Meisel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Daniel Yakubovich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neonatology Department, Schneider Children's Medical Center, Petah-Tikva, Israel
| | | | - Roy Beinart
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Glikson
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | | | - Nathan Dascal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Nof
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Shimrit Oz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
10
|
Okamura Y, Kawanabe A, Kawai T. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiol Rev 2019; 98:2097-2131. [PMID: 30067160 DOI: 10.1152/physrev.00056.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) contains a voltage sensor domain (VSD) similar to that in voltage-gated ion channels, and a phosphoinositide phosphatase region similar to phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The VSP gene is conserved from unicellular organisms to higher vertebrates. Membrane depolarization induces electrical driven conformational rearrangement in the VSD, which is translated into catalytic enzyme activity. Biophysical and structural characterization has revealed details of the mechanisms underlying the molecular functions of VSP. Coupling between the VSD and the enzyme is tight, such that enzyme activity is tuned in a graded fashion to the membrane voltage. Upon VSP activation, multiple species of phosphoinositides are simultaneously altered, and the profile of enzyme activity depends on the history of the membrane potential. VSPs have been the obvious candidate link between membrane potential and phosphoinositide regulation. However, patterns of voltage change regulating VSP in native cells remain largely unknown. This review addresses the current understanding of the biophysical biochemical properties of VSP and provides new insight into the proposed functions of VSP.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Akira Kawanabe
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Takafumi Kawai
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| |
Collapse
|
11
|
Leitner MG, Hobiger K, Mavrantoni A, Feuer A, Oberwinkler J, Oliver D, Halaszovich CR. A126 in the active site and TI167/168 in the TI loop are essential determinants of the substrate specificity of PTEN. Cell Mol Life Sci 2018; 75:4235-4250. [PMID: 29987362 PMCID: PMC6182344 DOI: 10.1007/s00018-018-2867-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023]
Abstract
PTEN prevents tumor genesis by antagonizing the PI3 kinase/Akt pathway through D3 site phosphatase activity toward PI(3,4)P2 and PI(3,4,5)P3. The structural determinants of this important specificity remain unknown. Interestingly, PTEN shares remarkable homology to voltage-sensitive phosphatases (VSPs) that dephosphorylate D5 and D3 sites of PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3. Since the catalytic center of PTEN and VSPs differ markedly only in TI/gating loop and active site motif, we wondered whether these differences explained the variation of their substrate specificity. Therefore, we introduced mutations into PTEN to mimic corresponding sequences of VSPs and studied phosphatase activity in living cells utilizing engineered, voltage switchable PTENCiV, a Ci-VSP/PTEN chimera that retains D3 site activity of the native enzyme. Substrate specificity of this enzyme was analyzed with whole-cell patch clamp in combination with total internal reflection fluorescence microscopy and genetically encoded phosphoinositide sensors. In PTENCiV, mutating TI167/168 in the TI loop into the corresponding ET pair of VSPs induced VSP-like D5 phosphatase activity toward PI(3,4,5)P3, but not toward PI(4,5)P2. Combining TI/ET mutations with an A126G exchange in the active site removed major sequence variations between PTEN and VSPs and resulted in D5 activity toward PI(4,5)P2 and PI(3,4,5)P3 of PTENCiV. This PTEN mutant thus fully reproduced the substrate specificity of native VSPs. Importantly, the same combination of mutations also induced D5 activity toward PI(3,4,5)P3 in native PTEN demonstrating that the same residues determine the substrate specificity of the tumor suppressor in living cells. Reciprocal mutations in VSPs did not alter their substrate specificity, but reduced phosphatase activity. In summary, A126 in the active site and TI167/168 in the TI loop are essential determinants of PTEN's substrate specificity, whereas additional features might contribute to the enzymatic activity of VSPs.
Collapse
Affiliation(s)
- Michael G Leitner
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Kirstin Hobiger
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Angeliki Mavrantoni
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Anja Feuer
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Johannes Oberwinkler
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
- DFG Research Training Group GRK 2213, Membrane Plasticity in Tissue Development and Remodeling, Philipps-University Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg/Giessen, Germany
| | - Christian R Halaszovich
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany.
| |
Collapse
|
12
|
Zhelay T, Wieczerzak KB, Beesetty P, Alter GM, Matsushita M, Kozak JA. Depletion of plasma membrane-associated phosphoinositides mimics inhibition of TRPM7 channels by cytosolic Mg 2+, spermine, and pH. J Biol Chem 2018; 293:18151-18167. [PMID: 30305398 PMCID: PMC6254349 DOI: 10.1074/jbc.ra118.004066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is an ion channel/protein kinase belonging to the TRP melastatin and eEF2 kinase families. Under physiological conditions, most native TRPM7 channels are inhibited by cytoplasmic Mg2+, protons, and polyamines. Currents through these channels (ITRPM7) are robustly potentiated when the cell interior is exchanged with low Mg2+-containing buffers. ITRPM7 is also potentiated by phosphatidyl inositol bisphosphate (PI(4,5)P2) and suppressed by its hydrolysis. Here we characterized internal Mg2+- and pH-mediated inhibition of TRPM7 channels in HEK293 cells overexpressing WT voltage-sensing phospholipid phosphatase (VSP) or its catalytically inactive variant VSP-C363S. VSP-mediated depletion of membrane phosphoinositides significantly increased channel sensitivity to Mg2+ and pH. Proton concentrations that were too low to inhibit ITRPM7 when the VSP-C363S variant was expressed (pH 8.2) became inhibitory in WT VSP-expressing cells. At pH 6.5, protons inhibited ITRPM7 both in WT and VSP C363S-expressing cells but with a faster time course in the WT VSP-expressing cells. Inhibition by 150 μm Mg2+ was also significantly faster in the WT VSP-expressing cells. Cellular PI(4,5)P2 depletion increased the sensitivity of TRPM7 channels to the inhibitor 2-aminoethyl diphenyl borinate, which acidifies the cytosol. Single substitutions at Ser-1107 of TRPM7, reducing its sensitivity to Mg2+, also decreased its inhibition by spermine and acidic pH. Furthermore, these channel variants were markedly less sensitive to VSP-mediated PI(4,5)P2 depletion than the WT. We conclude that the internal Mg2+-, polyamine-, and pH-mediated inhibition of TRPM7 channels is not direct but, rather, reflects electrostatic screening and resultant disruption of PI(4,5)P2-channel interactions.
Collapse
Affiliation(s)
- Tetyana Zhelay
- From the Departments of Neuroscience, Cell Biology, and Physiology and
| | | | - Pavani Beesetty
- From the Departments of Neuroscience, Cell Biology, and Physiology and
| | - Gerald M Alter
- Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435 and
| | - Masayuki Matsushita
- the Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - J Ashot Kozak
- From the Departments of Neuroscience, Cell Biology, and Physiology and.
| |
Collapse
|
13
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Hackelberg S, Oliver D. Metabotropic Acetylcholine and Glutamate Receptors Mediate PI(4,5)P 2 Depletion and Oscillations in Hippocampal CA1 Pyramidal Neurons in situ. Sci Rep 2018; 8:12987. [PMID: 30154490 PMCID: PMC6113233 DOI: 10.1038/s41598-018-31322-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/17/2018] [Indexed: 01/24/2023] Open
Abstract
The sensitivity of many ion channels to phosphatidylinositol-4,5-bisphosphate (PIP2) levels in the cell membrane suggests that PIP2 fluctuations are important and general signals modulating neuronal excitability. Yet the PIP2 dynamics of central neurons in their native environment remained largely unexplored. Here, we examined the behavior of PIP2 concentrations in response to activation of Gq-coupled neurotransmitter receptors in rat CA1 hippocampal neurons in situ in acute brain slices. Confocal microscopy of the PIP2-selective molecular sensors tubbyCT-GFP and PLCδ1-PH-GFP showed that pharmacological activation of muscarinic acetylcholine (mAChR) or group I metabotropic glutamate (mGluRI) receptors induces transient depletion of PIP2 in the soma as well as in the dendritic tree. The observed PIP2 dynamics were receptor-specific, with mAChR activation inducing stronger PIP2 depletion than mGluRI, whereas agonists of other Gαq-coupled receptors expressed in CA1 neurons did not induce measureable PIP2 depletion. Furthermore, the data show for the first time neuronal receptor-induced oscillations of membrane PIP2 concentrations. Oscillatory behavior indicated that neurons can rapidly restore PIP2 levels during persistent activation of Gq and PLC. Electrophysiological responses to receptor activation resembled PIP2 dynamics in terms of time course and receptor specificity. Our findings support a physiological function of PIP2 in regulating electrical activity.
Collapse
Affiliation(s)
- Sandra Hackelberg
- Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Marburg and Giessen, Germany.
| |
Collapse
|
15
|
Dierich M, Leitner MG. K v12.1 channels are not sensitive to G qPCR-triggered activation of phospholipase Cβ. Channels (Austin) 2018; 12:228-239. [PMID: 30136882 PMCID: PMC6986784 DOI: 10.1080/19336950.2018.1475783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kv12.1 K+ channels are expressed in several brain areas, but no physiological function could be attributed to these subunits so far. As genetically-modified animal models are not available, identification of native Kv12.1 currents must rely on characterization of distinct channel properties. Recently, it was shown in Xenopus laevis oocytes that Kv12.1 channels were modulated by membrane PI(4,5)P2. However, it is not known whether these channels are also sensitive to physiologically-relevant PI(4,5)P2 dynamics. We thus studied whether Kv12.1 channels were modulated by activation of phospholipase C β (PLCβ) and found that they were insensitive to receptor-triggered depletion of PI(4,5)P2. Thus, Kv12.1 channels add to the growing list of K+ channels that are insensitive to PLCβ signaling, although modulated by PI(4,5)P2 in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- Marlen Dierich
- a Department of Neurophysiology , Institute of Physiology and Pathophysiology, Philipps-University Marburg , Marburg , Germany
| | - Michael G Leitner
- a Department of Neurophysiology , Institute of Physiology and Pathophysiology, Philipps-University Marburg , Marburg , Germany.,b Division of Physiology, Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
16
|
Leitner MG, Thallmair V, Wilke BU, Neubert V, Kronimus Y, Halaszovich CR, Oliver D. The N-terminal homology (ENTH) domain of Epsin 1 is a sensitive reporter of physiological PI(4,5)P 2 dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:433-442. [PMID: 30670192 DOI: 10.1016/j.bbalip.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/18/2018] [Accepted: 08/04/2018] [Indexed: 11/15/2022]
Abstract
Phospholipase Cβ (PLCβ)-induced depletion of phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2) transduces a plethora of signals into cellular responses. Importance and diversity of PI(4,5)P2-dependent processes led to strong need for biosensors of physiological PI(4,5)P2 dynamics applicable in live-cell experiments. Membrane PI(4,5)P2 can be monitored with fluorescently-labelled phosphoinositide (PI) binding domains that associate to the membrane depending on PI(4,5)P2 levels. The pleckstrin homology domain of PLCδ1 (PLCδ1-PH) and the C-terminus of tubby protein (tubbyCT) are two such sensors widely used to study PI(4,5)P2 signaling. However, certain limitations apply to both: PLCδ1-PH binds cytoplasmic inositol-1,4,5-trisphosphate (IP3) produced from PI(4,5)P2 through PLCβ, and tubbyCT responses do not faithfully report on PLCβ-dependent PI(4,5)P2 dynamics. In searching for an improved biosensor, we fused N-terminal homology domain of Epsin1 (ENTH) to GFP and examined use of this construct as genetically-encoded biosensor for PI(4,5)P2 dynamics in living cells. We utilized recombinant tools to manipulate PI or Gq protein-coupled receptors (GqPCR) to stimulate PLCβ signaling and characterized PI binding properties of ENTH-GFP with total internal reflection (TIRF) and confocal microscopy. ENTH-GFP specifically recognized membrane PI(4,5)P2 without interacting with IP3, as demonstrated by dialysis of cells with the messenger through a patch pipette. Utilizing Ci-VSP to titrate PI(4,5)P2 levels, we found that ENTH-GFP had low PI(4,5)P2 affinity. Accordingly, ENTH-GFP was highly sensitive to PLCβ-dependent PI(4,5)P2 depletion, and in contrast to PLCδ1-PH, overexpression of ENTH-GFP did not attenuate GqPCR signaling. Taken together, ENTH-GFP detects minute changes of PI(4,5)P2 levels and provides an important complementation of experimentally useful reporters of PI(4,5)P2 dynamics in physiological pathways.
Collapse
Affiliation(s)
- Michael G Leitner
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Bettina U Wilke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Valentin Neubert
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Yannick Kronimus
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Christian R Halaszovich
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University, Germany; Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
| |
Collapse
|
17
|
Zhang J, Chen X, Xue Y, Gamper N, Zhang X. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes. J Cell Physiol 2018; 233:6377-6385. [PMID: 29667735 DOI: 10.1002/jcp.26555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Abstract
Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2 , PIP2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xingjuan Chen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Beijing Key Laboratory of Diabetes Prevention and Research, Lu He Hospital, Capital Medical University, Beijing, China
| | - Yucong Xue
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Nikita Gamper
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
18
|
Proks P, Puljung MC, Vedovato N, Sachse G, Mulvaney R, Ashcroft FM. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0426. [PMID: 27377720 PMCID: PMC4938026 DOI: 10.1098/rstb.2015.0426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 11/29/2022] Open
Abstract
KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’.
Collapse
Affiliation(s)
- Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Michael C Puljung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Rachel Mulvaney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
19
|
Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking. PLoS One 2017; 12:e0186293. [PMID: 29020060 PMCID: PMC5636153 DOI: 10.1371/journal.pone.0186293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/28/2017] [Indexed: 01/15/2023] Open
Abstract
The slow delayed-rectifier potassium current (IKs) is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1) channel requires phosphatidylinositol-4,5-bisphosphate (PIP2) binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel–phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID) system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4)P) at the plasma membrane (PM) or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4)P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1). Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4)P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.
Collapse
|
20
|
Lacin E, Aryal P, Glaaser IW, Bodhinathan K, Tsai E, Marsh N, Tucker SJ, Sansom MSP, Slesinger PA. Dynamic role of the tether helix in PIP 2-dependent gating of a G protein-gated potassium channel. J Gen Physiol 2017; 149:799-811. [PMID: 28720589 PMCID: PMC5560777 DOI: 10.1085/jgp.201711801] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 01/21/2023] Open
Abstract
G protein–gated inwardly rectifying potassium (GIRK) channels are activated by the phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2). Using functional and computational experiments, Lacin et al. reveal that PIP2 interacts with the tether helix of the neuronal GIRK channel in a dynamic way. G protein–gated inwardly rectifying potassium (GIRK) channels control neuronal excitability in the brain and are implicated in several different neurological diseases. The anionic phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) is an essential cofactor for GIRK channel gating, but the precise mechanism by which PIP2 opens GIRK channels remains poorly understood. Previous structural studies have revealed several highly conserved, positively charged residues in the “tether helix” (C-linker) that interact with the negatively charged PIP2. However, these crystal structures of neuronal GIRK channels in complex with PIP2 provide only snapshots of PIP2’s interaction with the channel and thus lack details about the gating transitions triggered by PIP2 binding. Here, our functional studies reveal that one of these conserved basic residues in GIRK2, Lys200 (6′K), supports a complex and dynamic interaction with PIP2. When Lys200 is mutated to an uncharged amino acid, it activates the channel by enhancing the interaction with PIP2. Atomistic molecular dynamic simulations of neuronal GIRK2 with the same 6′ substitution reveal an open GIRK2 channel with PIP2 molecules adopting novel positions. This dynamic interaction with PIP2 may explain the intrinsic low open probability of GIRK channels and the mechanism underlying activation by G protein Gβγ subunits and ethanol.
Collapse
Affiliation(s)
- Emre Lacin
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Prafulla Aryal
- Department of Biochemistry, University of Oxford, Oxford, England, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK
| | - Ian W Glaaser
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Eric Tsai
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nidaa Marsh
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stephen J Tucker
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK.,Department of Physics, University of Oxford, Oxford, England, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, England, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK
| | - Paul A Slesinger
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
21
|
Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K 2P background K + channel TASK-2. Sci Rep 2017; 7:45407. [PMID: 28358046 PMCID: PMC5371824 DOI: 10.1038/srep45407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Two-pore domain K2P K+ channels responsible for the background K+ conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K2P channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P2, common among other classes of K+ channels, affects K2P channels is controversial. Here we show that K2P K+ channel TASK-2 requires PI(4,5)P2 for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P2, its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P2 depletion from the membrane. Comprehensive mutagenesis suggests that PI(4,5)P2 interaction with TASK-2 takes place at C-terminus where three basic aminoacids are identified as being part of a putative binding site.
Collapse
|
22
|
Salzer I, Erdem FA, Chen WQ, Heo S, Koenig X, Schicker KW, Kubista H, Lubec G, Boehm S, Yang JW. Phosphorylation regulates the sensitivity of voltage-gated Kv7.2 channels towards phosphatidylinositol-4,5-bisphosphate. J Physiol 2016; 595:759-776. [PMID: 27621207 PMCID: PMC5215842 DOI: 10.1113/jp273274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
Key points Phosphatidylinositol‐4,5‐bisphosphate (PIP2) is a key regulator of many membrane proteins, including voltage‐gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2‐binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP2. Dephosphorylation of Kv7.2 affected channel inhibition via M1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP2, thereby ensuring the tight regulation of the channel via G protein‐coupled receptors.
Abstract The function of numerous ion channels is tightly controlled by G protein‐coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol‐4,5‐bisphosphate (PIP2). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP2 and through phosphorylation. Using liquid chromatography‐coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2‐binding domains. To evaluate the effect of phosphorylation on PIP2‐mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP2 depletion via the voltage‐sensitive phosphatase Dr‐VSP than were wild‐type channels. In vitro phosphorylation assays with the purified C‐terminus of Kv7.2 revealed that CDK5, p38 MAPK, CaMKIIα and PKA were able to phosphorylate the five serines. Inhibition of these protein kinases reduced the sensitivity of wild‐type but not mutant Kv7.2 channels towards PIP2 depletion via Dr‐VSP. In superior cervical ganglion neurons, the protein kinase inhibitors attenuated Kv7 current regulation via M1 receptors, but left unaltered the control by B2 receptors. Our results revealed that the phosphorylation status of serines located within a putative PIP2‐binding domain determined the phospholipid sensitivity of Kv7.2 channels and supported GPCR‐mediated channel regulation. Phosphatidylinositol‐4,5‐bisphosphate (PIP2) is a key regulator of many membrane proteins, including voltage‐gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2‐binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP2. Dephosphorylation of Kv7.2 affected channel inhibition via M1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP2, thereby ensuring the tight regulation of the channel via G protein‐coupled receptors.
Collapse
Affiliation(s)
- Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Fatma Asli Erdem
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Wei-Qiang Chen
- Department of Pediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Seok Heo
- Department of Pediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Klaus W Schicker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
23
|
Kim HJ, Jeong MH, Kim KR, Jung CY, Lee SY, Kim H, Koh J, Vuong TA, Jung S, Yang H, Park SK, Choi D, Kim SH, Kang K, Sohn JW, Park JM, Jeon D, Koo SH, Ho WK, Kang JS, Kim ST, Cho H. Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression. eLife 2016; 5. [PMID: 27466704 PMCID: PMC4996652 DOI: 10.7554/elife.17159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca2+/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures. DOI:http://dx.doi.org/10.7554/eLife.17159.001 In the brain, cells called neurons transmit information along their length in the form of electrical signals. To generate electrical signals, ions move into and out of neurons through ion channel proteins – such as the KCNQ channel – in the surface of these cells, which open and close to control the electrical response of the neuron. Abnormally intense bursts of electrical activity from many neurons at once can cause seizures such as those experienced by people with epilepsy. A significant proportion of patients do not respond to current anti-seizure medications. Openers of KCNQ channels have emerged as a potential new class of anti-epileptic drugs. A better understanding of how KCNQ channels work, and how their opening by PIP2lipid signals is regulated, could help to develop more effective therapies for epilepsy. A process called methylation controls many biological tasks by changing the structure of key proteins inside cells. Although methylation occurs throughout the brain, its role in controlling how easily neurons are activated (a property known as “excitability”) remains unclear. Kim, Jeong, Kim, Jung et al. now show that a protein called Prmt1 methylates the KCNQ channels in mice, and that this methylation is essential for suppressing seizures. Mice born without the Prmt1 protein developed epileptic seizures and the KCNQ channels in their neurons featured a reduced level of methylation. However, increasing the amount of PIP2 in these neurons restored their excitability back to normal levels. The methylation of KCNQ channel proteins increases their affinity for PIP2, which is critical to open KCNQ channels. Kim et al. propose that these “opening” controllers balance the action of known “closers” of KCNQ channels to maintain neurons in a healthy condition. In future, Kim et al. plan to investigate whether methylation affects the activity of other ion channels controlled by PIP2. Such experiments will complement a more widespread investigation into other ways in which the Prtmt1 protein may control the activity of neurons. DOI:http://dx.doi.org/10.7554/eLife.17159.002
Collapse
Affiliation(s)
- Hyun-Ji Kim
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Myong-Ho Jeong
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Kyung-Ran Kim
- Department of Physiology and bioMembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Chang-Yun Jung
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seul-Yi Lee
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hanna Kim
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jewoo Koh
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Tuan Anh Vuong
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seungmoon Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyunwoo Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Su-Kyung Park
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dahee Choi
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Division of Life Sciences, Korea University, Seoul, Korea
| | - Sung Hun Kim
- Department of Neurology, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Daejong Jeon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea.,Advanced Neural Technologies, Seoul, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Won-Kyung Ho
- Department of Physiology and bioMembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seong-Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hana Cho
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
24
|
Leitner MG, Michel N, Behrendt M, Dierich M, Dembla S, Wilke BU, Konrad M, Lindner M, Oberwinkler J, Oliver D. Direct modulation of TRPM4 and TRPM3 channels by the phospholipase C inhibitor U73122. Br J Pharmacol 2016; 173:2555-69. [PMID: 27328745 DOI: 10.1111/bph.13538] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Signalling through phospholipase C (PLC) controls many cellular processes. Much information on the relevance of this important pathway has been derived from pharmacological inhibition of the enzymatic activity of PLC. We found that the most frequently employed PLC inhibitor, U73122, activates endogenous ionic currents in widely used cell lines. Given the extensive use of U73122 in research, we set out to identify these U73122-sensitive ion channels. EXPERIMENTAL APPROACH We performed detailed biophysical analysis of the U73122-induced currents in frequently used cell lines. KEY RESULTS At concentrations required to inhibit PLC, U73122 modulated the activity of transient receptor potential melastatin (TRPM) channels through covalent modification. U73122 was shown to be a potent agonist of ubiquitously expressed TRPM4 channels and activated endogenous TRPM4 channels in CHO cells independently of PLC and of the downstream second messengers PI(4,5)P2 and Ca(2+) . U73122 also potentiated Ca(2) (+) -dependent TRPM4 currents in human Jurkat T-cells, endogenous TRPM4 in HEK293T cells and recombinant human TRPM4. In contrast to TRPM4, TRPM3 channels were inhibited whereas the closely related TRPM5 channels were insensitive to U73122, showing that U73122 exhibits high specificity within the TRPM channel family. CONCLUSIONS AND IMPLICATIONS Given the widespread expression of TRPM4 and TRPM3 channels, these actions of U73122 must be considered when interpreting its effects on cell function. U73122 may also be useful for identifying and characterizing TRPM channels in native tissue, thus facilitating the analysis of their physiology.
Collapse
Affiliation(s)
- Michael G Leitner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Niklas Michel
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Marc Behrendt
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Marlen Dierich
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Sandeep Dembla
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Bettina U Wilke
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Maik Konrad
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Moritz Lindner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Johannes Oberwinkler
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
25
|
Kohout SC, Villalba-Galea CA. Editorial: Phosphoinositides and their phosphatases: Linking electrical and chemical signals in biological processes. Front Pharmacol 2015. [PMID: 26217228 PMCID: PMC4495603 DOI: 10.3389/fphar.2015.00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Susy C Kohout
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
26
|
Phosphoinositide dynamics in the postsynaptic membrane compartment: Mechanisms and experimental approach. Eur J Cell Biol 2015; 94:401-14. [DOI: 10.1016/j.ejcb.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|