1
|
Kim J, Bang J, Ryu B, Kim CY, Park JH. Flubendazole exposure disrupts neural development and function of zebrafish embryos (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165376. [PMID: 37422240 DOI: 10.1016/j.scitotenv.2023.165376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Flubendazole (FBZ) is a benzimidazole anthelmintic drug widely used for treating parasitic infections by disrupting microtubule formation and function through tubulin binding. Recently, its use has extended to include anticancer applications, leading to increased environmental exposure to benzimidazole drugs. However, the impact of FBZ on neural development in aquatic organisms, particularly in aquatic vertebrates, remains poorly understood. This study aimed to investigate the potential developmental toxicity of FBZ during neural development using zebrafish model. Various assessments, including analysis of overall developmental changes, morphological abnormalities, apoptosis, gene expression alterations, axon length measurements, and electrophysiological neural function, were performed. FBZ exposure resulted in concentration-dependent effects on survival rate, hatching rate, heartbeat, and the occurrence of developmental abnormalities. Notably, FBZ-induced changes included reductions in body length, head size, and eye size, as well as the detection of apoptotic cells in the central nervous system. Gene expression analysis revealed upregulation of apoptosis-related genes (p53, casp3, and casp8), downregulation of neural differentiation-related genes (shha, nrd, ngn1, and elavl3), and alterations in neural maturation and axon growth-related genes (gap43, mbp, and syn2a). Additionally, shortened motor neuron axon length and impaired electrophysiological neural function were observed. These findings provide novel insights into the potential risks of FBZ on the neural development of zebrafish embryos, emphasizing the need for risk prevention strategies and therapeutic approaches to address the environmental toxicity of benzimidazole anthelmintics.
Collapse
Affiliation(s)
- Jin Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Junpil Bang
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bokyeong Ryu
- Department of Biomedical Informatics, College of Applied Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Pavithra K, Priyadharshini RD, Vennila KN, Elango KP. Multi-spectroscopic and molecular simulation methods of analysis to explore the mode of binding of Mebendazole drug with calf-thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122938. [PMID: 37269657 DOI: 10.1016/j.saa.2023.122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
UV-vis, fluorescence, circular dichroism (CD) and 1H NMR spectroscopic techniques have been employed to explore the mode of binding of Mebendazole (MBZ) drug with calf thymus DNA (CT-DNA). UV-vis and fluorescence spectral studies suggested a complex formation between the drug and nucleic acid. The fluorescence of MBZ was found to enhance upon binding with CT-DNA through a ground state complex formation with Kb in the order of 104 M-1. The thermodynamic aspects indicated that the complex formation is a spontaneous process and an entropy-driven one. ΔH0 > 0 and ΔS0 > 0 revealed that hydrophobic interaction plays a dominant role in the stabilization of the complex. Competitive dye displacement assays with ethidium bromide (EB) and Hoechst 33258 dyes and viscosity measurements pointed out that MBZ binds with CT-DNA via intercalation mode, which is confirmed by CD and 1H NMR spectral studies as well as denaturation studies. Molecular docking analysis could not match well with the experimental results. However, molecular simulation studies and the resultant free energy surface (FES) analysis clearly showed that the benzimidazole ring of MBZ intercalated between the base pairs of the nucleic acid, which is in excellent agreement with the results of the various biophysical experiments.
Collapse
Affiliation(s)
- K Pavithra
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - R Durga Priyadharshini
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| |
Collapse
|
3
|
Shi S, Yang F, Cheng X, Yang Y, He J, Gu S. Heterologous-coating antigen enhancing the sensitivity of enzyme-linked immunosorbent assay for detection of mebendazole residues. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:883-889. [PMID: 36217592 DOI: 10.1080/03601234.2022.2129938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The heterologous strategy could improve the sensitivity of competitive enzyme-linked immunosorbent assay (ELISA) for detection of chemical contaminants in food samples. In this study, the heterologous coating antigen ELISA was developed to evaluate its sensitivity for mebendazole (MBZ). Results showed that the heterologous ELISA had a linear range of (IC20-IC80) 0.34-10.54 ng/mL, an IC50 value of 1.83 ng/mL, and a limit of detection (LOD) of 0.13 ng/mL, in which the sensitivity of ELISA improved 1.7- and 2-fold (IC50 value dropping from 7.41 and 3.65 ng/mL to 4.27 and 1.83 ng/mL) than that of rabbit IgG- and chicken IgY-based homologous ELISA for MBZ, respectively. The heterologous coating antigen ELISA showed negligible cross reactivity (<0.2%) with its structural analogues, including hydroxy-MBZ, albendazole, oxfendazole, fenbendazole, and flubendazole, except the value of 72.6% for amino-MBZ. The average recoveries of MBZ spiked in pork and chicken muscle samples by the assay ranged from 83.7% to 109.8% and agreed well with those of high-performance liquid chromatography. The results suggested that using heterologous coating antigen could distinctly improve the sensitivity of ELISA for routine screening of MBZ residues in food samples.
Collapse
Affiliation(s)
- Shengrui Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Fujun Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Xiaorong Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Yayun Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Jinxin He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Shaopeng Gu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| |
Collapse
|
4
|
Wlodkowic D, Bownik A, Leitner C, Stengel D, Braunbeck T. Beyond the behavioural phenotype: Uncovering mechanistic foundations in aquatic eco-neurotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154584. [PMID: 35306067 DOI: 10.1016/j.scitotenv.2022.154584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
During the last decade, there has been an increase in awareness of how anthropogenic pollution can alter behavioural traits of diverse aquatic organisms. Apart from understanding profound ecological implications, alterations in neuro-behavioural indices have emerged as sensitive and physiologically integrative endpoints in chemical risk assessment. Accordingly, behavioural ecotoxicology and broader eco-neurotoxicology are becoming increasingly popular fields of research that span a plethora of fundamental laboratory experimentations as well as applied field-based studies. Despite mounting interest in aquatic behavioural ecotoxicology studies, there is, however, a considerable paucity in deciphering the mechanistic foundations underlying behavioural alterations upon exposure to pollutants. The behavioural phenotype is indeed the highest-level integrative neurobiological phenomenon, but at its core lie myriads of intertwined biochemical, cellular, and physiological processes. Therefore, the mechanisms that underlie changes in behavioural phenotypes can stem among others from dysregulation of neurotransmitter pathways, electrical signalling, and cell death of discrete cell populations in the central and peripheral nervous systems. They can, however, also be a result of toxicity to sensory organs and even metabolic dysfunctions. In this critical review, we outline why behavioural phenotyping should be the starting point that leads to actual discovery of fundamental mechanisms underlying actions of neurotoxic and neuromodulating contaminants. We highlight potential applications of the currently existing and emerging neurobiology and neurophysiology analytical strategies that should be embraced and more broadly adopted in behavioural ecotoxicology. Such strategies can provide new mechanistic discoveries instead of only observing the end sum phenotypic effects.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Australia.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | - Carola Leitner
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Machado RM, da Silva SW, Bernardes AM, Ferreira JZ. Degradation of carbendazim in aqueous solution by different settings of photochemical and electrochemical oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114805. [PMID: 35240565 DOI: 10.1016/j.jenvman.2022.114805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The present study analyzed the performance of photochemical and electrochemical techniques in the degradation and mineralization of the pesticide carbendazim (CBZ). Direct photolysis (DP), heterogeneous photocatalysis (HP), photoelectrocatalysis (PEC), and electrochemical oxidation (EO) were tested, and the influence of UV radiation, current density (j), and supporting electrolyte concentration were evaluated. The results suggest that CBZ is only degraded by DP when UV-C254nm is used. For HP, the CBZ degradation was observed both when UV-A365nm or UV-C254nm were used, which is related to the reactive oxygen species (ROS) formed by the photocatalytic activity (photon-ROS). Neither DP nor HP were able to mineralize CBZ, demonstrating its resistance to photomediated processes. For EO, regardless of the j, there were higher CBZ degradation and mineralization than those observed when using DP and HP. The increase in the supporting electrolyte concentration (Na2SO4) did not affect the levels of degradation and mineralization of CBZ. Concerning the PEC, a CBZ mineralization of 52.2% was accomplished. These findings demonstrate that the EO is the main pathway for CBZ mineralization, suggesting an additional effect of the electro-ROS on the photon-ROS and UV-C254nm. The values of mineralization, kinetics, and half-life show that PEC UV-C254nm with a j of 15 mA cm-2 was the best setting for the degradation and mineralization of CBZ. However, when the values of specific energy consumption were considered for industrial applications, the use of EO with a j of 3 mA cm-2 and 4 g L-1 of Na2SO2 becomes more attractive. The assessment of by-products formed after this best cost-efficient treatment setting revealed the presence of aromatic and aliphatic compounds from CBZ degradation. Acute phytotoxicity results showed that the presence of sodium sulfate can be a representative factor regarding the toxicity of samples treated in electrochemical systems.
Collapse
Affiliation(s)
- R M Machado
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Ps-graduao em Engenharia de Minas, Metalrgica e de Materiais (PPGE3M), Av. Bento Gonalves, 9500, Porto Alegre, RS, Brazil
| | - S W da Silva
- UFRGS - Instituto de Pesquisas Hidráulicas (IPH), Programa de Pós-graduação em Recursos Hídricos e Saneamento Ambiental, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
| | - A M Bernardes
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Ps-graduao em Engenharia de Minas, Metalrgica e de Materiais (PPGE3M), Av. Bento Gonalves, 9500, Porto Alegre, RS, Brazil
| | - J Z Ferreira
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Ps-graduao em Engenharia de Minas, Metalrgica e de Materiais (PPGE3M), Av. Bento Gonalves, 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Men L, Zhang Y, Li K, Li Z, Li C, Zhang X, Gong X, Fang L. Metabolism and pharmacokinetics of mebendazole in Japanese pufferfish ( Takifugu rubripes). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:912-924. [PMID: 35442868 DOI: 10.1080/19440049.2022.2052974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As a typical and broad-spectrum benzimidazole, mebendazole (MBZ) has long been used in human and veterinary medicine to treat parasitic infestations, and is widely employed in the aquaculture of Japanese pufferfish (Takifugu rubripes). However, there have been no studies examining the pharmacokinetic characteristics of MBZ in Japanese pufferfish. Furthermore, the presence of MBZ and its metabolites in animal-derived raw food represents a notable safety concern. Here, we investigated the metabolism of MBZ using a UPLC-Q-TOF system. Additionally, we evaluated the pharmacokinetics of MBZ and two metabolites, 2-amino-5(6)-benzoylbenzimidazole (MBZ-NH2) and 5-hydroxymebendazole (MBZ-OH), in Japanese pufferfish following intramuscular injection of 20 mg/kg MBZ. We detected three metabolites of MBZ (M1-M3), among which, 2-amino-5(6)-(a-hydroxybenzyl) benzimidazole (M3) was detected in an aquatic animal for the first time. The plasma dispositions of MBZ, MBZ-NH2, and MBZ-OH were characterized by low plasma clearance, medium distribution volume, and long terminal half-life. Moreover, these compounds were widely distributed in the muscle, from which they were rapidly cleared. The pharmacokinetics and metabolism of mebendazole in Japanese pufferfish are described for the first time in this study. Our findings provide a basis for the rational application of MBZ in Japanese pufferfish farming and contribute to our understanding of the metabolism of MBZ in cultured fish.
Collapse
Affiliation(s)
- Lei Men
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuhan Zhang
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Keke Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Zhongyu Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Chunbin Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Xueyuan Zhang
- Department of Food Control, Chaozhou Institute for Food and Drug Control, Chaozhou, China
| | - Xiaojie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Linlin Fang
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Zhu M, Tang F, Huo N, He J, Gu S. Development of a sensitive chicken IgY-based enzyme-linked immunosorbent assay for detection of mebendazole in pork and mutton. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:47-53. [PMID: 34978273 DOI: 10.1080/03601234.2021.2022944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chicken egg yolk IgY has proven to be qualified for analysis of targets in immunoassays. In order to explore the feasibility of chicken IgY-based ELISA for detection of mebendazole (MEB), the chicken IgY against MEB was generated in the laying hens. An enzyme-linked immunosorbent assay (ELISA) based on chicken IgY was developed for detection of MEB with a half-maximum signal inhibition concentration (IC50) of 3.65 ng mL-1 and a limit of detection of 0.25 ng mL-1. The assay showed a lower cross reactivity (less than 1%) with other structures analogues (except amino-MEB with the values of 70.7%). The average recoveries of MEB spiked in pork and mutton muscle samples ranged from 93.6% to 106.3% with relative standard deviation less than 8.78% and 10.85% for intra-assay and inter-assay, respectively, and agreed well with those of high-performance liquid chromatography. Our results indicate that generated IgY could be used as a robust reagent for routine screening analysis of small molecular compounds residues in food samples.
Collapse
Affiliation(s)
- Mi Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Fang Tang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Nairui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Jinxin He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Shaopeng Gu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| |
Collapse
|
8
|
Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685204. [PMID: 34336113 PMCID: PMC8315852 DOI: 10.1155/2021/6685204] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Perinatal exposure to neurotoxicants has been implicated in several neurodevelopmental disorders, including autism spectrum disorder, attention-deficit hyperactive disorder, and schizophrenia. Studies of the molecular and cellular events related to developmental neurotoxicity have identified a number of “adverse outcome pathways,” many of which share oxidative stress as a key event. Oxidative stress occurs when the balance between the production of free oxygen radicals and the activity of the cellular antioxidant system is dysregulated. In this review, we describe some of the developmental neurotoxins that target the antioxidant system and the mechanisms by which they elicit stress, including oxidative phosphorylation in mitochondria and plasma membrane redox system in rodent models. We also discuss future directions for identifying adverse outcome pathways related to oxidative stress and developmental neurotoxicity, with the goal of improving our ability to quickly and accurately screen chemicals for their potential developmental neurotoxicity.
Collapse
|
9
|
Westhoff JH, Steenbergen PJ, Thomas LSV, Heigwer J, Bruckner T, Cooper L, Tönshoff B, Hoffmann GF, Gehrig J. In vivo High-Content Screening in Zebrafish for Developmental Nephrotoxicity of Approved Drugs. Front Cell Dev Biol 2020; 8:583. [PMID: 32754590 PMCID: PMC7366291 DOI: 10.3389/fcell.2020.00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Despite widespread drug exposure, for example during gestation or in prematurely born children, organ-specific developmental toxicity of most drugs is poorly understood. Developmental and functional abnormalities are a major cause of kidney diseases during childhood; however, the potential causal relationship to exposure with nephrotoxic drugs during nephrogenesis is widely unknown. To identify developmental nephrotoxic drugs in a large scale, we established and performed an automated high-content screen to score for phenotypic renal alterations in the Tg(wt1b:EGFP) zebrafish line. During early nephrogenesis, embryos were exposed to a compound library of approved drugs. After treatment, embryos were aligned within microtiter plates using 3D-printed orientation tools enabling the robust acquisition of consistent dorsal views of pronephric kidneys by automated microscopy. To qualitatively and quantitatively score and visualize phenotypes, we developed software tools for the semi-automated analysis, processing and visualization of this large image-based dataset. Using this scoring scheme, we were able to categorize compounds based on their potential developmental nephrotoxic effects. About 10% of tested drugs induced pronephric phenotypes including glomerular and tubular malformations, or overall changes in kidney morphology. Major chemical compound groups identified to cause glomerular and tubular alterations included dihydropyridine derivatives, HMG CoA reductase inhibitors, fibrates, imidazole, benzimidazole and triazole derivatives, corticosteroids, glucocorticoids, acetic acid derivatives and propionic acid derivatives. In conclusion, the presented study demonstrates the large-scale screening of kidney-specific toxicity of approved drugs in a live vertebrate embryo. The associated technology and tool-sets can be easily adapted for other organ systems providing a unique platform for in vivo large-scale assessment of organ-specific developmental toxicity or other biomedical applications. Ultimately, the presented data and associated visualization and browsing tools provide a resource for potentially nephrotoxic drugs and for further investigations.
Collapse
Affiliation(s)
- Jens H. Westhoff
- Department of Pediatrics I, University Children’s Hospital, Heidelberg, Germany
| | | | - Laurent S. V. Thomas
- Department of Pediatrics I, University Children’s Hospital, Heidelberg, Germany
- DITABIS, Digital Biomedical Imaging Systems AG, Pforzheim, Germany
- ACQUIFER Imaging GmbH, Heidelberg, Germany
| | - Jana Heigwer
- Department of Pediatrics I, University Children’s Hospital, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital, Heidelberg, Germany
| | - Georg F. Hoffmann
- Department of Pediatrics I, University Children’s Hospital, Heidelberg, Germany
| | - Jochen Gehrig
- DITABIS, Digital Biomedical Imaging Systems AG, Pforzheim, Germany
- ACQUIFER Imaging GmbH, Heidelberg, Germany
| |
Collapse
|
10
|
Guerini AE, Triggiani L, Maddalo M, Bonù ML, Frassine F, Baiguini A, Alghisi A, Tomasini D, Borghetti P, Pasinetti N, Bresciani R, Magrini SM, Buglione M. Mebendazole as a Candidate for Drug Repurposing in Oncology: An Extensive Review of Current Literature. Cancers (Basel) 2019; 11:cancers11091284. [PMID: 31480477 PMCID: PMC6769799 DOI: 10.3390/cancers11091284] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Anticancer treatment efficacy is limited by the development of refractory tumor cells characterized by increased expression and activity of mechanisms promoting survival, proliferation, and metastatic spread. The present review summarizes the current literature regarding the use of the anthelmintic mebendazole (MBZ) as a repurposed drug in oncology with a focus on cells resistant to approved therapies, including so called “cancer stem cells”. Mebendazole meets many of the characteristics desirable for a repurposed drug: good and proven toxicity profile, pharmacokinetics allowing to reach therapeutic concentrations at disease site, ease of administration and low price. Several in vitro studies suggest that MBZ inhibits a wide range of factors involved in tumor progression such as tubulin polymerization, angiogenesis, pro-survival pathways, matrix metalloproteinases, and multi-drug resistance protein transporters. Mebendazole not only exhibits direct cytotoxic activity, but also synergizes with ionizing radiations and different chemotherapeutic agents and stimulates antitumoral immune response. In vivo, MBZ treatment as a single agent or in combination with chemotherapy led to the reduction or complete arrest of tumor growth, marked decrease of metastatic spread, and improvement of survival. Further investigations are warranted to confirm the clinical anti-neoplastic activity of MBZ and its safety in combination with other drugs in a clinical setting.
Collapse
Affiliation(s)
| | - Luca Triggiani
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Marta Maddalo
- Department of Radiation Oncology, ASST Spedali Civili of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Marco Lorenzo Bonù
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Francesco Frassine
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Anna Baiguini
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Alessandro Alghisi
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Davide Tomasini
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy.
| | - Paolo Borghetti
- Department of Radiation Oncology, Spedali Civili of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy
| | - Nadia Pasinetti
- Radiation Oncology Service, ASST Valcamonica, 25040 Esine, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, Unit of Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | - Michela Buglione
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| |
Collapse
|
11
|
Tanaka T, Koiwa J. [Next generation zebrafish-based drug discovery and precision medicine]. Nihon Yakurigaku Zasshi 2019; 154:78-83. [PMID: 31406047 DOI: 10.1254/fpj.154.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Even after entering the era of genomic drug discovery in the 21st century, development of a breakthrough therapeutic drug (first-in-class) for intractable diseases (unmet medical needs) has been extremely difficult, but to the US FDA 62% of the approved first-in-class drugs are found by phenotypic screening. The next-generation zebrafish drug discovery enables high-throughput quantitative live in vivo phenotypic screening, and has been impacting global drug discovery strategies now. Compared to severe immunodeficient mice, zebrafish is expected to become a true individualized medical tool as a clinical ex vivo diagnostic system because of the high efficiency and speed of engraftment of patient-derived cancer xenotransplantation. Phenomics-based personalized medicine with the patient-derived cancer xenograft zebrafish in addition to conventional omics platform of individualized medicine is a true next-generation precision medicine to utilize for selection of therapeutic drugs and decision of their doses for the patient, and emerging paradigm shift is realizing in this century.
Collapse
Affiliation(s)
- Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of Medicine.,Mie University Medical Zebrafish Research Center
| | - Junko Koiwa
- Department of Systems Pharmacology, Mie University Graduate School of Medicine
| |
Collapse
|
12
|
Mebendazole Potentiates Radiation Therapy in Triple-Negative Breast Cancer. Int J Radiat Oncol Biol Phys 2018; 103:195-207. [PMID: 30196056 DOI: 10.1016/j.ijrobp.2018.08.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE The lack of a molecular target in triple-negative breast cancer (TNBC) makes it one of the most challenging breast cancers to treat. Radiation therapy (RT) is an important treatment modality for managing breast cancer; however, we previously showed that RT can also reprogram a fraction of the surviving breast cancer cells into breast cancer-initiating cells (BCICs), which are thought to contribute to disease recurrence. In this study, we characterize mebendazole (MBZ) as a drug with potential to prevent the occurrence of radiation-induced reprogramming and improve the effect of RT in patients with TNBC. METHODS AND MATERIALS A high-throughput screen was used to identify drugs that prevented radiation-induced conversion of TNBC cells into cells with a cancer-initiating phenotype and exhibited significant toxicity toward TNBC cells. MBZ was one of the drug hits that fulfilled these criteria. In additional studies, we used BCIC markers and mammosphere-forming assays to investigate the effect of MBZ on the BCIC population. Staining with propidium iodide, annexin-V, and γ-H2AX was used to determine the effect of MBZ on cell cycle, apoptosis, and double-strand breaks. Finally, the potential for MBZ to enhance the effect of RT in TNBC was evaluated in vitro and in vivo. RESULTS MBZ efficiently depletes the BCIC pool and prevents the ionizing radiation-induced conversion of breast cancer cells into therapy-resistant BCICs. In addition, MBZ arrests cells in the G2/M phase of the cell cycle and causes double-strand breaks and apoptosis. MBZ sensitizes TNBC cells to ionizing radiation in vitro and in vivo, resulting in improved tumor control in a human xenograft model of TNBC. CONCLUSIONS The data presented in this study support the repurposing of MBZ as a combination treatment with RT in patients with TNBC.
Collapse
|
13
|
Xiao X, Zhao Y, Zhou Y, Wang Z. Plasma pharmacokinetics and muscle residue dynamics of mebendazole in Carassius auratus. J Vet Pharmacol Ther 2017; 40:670-674. [PMID: 28401566 DOI: 10.1111/jvp.12398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/26/2017] [Indexed: 12/01/2022]
Abstract
Mebendazole is approved for use in aquatic animals and is widely used in Chinese aquaculture. We developed a pharmacokinetic and residue analysis for mebendazole levels in the goldfish (Carassius auratus). Plasma and muscle samples of C. auratus were taken after oral administration of 10 mg/kg mebendazole. The maximal drug plasma concentration of 0.55 mg/L was achieved at 48 hr and then declined with the elimination half-life (T1/2β ) of 7.99 hr. Administration of 10 mg/kg by oral gavage for 5 successive days resulted in a peak mebendazole concentration of 0.70 mg/kg in muscle at 96 hr after the last dose. The drug was then eliminated at a relatively slow rate from muscle with T1/2β of 68.41 hr. There was no detectable mebendazole in any muscle samples at 24 days postadministration. The AUClast in plasma and muscle was 19.42 and 105.33 mg hr/L, respectively. These data provide information for dosage recommendations and withdrawal time determinations for mebendazole use in aquariums.
Collapse
Affiliation(s)
- X Xiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhou
- College of Veterinary Medicine, Hunan Agriculture University, Changsha, China
| | - Z Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Nishimura Y. [Using zebrafish in drug discovery for nervous system disorders]. Nihon Yakurigaku Zasshi 2017; 150:88-91. [PMID: 28794304 DOI: 10.1254/fpj.150.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
15
|
Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2370252. [PMID: 28053689 PMCID: PMC5174186 DOI: 10.1155/2016/2370252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases.
Collapse
|
16
|
Ashikawa Y, Nishimura Y, Okabe S, Sasagawa S, Murakami S, Yuge M, Kawaguchi K, Kawase R, Tanaka T. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish. Front Pharmacol 2016; 7:206. [PMID: 27462272 PMCID: PMC4939524 DOI: 10.3389/fphar.2016.00206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish with another PPARα agonist, gemfibrozil, also increased expression of the mbp promoter-driven fluorescent reporter in an SREBF-dependent manner. These results suggest that activation of SREBFs by small molecular weight compounds may be a feasible therapeutic approach to stimulate myelination.
Collapse
Affiliation(s)
- Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shota Sasagawa
- Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Kawase
- Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan
| | - Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| |
Collapse
|
17
|
Kawase R, Nishimura Y, Ashikawa Y, Sasagawa S, Murakami S, Yuge M, Okabe S, Kawaguchi K, Yamamoto H, Moriyuki K, Yamane S, Tsuruma K, Shimazawa M, Hara H, Tanaka T. EP300 Protects from Light-Induced Retinopathy in Zebrafish. Front Pharmacol 2016; 7:126. [PMID: 27242532 PMCID: PMC4871856 DOI: 10.3389/fphar.2016.00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023] Open
Abstract
Exposure of rhodopsin to bright white light can induce photoreceptor cell damage and degeneration. However, a comprehensive understanding of the mechanisms underlying light-induced retinopathy remains elusive. In this study, we performed comparative transcriptome analysis of three rodent models of light-induced retinopathy, and we identified 37 genes that are dysregulated in all three models. Gene ontology analysis revealed that this gene set is significantly associated with a cytokine signaling axis composed of signal transducer and activator of transcription 1 and 3 (STAT1/3), interleukin 6 signal transducer (IL6ST), and oncostatin M receptor (OSMR). Furthermore, the analysis suggested that the histone acetyltransferase EP300 may be a key upstream regulator of the STAT1/3–IL6ST/OSMR axis. To examine the role of EP300 directly, we developed a larval zebrafish model of light-induced retinopathy. Using this model, we demonstrated that pharmacological inhibition of EP300 significantly increased retinal cell apoptosis, decreased photoreceptor cell outer segments, and increased proliferation of putative Müller cells upon exposure to intense light. These results suggest that EP300 may protect photoreceptor cells from light-induced damage and that activation of EP300 may be a novel therapeutic approach for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | | | | | | | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University Gifu, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| |
Collapse
|
18
|
Sasagawa S, Nishimura Y, Hayakawa Y, Murakami S, Ashikawa Y, Yuge M, Okabe S, Kawaguchi K, Kawase R, Tanaka T. E2F4 Promotes Neuronal Regeneration and Functional Recovery after Spinal Cord Injury in Zebrafish. Front Pharmacol 2016; 7:119. [PMID: 27242526 PMCID: PMC4860404 DOI: 10.3389/fphar.2016.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022] Open
Abstract
Mammals exhibit poor recovery after spinal cord injury (SCI), whereas non-mammalian vertebrates exhibit significant spontaneous recovery after SCI. The mechanisms underlying this difference have not been fully elucidated; therefore, the purpose of this study was to investigate these mechanisms. Using comparative transcriptome analysis, we demonstrated that genes related to cell cycle were significantly enriched in the genes specifically dysregulated in zebrafish SCI. Most of the cell cycle-related genes dysregulated in zebrafish SCI were down-regulated, possibly through activation of e2f4. Using a larval zebrafish model of SCI, we demonstrated that the recovery of locomotive function and neuronal regeneration after SCI were significantly inhibited in zebrafish treated with an E2F4 inhibitor. These results suggest that activation of e2f4 after SCI may be responsible, at least in part, for the significant recovery in zebrafish. This provides novel insight into the lack of recovery after SCI in mammals and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| | - Yuka Hayakawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| |
Collapse
|