1
|
Mezhubeinuo, Mohanta R, Bordoloi H, Verma AK, Bez G. L-proline H 2SO 4 catalyzed synthesis of novel coumarin-based spiroindolino-3,4-dihydropyrimidin-2(1H)-ones: in vitro cytotoxic assay and molecular docking study. Mol Divers 2024:10.1007/s11030-024-10878-w. [PMID: 39030285 DOI: 10.1007/s11030-024-10878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 07/21/2024]
Abstract
Development of environmentally benign catalyst systems, especially those derived from readily available nature's pool, in multicomponent synthesis, consolidates multiple facets of green chemistry. Here, an L-proline derived green acid catalyst in the form of L-proline⋅H2SO4 was developed and employed for multicomponent synthesis of coumarin-based spiroindolino-3,4-dihydropyrimidin-2(1H)-ones from the reaction of 4-hydroxycoumarin, isatin and urea/thiourea. Preliminary cytotoxicity studies showed that a couple of compounds (M5 and M6) have good cytotoxicity (40-50%) against in Dalton's Lymphoma (DL) cells while demonstrating minimal cytotoxicity (10-12%) for normal non-cancerous cell lines. Molecular docking simulations for the least and most cytotoxic compounds, M3 and M6 respectively, against nineteen tumor target proteins were carried out, and seven of them were identified to test against all the sixteen compounds. Based on the estimated docking score and inhibition constants (Ki), the interaction of the compounds with the tumor target protein, beta-hexosaminidase B (PDB ID: 1NOW) matched closely with in vitro cytotoxicity data.
Collapse
Affiliation(s)
- Mezhubeinuo
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rahul Mohanta
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Hemanta Bordoloi
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Akalesh Kumar Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, India.
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
2
|
Gowtham H, Revanasiddappa PD, Murali M, Singh SB, Abhilash M, Pradeep S, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP. Secondary metabolites of Trichoderma spp. as EGFR tyrosine kinase inhibitors: Evaluation of anticancer efficacy through computational approach. PLoS One 2024; 19:e0296010. [PMID: 38266021 PMCID: PMC10824427 DOI: 10.1371/journal.pone.0296010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
The present study explores the epidermal growth factor receptor (EGFR) tyrosine kinase inhibition efficacy of secondary metabolites in Trichoderma spp. through molecular docking, molecular dynamics (MD) simulation and MM-PBSA approach. The result of molecular docking confirmed that out of 200 metabolites screened, three metabolites such as Harzianelactone A, Pretrichodermamide G and Aspochalasin M, potentially bound with the active binding site of EGFR tyrosine kinase domain(PDB ID: 1M17) with a threshold docking score of ≤- 9.0 kcal/mol when compared with the standard EGFR inhibitor (Erlotinib). The MD simulation was run to investigate the potential for stable complex formation in EGFR tyrosine kinase domain-unbound/lead metabolite (Aspochalasin M)-bound/standard inhibitor (Erlotinib)-bound complex. The MD simulation analysis at 100 ns revealed that Aspochalasin M formed the stable complex with EGFR. Besides, the in silico predication of pharmacokinetic properties further confirmed that Aspochalasin M qualified the drug-likeness rules with no harmful side effects (viz., hERG toxicity, hepatotoxicity and skin sensitization), non-mutagenicity and favourable logBB value. Moreover, the BOILED-Egg model predicted that Aspochalasin M showed a higher gastrointestinal absorption with improved bioavailability when administered orally and removed from the central nervous system (CNS). The results of the computational studies concluded that Aspochalasin M possessed significant efficacy in binding EGFR's active sites compared to the known standard inhibitor (Erlotinib). Therefore, Aspochalasin M can be used as a possible anticancer drug candidate and further in vitro and in vivo experimental validation of Aspochalasin M of Trichoderma spp. are required to determine its anticancer potential.
Collapse
Affiliation(s)
- H.G. Gowtham
- Department of PG Studies in Biotechnology, Nrupathunga University, Bangalore, Karnataka, India
| | | | | | | | - M.R. Abhilash
- Department of Studies in Environmental Science, University of Mysore, Mysore, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| |
Collapse
|
3
|
Yu Z, Hong Y, Xie K, Fan Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods 2022; 11:2806. [PMID: 36140934 PMCID: PMC9498144 DOI: 10.3390/foods11182806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae are a kind of photoautotrophic microorganism, which are small, fast in their growth rate, and widely distributed in seawater and freshwater. They have strong adaptability to diverse environmental conditions and contain various nutrients. Many scholars have suggested that microalgae can be considered as a new food source, which should be developed extensively. More importantly, in addition to containing nutrients, microalgae are able to produce a great number of active compounds such as long-chain unsaturated fatty acids, pigments, alkaloids, astaxanthin, fucoidan, etc. Many of these compounds have been proven to possess very important physiological functions such as anti-oxidation, anti-inflammation, anti-tumor functions, regulation of the metabolism, etc. This article aimed to review the physiological functions and benefits of the main microalgae-derived bioactive molecules with their physiological effects.
Collapse
Affiliation(s)
- Zhou Yu
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| | - Yan Hong
- Pharmacological Research Laboratory, Jiangxi Institution for Drug Control, Nanchang 330006, China
| | - Kun Xie
- Medical College, Nanchang Institution of Technology, Nanchang 330006, China
| | - Qingsheng Fan
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Kumar M, Goswami M, Nayak SK, Gireesh-Babu P, Chaudhari A. Evaluation of the Binding Affinity of a Gonadotropin-Releasing Hormone
Analogue (GnRH-a) Buserelin through In silico and In vivo Testing in
Clarias magur. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210426090916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:
To evaluate the binding affinity and biological potency of gonadotropin-releasing
hormone analogue (GnRHa) Buserelin (C60H86N16O13) based on in silico and in vivo testing for induced
breeding in Clarias magur.
Background:
Many attempts have been made to induce C. magur, but encouraging results have
not yet been achieved. Hence, it is the need of the hour to find out more potent analogues or other
bio-molecules for induced breeding in C. magur to facilitate sustainable aquaculture.
Objective:
To determine the binding affinity of C. magur GnRH receptor through in silico and to
validate it for induced breeding of C. magur.
Methods:
Buserelin (C60H86N16O13) was selected as the potential GnRHa after screening several peptides
for their binding energy with the C. magur GnRH receptor. The induced breeding trial was set
up at ICAR-CIFE Powarkheda Centre, M.P. India, and Buserelin was administered in different doses
to the brooders along with the dopamine inhibitor domperidone. The standard treatment with the
commercial salmon GnRH (sGnRH) analogue Ovaprim® (Syndel, USA) was used as the control.
Results:
The 3-D structure of C. magur GnRH receptor was generated using MODELLER software.
Molecular docking studies revealed the binding preference of the receptor as chicken (c) Gn-
RH-II > Buserelin > sGnRH > catfish (cf) GnRH > human (m) GnRH. Though Buserelin showed
better binding affinity compared to sGnRH, induced breeding experiments with magur showed similar
performance of the ligands at the equivalent dose of 20 μg/kg B.W., but the spontaneous release
of milt from the males was not observed in both cases. Significantly better reproductive parameters
were recorded with Buserelin at the dose of 30 μg/kg B.W.
Conclusion:
The study revealed that that the GnRHa Buserelin can be used as an effective inducing
agent for breeding in C. magur.
Collapse
Affiliation(s)
- Mukesh Kumar
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai - 400 061 India
| | - Mukunda Goswami
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai - 400 061 India
| | - Sunil Kumar Nayak
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai - 400 061 India
| | - P. Gireesh-Babu
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai - 400 061 India
| | - Aparna Chaudhari
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai - 400 061 India
| |
Collapse
|
5
|
Mechanism of streptomyces albidoflavus STV1572a derived 1-heneicosanol as an inhibitor against squalene epoxidase of Trichophyton mentagrophytes. Microb Pathog 2021; 154:104853. [PMID: 33811987 DOI: 10.1016/j.micpath.2021.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
An increase in incidences of tinea infections paves the way to discover the novel antifungal drugs from unexplored natural resources. The quality of life in patients with tinea infection may be affected by different factors, including morbidity, length of illness, social and demographic factors. The present investigation explores the functional principle of a bioactive compound isolated from actinomycetes, S. albidoflavus STV1572a by in-silico and in-vitro studies. In continuation of our previous reports on the antidermatophytic potential of S. albidoflavus STV1572a, this study progresses with the in-silico molecular docking study of the seven GC-MS discovered ligands, and six dermatophytic modelled targets. Through virtual screening, it was revealed that a docking score -8.8 between 1-heneicosanol and squalene epoxidase favored partially in understanding the mode of action. Further validation of in-silico study was performed by a sterol quantification assay which confirmed the antidermatophytic mechanism of 1-heneicosanol. Taken together, the evidence from this study suggests that 1-heneicosanol has a potential antidermatophytic compound and can be considered for dermatophytic treatment.
Collapse
|
6
|
Review of Natural Compounds for the Management and Prevention of Lymphoma. Processes (Basel) 2020. [DOI: 10.3390/pr8091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lymphoma is a type of blood cancer that can be categorized into two types-Hodgkin lymphoma (HL) and Non-Hodgkin lymphoma (NHL). A total of 509,590 and 79,990 cases of NHL and HL were newly diagnosed in 2018, respectively. Although conventional therapy has stridden forward over recent decades, its adverse effects are still a hurdle to be solved. Thus, to help researchers develop better lymphoma treatment, this study aims to review the systematic anticancer data for natural products and their compounds. A variety of natural products showed anticancerous effects on lymphoma by regulation of intracellular mechanisms including apoptosis as well as cell cycle arrest. As these results shed light on the potential to substitute conventional therapy with natural products, it may become a promising strategy for lymphoma treatment in the near future.
Collapse
|
7
|
Niveshika, Maurya SK, Tiwari B, Chakraborty S, Verma E, Mishra R, Mishra AK. Cyanobacterial bioactive compound EMTAHDCA recovers splenomegaly, affects protein profile of E. coli and spleen of lymphoma bearing mice. Mol Biol Rep 2019; 46:2617-2629. [DOI: 10.1007/s11033-019-04659-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
|