1
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
2
|
Mohammed A, Ramadan A, Elnour AA, Saeed AAAM, Al Mazrouei N, Alsulami FT, Alqarni YS, Menon V, Amoodi AA, Abdalla SF. Luteolin as potential treatment for Huntington's disease: Insights from a transgenic mouse model. CNS Neurosci Ther 2024; 30:e70025. [PMID: 39228080 PMCID: PMC11371662 DOI: 10.1111/cns.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS The study aimed to evaluate the potential benefits of luteolin treatment in Huntington's disease (HD), an inherited progressive neurodegenerative disorder. METHODS HD N171-82Q transgenic and WT mice received luteolin or vehicle for treatment at 6 weeks of age. The mice's body weight changes and survival rates were monitored throughout the study, and a series of motor functional tests were conducted. Serum level of the marker NfL was also determined. Immunohistochemical staining and western blotting were utilized to assess the expression of huntingtin aggregates. RESULTS Luteolin treatment enhanced survival and prevented weight loss in HD mice compared to the vehicle-treated HD group. Furthermore, the luteolin-treated HD mice exhibited enhanced motor coordination and balance and significantly reduced motor dysfunction. Also, luteolin decreased serum NfL levels in HD mice. Notably, the accumulation of huntingtin aggregates was significantly reduced in the brain's cortex, hippocampus, and striatum of luteolin-treated HD mice compared to the vehicle-treated HD group. CONCLUSION Luteolin holds promise as a therapeutic agent for improving survival outcomes, managing motor dysfunction, and reducing huntingtin aggregates in HD. The findings are of significance as currently, there are no approved therapeutic interventions that reverse HD pathology or slow down its progression.
Collapse
Affiliation(s)
- Abuelnor Mohammed
- Department of Basic Medical Sciences, College of Medicine-Dar Al Uloom University, Riyadh, Saudi Arabia
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Azza Ramadan
- College of Pharmacy, Al Ain University, Abu Dhbai, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Asim Ahmed Elnour
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- Program of Clinical Pharmacy, College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ali Awadallah Ali Mohamed Saeed
- Department of Pharmacology, Faculty of Clinical and Industrial Pharmacy, National University, Mycetoma Research Center, Khartoum, Sudan
| | - Nadia Al Mazrouei
- Department of Pharmacy Practice and Pharmacotherapeutics, Faculty of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Fahad T Alsulami
- Clinical Pharmacy Department, College of Pharmacy, Taif university, Taif, Saudi Arabia
| | - Yousef Saeed Alqarni
- Department of pharmacy practice, college of pharmacy, Imam abdulrahman bin faisal university, Dammam, Saudi Arabia
| | - Vineetha Menon
- Department of Pharmacy Practice, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Abdulla Al Amoodi
- Ambulatory Healthcare Services, Academic Affairs, Abu Dhabi Health Services (SEHA), Abu Dhabi, United Arab Emirates
| | - Sami Fatehi Abdalla
- Clinical Department, College of Medicine, Almaarefa University (Diriyah), Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Srivastava V, Gross E. Mitophagy-promoting agents and their ability to promote healthy-aging. Biochem Soc Trans 2023; 51:1811-1846. [PMID: 37650304 PMCID: PMC10657188 DOI: 10.1042/bst20221363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers' convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| | - Einav Gross
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| |
Collapse
|
4
|
König A, Sadova N, Dornmayr M, Schwarzinger B, Neuhauser C, Stadlbauer V, Wallner M, Woischitzschläger J, Müller A, Tona R, Kofel D, Weghuber J. Combined acid hydrolysis and fermentation improves bioactivity of citrus flavonoids in vitro and in vivo. Commun Biol 2023; 6:1083. [PMID: 37880345 PMCID: PMC10600125 DOI: 10.1038/s42003-023-05424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Many bioactive plant compounds, known as phytochemicals, have the potential to improve health. Unfortunately, the bioavailability and bioactivity of phytochemicals such as polyphenolic flavonoids are reduced due to conjugation with sugar moieties. Here, we combine acid hydrolysis and tailored fermentation by lactic acid bacteria (Lactiplantibacillus plantarum) to convert the biologically less active flavonoid glycosides hesperidin and naringin into the more active aglycones hesperetin and naringenin. Using a comprehensive approach, we identify the most effective hydrolysis and fermentation conditions to increase the concentration of the aglycones in citrus extracts. The higher cellular transport and bioactivity of the biotransformed citrus extract are also demonstrated in vitro and in vivo. Superior antioxidant, anti-inflammatory and cell migration activities in vitro, as well as intestinal barrier protecting and antioxidant activities in Drosophila melanogaster are identified. In conclusion, the presented biotransformation approach improves the bioactivity of flavonoids, clearly traced back to the increase in aglycone content.
Collapse
Affiliation(s)
- Alice König
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Nadiia Sadova
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
| | - Marion Dornmayr
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Bettina Schwarzinger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Cathrina Neuhauser
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
| | - Verena Stadlbauer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Melanie Wallner
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Jakob Woischitzschläger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
| | - Andreas Müller
- TriPlant AG, Industriestrasse 17, Buetzberg, 4922, Switzerland
| | - Rolf Tona
- TriPlant AG, Industriestrasse 17, Buetzberg, 4922, Switzerland
| | - Daniel Kofel
- TriPlant AG, Industriestrasse 17, Buetzberg, 4922, Switzerland
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria.
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria.
| |
Collapse
|
5
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Manes P, Calabrese V. Naringin commonly acts via hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:164728. [PMID: 37295528 DOI: 10.1016/j.scitotenv.2023.164728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The present paper provides the first integrative assessment of the capacity of naringin and its metabolite, naringenin, to induce hormetic dose responses within a broad range of experimental biomedical models. The findings indicate that these agents commonly induced protective effects that are typically mediated via hormetic mechanisms leading to biphasic dose-response relationships. The maximum protective effects are generally modest, 30-60 % greater than control group values. The range of experimental findings with these agents has been reported for models with various neurodegenerative diseases, nucleus pulpous cells (NPCs) located within intravertebral discs, several types of stem cells (i.e., bone marrow, amniotic fluid, periodontal, endothelial) as well as cardiac cells. These agents also were effective within preconditioning protocols protecting against environmental toxins such as ultraviolet radiation (UV), cadmium, and paraquat. The mechanism(s) by which the hormetic responses mediates these biphasic dose responses is complex but commonly involves the activation of nuclear factor erythroid 2-related factor (Nrf2), an increasingly recognized regulator of cellular resistance to oxidants. Nrf2 appears to play a role in controlling the basal and induced expression of an array of antioxidant response element-dependent genes to regulate oxidant exposure's physiological and pathophysiological outcomes. Hence its importance in the assessment of toxicologic and adaptive potential is likely to be significant.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
6
|
Cheng Y, Hou BH, Xie GL, Shao YT, Yang J, Xu C. Transient inhibition of mitochondrial function by chrysin and apigenin prolong longevity via mitohormesis in C. elegans. Free Radic Biol Med 2023; 203:24-33. [PMID: 37023934 DOI: 10.1016/j.freeradbiomed.2023.03.264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Mild inhibition of mitochondrial function leads to longevity. Genetic disruption of mitochondrial respiratory components either by mutation or RNAi greatly extends the lifespan in yeast, worms, and drosophila. This has given rise to the idea that pharmacologically inhibiting mitochondrial function would be a workable strategy for postponing aging. Toward this end, we used a transgenic worm strain that expresses the firefly luciferase enzyme widely to evaluate compounds by tracking real-time ATP levels. We identified chrysin and apigenin, which reduced ATP production and increased the lifespan of worms. Mechanistically, we discovered that chrysin and apigenin transiently inhibit mitochondrial respiration and induce an early ROS, and the lifespan-extending effect is dependent on transient ROS formation. We also show that AAK-2/AMPK, DAF-16/FOXO, and SKN-1/NRF-2 are required for chrysin or apigenin-mediated lifespan extension. Temporary increases in ROS levels trigger an adaptive response in a mitohormetic way, thereby increasing oxidative stress capacity and cellular metabolic adaptation, finally leading to longevity. Thus, chrysin and apigenin represent a class of compounds isolated from natural products that delay senescence and improve age-related diseases by inhibiting mitochondrial function and shed new light on the function of additional plant-derived polyphenols in enhancing health and delaying aging. Collectively, this work provides an avenue for pharmacological inhibition of mitochondrial function and the mechanism underlining their lifespan-extending properties.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bing-Hao Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Gui-Lin Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ya-Ting Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Xu P, Chen Q, Chen X, Qi H, Yang Y, Li W, Yang X, Gunawan A, Chen S, Zhang H, Shen HM, Huang D, Kennedy B, Xu L, Wu Z. Morusin and mulberrin extend the lifespans of yeast and C. elegans via suppressing nutrient-sensing pathways. GeroScience 2023; 45:949-964. [PMID: 36462128 PMCID: PMC9886792 DOI: 10.1007/s11357-022-00693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Compounds with lifespan extension activity are rare, although increasing research efforts have been invested in this field to find ways to extend healthy lifespan. By applying a yeast-based high-throughput assay to identify the chronological lifespan extension activity of mulberry extracts rapidly, we demonstrated that a group of prenylated flavones, particularly morusin and mulberrin, could extend the chronological lifespan of budding yeast via a nutrient-dependent regime by at least partially targeting SCH9. Their antiaging activity could be extended to C. elegans by promoting its longevity, dependent on the full functions of genes akt-1 or akt-2. Moreover, additional benefits were observed from morusin- and mulberrin-treated worms, including increased reproduction without the influence of worm health (pumping rate, pumping decline, and reproduction span). In the human HeLa cell model, morusin and mulberrin inhibited the phosphorylation of p70S6K1, promoted autophagy, and slowed cell senescence. The molecular docking study showed that mulberrin and morusin bind to the same pocket of p70S6K1. Collectively, our findings open up a potential class of prenylated flavones performing their antiaging activity via nutrient-sensing pathways.
Collapse
Affiliation(s)
- Pingkang Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Qimin Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Xiaoman Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Hao Qi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuyan Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Weiqi Li
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Xin Yang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Amelia Gunawan
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Shuoyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore.
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China.
| | - Brian Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Li Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China.
| | - Ziyun Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Tang Z, Wang Q, Zhao Z, Shen N, Qin Y, Lin W, Xiao Y, Yuan M, Chen H, Chen H, Bu T, Li Q, Huang L. Evaluation of fermentation properties, antioxidant capacity in vitro and in vivo, and metabolic profile of a fermented beverage made from apple and cantaloupe. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
9
|
Bulavkina EV, Kudryavtsev AA, Goncharova MA, Lantsova MS, Shuvalova AI, Kovalev MA, Kudryavtseva AV. Multifaceted Nothobranchius. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1563-1578. [PMID: 36717447 DOI: 10.1134/s0006297922120136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Annual killifish of the genus Nothobranchius are seeing a rapid increase in scientific interest over the years. A variety of aspects surrounding the egg-laying Cyprinodontiformes is being extensively studied, including their aging. Inhabiting drying water bodies of Africa rarely allows survival through more than one rainy season for the Nothobranchius populations. Therefore, there is no lifespan-related bias in natural selection, which has ultimately led to the decreased efficiency of DNA repair system. Aging of the Nothobranchius species is studied both under normal conditions and under the influence of potential geroprotectors, as well as genetic modifications. Most biogerontological studies are conducted using the species Nothobranchius furzeri (GRZ isolate), which has a lifespan of 3 to 7 months. However, the list of model species of Nothobranchius is considerably wider, and the range of advanced research areas with their participation extends far beyond gerontology. This review summarizes the most interesting and promising topics developing in the studies of the fish of Nothobranchius genus. Both classical studies related to lifespan control and rather new ones are discussed, including mechanisms of diapause, challenges of systematics and phylogeny, evolution of sex determination mechanisms, changes in chromosome count, occurrence of multiple repeated DNA sequences in the genome, cognitive and behavioral features and social stratification, as well as methodological difficulties in working with Nothobranchius.
Collapse
Affiliation(s)
- Elizaveta V Bulavkina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Kudryavtsev
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Margarita A Goncharova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Margarita S Lantsova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasija I Shuvalova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Kovalev
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna V Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
10
|
Moskalev A, Guvatova Z, Lopes IDA, Beckett CW, Kennedy BK, De Magalhaes JP, Makarov AA. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol Metab 2022; 33:266-280. [PMID: 35183431 DOI: 10.1016/j.tem.2022.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022]
Abstract
Geroprotectors slow down aging and promote healthy longevity in model animals. Although hundreds of compounds have been shown to extend the life of laboratory model organisms, clinical studies on potential geroprotectors are exceedingly rare, especially in healthy elders. This review aims to classify potential geroprotectors based on the mechanisms by which they influence aging. These pharmacological interventions can be classified into the following groups: those that prevent oxidation; proteostasis regulators; suppressors of genomic instability; epigenetic drugs; those that preserve mitochondrial function; inhibitors of aging-associated signaling pathways; hormetins; senolytics/senostatics; anti-inflammatory drugs; antifibrotic agents; neurotrophic factors; factors preventing the impairment of barrier function; immunomodulators; and prebiotics, metabiotics, and enterosorbents.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; Institute of Biology of the Federal Research Center of Komi Science Center, Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya Street, Syktyvkar 167982, Russia.
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ines De Almeida Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Charles W Beckett
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Singapore Institute of Clinical Sciences, A*STAR, Singapore
| | - Joao Pedro De Magalhaes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
11
|
Maitra U, Stephen C, Ciesla LM. Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases. J Pharm Biomed Anal 2022; 210:114553. [PMID: 34968995 PMCID: PMC8792363 DOI: 10.1016/j.jpba.2021.114553] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. In fact, many currently approved drugs originated from compounds that were first identified in nature. Chemical diversity of natural compounds cannot be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate regulatory protein targets and can be considered evolutionarily-optimized drug-like molecules. Despite this, many pharmaceutical companies have reduced or eliminated their natural product discovery programs in the last two decades. Screening natural products for pharmacologically active compounds is a challenging task that requires high resource commitment. Novel approaches at the early stage of the drug discovery pipeline are needed to allow for rapid screening and identification of the most promising molecules. Here, we review the possible evolutionary roots for drug-like characteristics of numerous natural compounds. Since many of these compounds target evolutionarily conserved cellular signaling pathways, we propose novel, early-stage drug discovery approaches to identify drug candidates that can be used for the potential prevention and treatment of neurodegenerative diseases. Invertebrate in vivo animal models of neurodegenerative diseases and innovative tools used within these models are proposed here as a screening funnel to identify new drug candidates and to shuttle these hits into further stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cayman Stephen
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
12
|
Wongchum N, Dechakhamphu A. Xanthohumol prolongs lifespan and decreases stress-induced mortality in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:108994. [PMID: 33549830 DOI: 10.1016/j.cbpc.2021.108994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 11/23/2022]
Abstract
Aging is a significant risk factor that links to the genesis of human diseases. The capacity to scavenge free radicals and adapt to various stresses is essential for expanding living organisms' lifespan. The evidences on the promotion of longevity by dietary supplementation are growing. Drosophila or fruit fly is one of the most effective models for the evaluation of anti-aging compounds. Xanthohumol (XN) is a potential bioactive substance for the prevention and treatment of many diseases. The previous studies have reported its potent activities as antioxidant, anticancer, anti-inflammatory, antiviral, antibacterial antiplasmodial, and antiobesity. In this study, the effect of XN supplementation on the lifespan extension was investigated in Drosophila melanogaster. The effects of XN on the improvement of the recovery from cold and heat shock, the resistance to starvation stress, and free radical-induced oxidative stress in XN-treated flies were also evaluated. Results showed that supplementation with XN at 0.5 mg/mL diet extended the mean lifespan by 14.89%. This was consistent with a significant improvement of locomotor activity of the Drosophila fed with an XN-mixed diet compared with those fed with a control diet. XN supplementation significantly increased the antioxidant enzyme activities at both 25 and 40 days. Drosophila treated with XN exhibited increased survival after exposure to hydrogen peroxide and paraquat. Finally, XN supplementation improved the recovery from cold and heat shock, the resistance to starvation stress, and acetic acid-induced stress. The present study shows that dietary supplementation with XN revealed the longevity effect and ameliorated stress-induced mortality in Drosophila.
Collapse
Affiliation(s)
- Nattapong Wongchum
- Biology Program, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Ananya Dechakhamphu
- Thai Traditional Medicine Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand.
| |
Collapse
|
13
|
Tower J, Pomatto LCD, Davies KJA. Sex differences in the response to oxidative and proteolytic stress. Redox Biol 2020; 31:101488. [PMID: 32201219 PMCID: PMC7212483 DOI: 10.1016/j.redox.2020.101488] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Sex differences in diseases involving oxidative and proteolytic stress are common, including greater ischemic heart disease, Parkinson disease and stroke in men, and greater Alzheimer disease in women. Sex differences are also observed in stress response of cells and tissues, where female cells are generally more resistant to heat and oxidative stress-induced cell death. Studies implicate beneficial effects of estrogen, as well as cell-autonomous effects including superior mitochondrial function and increased expression of stress response genes in female cells relative to male cells. The p53 and forkhead box (FOX)-family genes, heat shock proteins (HSPs), and the apoptosis and autophagy pathways appear particularly important in mediating sex differences in stress response.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA.
| | - Laura C D Pomatto
- National Institute on General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin J A Davies
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, USA
| |
Collapse
|
14
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
15
|
Kharat P, Sarkar P, Mouliganesh S, Tiwary V, Priya VBR, Sree NY, Annapoorna HV, Saikia DK, Mahanta K, Thirumurugan K. Ellagic acid prolongs the lifespan of Drosophila melanogaster. GeroScience 2019; 42:271-285. [PMID: 31786733 DOI: 10.1007/s11357-019-00135-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Wild-type Canton-S flies of Drosophila melanogaster were treated with ellagic acid at 100 μM and 200 μM concentrations. Longevity assay showed male flies fed with 200 μM ellagic acid displayed longer mean lifespan and maximum lifespan than control flies. Female flies fed with 200 μM ellagic acid laid less number of eggs than control. The eclosion time was less in female flies fed with 200 μM ellagic acid. Ellagic acid fed female flies performed better than male flies and control flies for heat shock tolerance and starvation stress. Male flies treated with 100 μM ellagic acid recovered faster from cold shock compared with control flies. Male and female flies treated with ellagic acid displayed increased survival following exposure to 5% hydrogen peroxide. Gene expression studies displayed upregulated expressions of CAT, dFOXO, ATG1, and SOD2 in ellagic acid-treated male flies, and upregulated expressions of dFOXO, CAT, and SOD2 in ellagic acid-treated female flies. Results from these studies show the pro-longevity effect of ellagic acid on Drosophila melanogaster.
Collapse
Affiliation(s)
- Priyanka Kharat
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Priyanka Sarkar
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - S Mouliganesh
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Vaibhav Tiwary
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - V B Ramya Priya
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - N Yamini Sree
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - H Vinu Annapoorna
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Diganta K Saikia
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Kaustav Mahanta
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Kavitha Thirumurugan
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
16
|
Moliner C, Barros L, Dias MI, Reigada I, Ferreira ICFR, López V, Langa E, Rincón CG. Viola cornuta and Viola x wittrockiana: Phenolic compounds, antioxidant and neuroprotective activities on Caenorhabditis elegans. J Food Drug Anal 2019; 27:849-859. [PMID: 31590756 PMCID: PMC9306981 DOI: 10.1016/j.jfda.2019.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 11/29/2022] Open
Abstract
Different Viola species are known for their traditional use as analgesic, antitussive, febrifuge, hipnotic, analgesic and anti-inflammatory medicinal agents. Additionally, they are considered edible flowers in certain cultures. Thus, the aim of this work was to characterize the phenolic composition and to assess the neuroprotective properties of Viola cornuta and Viola x wittrockiana using in vitro and in vivo methodologies with Caenorhabditis elegans as model. The identification of the phenolic compounds was carried out with a LC-DAD-ESI/MSn. The antioxidant activity of the extracts was determined in vitro using Folin-Ciocalteu, DPPH and FRAP assays and in vivo with a juglone-induced oxidative stress in C. elegans. The neuroprotective properties were evaluated measuring the ability to inhibit CNS enzymes (MAO A, AChE), and the capability to avoid paralyzing the C. elegans CL4176, an Alzheimer disease model. The phenolic content was higher in V. x wittrockiana, being quercetin-3-O-(6-O-rhamnosylglucoside)-7-O-rhamnoside the predominant compound in the extract, which also exhibited a stronger antioxidant capacity in vitro and a higher response to lethal oxidative stress on C. elegans than V. cornuta. Only V. x wittrockiana showed inhibitory effect on CNS enzymes, such as acetylcholinesterase and monoamine oxidase A, but both had protective effect against the paralysis of C. elegans. These findings suggest that the studied V. cornuta and V. x wittrockiana could be interesting candidates for age related neurodegenerative disorder associated with oxidative stress.
Collapse
Affiliation(s)
- Cristina Moliner
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Inés Reigada
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830, Villanueva de Gállego, Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013, Zaragoza, Spain
| | - Elisa Langa
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Carlota Gómez Rincón
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830, Villanueva de Gállego, Zaragoza, Spain.
| |
Collapse
|
17
|
Moskalev A, Proshkina E, Zhavoronkov A, Shaposhnikov M. Effects of unpaired 1 gene overexpression on the lifespan of Drosophila melanogaster. BMC SYSTEMS BIOLOGY 2019; 13:16. [PMID: 30836998 PMCID: PMC6399815 DOI: 10.1186/s12918-019-0687-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background The JAK/STAT signaling pathway is involved in many aging-related cellular functions. However, effects of overexpression of genes controlling JAK/STAT signal transduction on longevity of model organisms have not been studied. Here we evaluate the effect of overexpression of the unpaired 1 (upd1) gene, which encodes an activating ligand for JAK/STAT pathway, on the lifespan of Drosophila melanogaster. Results Overexpression of upd1 in the intestine caused a pronounced shortening of the median lifespan by 54.1–18.9%, and the age of 90% mortality by 40.9–19.1% in males and females, respectively. In fat body and in nervous system of male flies, an induction of upd1 overexpression increased the age of 90% mortality and median lifespan, respectively. An increase in upd1 expression enhanced mRNA levels of the JAK/STAT target genes domeless and Socs36E. Conclusions Conditional overexpression of upd1 in different tissues of Drosophila imago induces pro-aging or pro-longevity effects in tissue-dependent manner. The effects of upd1 overexpression on lifespan are accompanied by the transcription activation of genes for the components of JAK/STAT pathway.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Institute of Biology, Komi Scientific Center, Ural Division, Russian Academy of Sciences, Syktyvkar, 167982, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| | - Ekaterina Proshkina
- Institute of Biology, Komi Scientific Center, Ural Division, Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | | | - Mikhail Shaposhnikov
- Institute of Biology, Komi Scientific Center, Ural Division, Russian Academy of Sciences, Syktyvkar, 167982, Russia
| |
Collapse
|
18
|
Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci Lett 2019; 692:90-99. [DOI: 10.1016/j.neulet.2018.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 11/20/2022]
|