1
|
Li J, Cao J, Yan C, Gong X. TGF-α/EGFR signaling promotes lipopolysaccharide-induced abnormal elastin deposition and alveolar simplification. Exp Cell Res 2024; 437:113997. [PMID: 38508328 DOI: 10.1016/j.yexcr.2024.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by shortened secondary septa and fewer, larger alveoli. Elastin deposition to the distal tips of the secondary septa is critical for elongation of the secondary septa. Alveolar myofibroblasts, which are thought to migrate to the septal tips during alveolarization, are mainly responsible for elastin production and deposition. Antenatal exposure to inflammation induces abnormal elastin deposition, thereby increasing the risk of developing BPD. Here, we found that lipopolysaccharide (LPS) significantly increased the expression of transforming growth factor-α (TGF-α) in an LPS-induced rat model of BPD and in LPS-treated human pulmonary epithelial cells (BEAS-2B). In addition, in vitro experiments suggested that LPS upregulated TGF-α expression via toll-like receptor 4 (TLR4)/tumor necrosis factor α-converting enzyme (TACE) signaling. Increased TGF-α levels via its receptor epidermal growth factor receptor (EGFR)-induced lysyl oxidase (LOX) overactivation and cell division cycle 42 (Cdc42) activity inhibition of myofibroblasts. Similarly, in vivo LOX overactivation and inhibition of Cdc42 activity were observed in the lungs of LPS-exposed pups. LOX overactivation led to abnormal elastin deposition, and inhibition of Cdc42 activity disturbed the directional migration of myofibroblasts and disrupted elastin localization. Most importantly, the EGFR inhibitor erlotinib partially rescued LOX overactivation and Cdc42 activity inhibition, and improved elastin deposition and alveolar development in antenatal LPS-treated rats. Taken together, our data suggest that TGF-α/EGFR signaling is critically involved in the regulation of elastin deposition and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China.
| | - Jian Cao
- Department of Respiratory Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China
| | - Chongbing Yan
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China.
| |
Collapse
|
2
|
Wu X, Li X, Wang L, Bi X, Zhong W, Yue J, Chin YE. Lysine Deacetylation Is a Key Function of the Lysyl Oxidase Family of Proteins in Cancer. Cancer Res 2024; 84:652-658. [PMID: 38194336 DOI: 10.1158/0008-5472.can-23-2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Mammalian members of the lysyl oxidase (LOX) family of proteins carry a copper-dependent monoamine oxidase domain exclusively within the C-terminal region, which catalyzes ε-amine oxidation of lysine residues of various proteins. However, recent studies have demonstrated that in LOX-like (LOXL) 2-4 the C-terminal canonical catalytic domain and N-terminal scavenger receptor cysteine-rich (SRCR) repeats domain exhibit lysine deacetylation and deacetylimination catalytic activities. Moreover, the N-terminal SRCR repeats domain is more catalytically active than the C-terminal oxidase domain. Thus, LOX is the third family of lysine deacetylases in addition to histone deacetylase and sirtuin families. In this review, we discuss how the LOX family targets different cellular proteins for deacetylation and deacetylimination to control the development and metastasis of cancer.
Collapse
Affiliation(s)
- Xingxing Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xue Li
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Luwei Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Xianxia Bi
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jicheng Yue
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
3
|
Cao L, Zhong J, Liu Z, Jiang J, Zhu C, Liu F, Wang B. Increased LOXL2 expression is related to poor prognosis in lung squamous cell carcinoma. J Thorac Dis 2024; 16:581-592. [PMID: 38410543 PMCID: PMC10894394 DOI: 10.21037/jtd-23-1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
Background The lysyl oxidate-like (LOXL) family was reported to be involved in the process of cancer development. However, the prognostic value of LOXL in lung cancer is unknown. We aimed to study the expression pattern and prognostic value of LOXL family members in lung squamous cell carcinoma (LUSC). Methods The Wilcoxon test and logistic regression analysis were used to study the expression level of LOXLs and its correlation with clinical characteristics. The Kaplan-Meier method and Cox regression analysis were performed to estimate the correlation of LOXsL expression with the survival of LUSC patients. Receiver operator characteristic (ROC) curves were plotted, and areas under the curves (AUCs) were calculated to estimate the diagnostic and prognostic power of LOXL. Cell Counting Kit-8 (CCK-8) assays, wound healing assays and Transwell assays were used to estimate the impact of LOXL2 on LUSC cells. Results LOXL1 and LOXL2 expression was upregulated in LUSC tissues (P<0.001). LOXL1 and LOXL2 showed high diagnostic power in LUSC patients, with AUCs of 0.784 and 0.751, respectively. Patients with high LOXL2 expression levels showed poor overall survival (OS) (P=0.019) and progression-free survival (PFS) (P=0.015). High LOXL2 expression was an independent prognostic factor for poor survival (P=0.026). Inhibition of LOXL2 suppressed proliferation, migration and invasion in LUSC cell lines. Conclusions Increased LOXL2 was related to poor survival in LUSC. LOXL2 may be a potential prognostic biomarker and therapeutic target in LUSC.
Collapse
Affiliation(s)
- Lei Cao
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Jian Zhong
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Zicheng Liu
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Jie Jiang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Chenyao Zhu
- Shenzhen Yuce Biotechnology Co., Ltd., Shenzhen, China
| | - Feng Liu
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Bo Wang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Xi JJ, Cao Y, He RY, Zhang JK, Zhao YM, Tong Q, Bao JF, Dong YC, Zhuang RX, Huang JS, Chen Y, Liu SR. Design, Synthesis and Biological Evaluation of Glycosylated Derivatives of Silibinin as Potential Anti-Tumor Agents. Drug Des Devel Ther 2023; 17:2063-2076. [PMID: 37457888 PMCID: PMC10349574 DOI: 10.2147/dddt.s404036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Objective Silibinin, a natural product extracted from the seeds of the Silybum marianum, is versatile with various pharmacological effects. However, its clinical application was strongly hampered by its low bioavailability and poor water solubility. Herein, a series of glycosylated silibinin derivatives were identified as novel anti-tumor agents. Materials and Methods The cell viability was evaluated by CCK8 assay. Furthermore, cell apoptosis and cell cycle progression were tested by flow cytometry. In addition, the pharmacokinetic assessment of compound 15 and silibinin through intravenous administration (i.v., 2 mg/kg) to ICR mice were performed. Results The synthesized compounds showed better water solubilities than silibinin. Among them, compound 15 exhibited inhibitory activity against DU145 cells with IC50 value of 1.37 ± 0.140 μM. Moreover, it arrested cell cycle at G2/M phase and induced apoptosis in DU145 cells. Additionally, compound 15 also displayed longer half-life (T1/2 = 128.3 min) in liver microsomes than that of silibinin (T1/2 = 82.5 min) and appropriate pharmacokinetic parameters in mice. Conclusion Overall, glycosylation of silibinin would be a valid strategy for the development of silibinin derivatives as anti-tumor agents.
Collapse
Affiliation(s)
- Jian-Jun Xi
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yu Cao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ruo-Yu He
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jian-Kang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, People’s Republic of China
| | - Yan-Mei Zhao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qiao Tong
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jian-Feng Bao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yi-Chen Dong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Rang-Xiao Zhuang
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jin-Song Huang
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yongping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzou, People’s Republic of China
| | - Shou-Rong Liu
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Hou X, Du H, Deng Y, Wang H, Liu J, Qiao J, Liu W, Shu X, Sun B, Liu Y. Gut microbiota mediated the individualized efficacy of Temozolomide via immunomodulation in glioma. J Transl Med 2023; 21:198. [PMID: 36927689 PMCID: PMC10018922 DOI: 10.1186/s12967-023-04042-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the preferred chemotherapy strategy for glioma therapy. As a second-generation alkylating agent, TMZ provides superior oral bio-availability. However, limited response rate (less than 50%) and high incidence of drug resistance seriously restricts TMZ's application, there still lack of strategies to increase the chemotherapy sensitivity. METHODS Luci-GL261 glioma orthotopic xenograft model combined bioluminescence imaging was utilized to evaluate the anti-tumor effect of TMZ and differentiate TMZ sensitive (S)/non-sensitive (NS) individuals. Integrated microbiomics and metabolomics analysis was applied to disentangle the involvement of gut bacteria in TMZ sensitivity. Spearman's correlation analysis was applied to test the association between fecal bacteria levels and pharmacodynamics indices. Antibiotics treatment combined TMZ treatment was used to confirm the involvement of gut microbiota in TMZ response. Flow cytometry analysis, ELISA and histopathology were used to explore the potential role of immunoregulation in gut microbiota mediated TMZ response. RESULTS Firstly, gut bacteria composition was significantly altered during glioma development and TMZ treatment. Meanwhile, in vivo anti-cancer evaluation suggested a remarkable difference in chemotherapy efficacy after TMZ administration. Moreover, 16s rRNA gene sequencing and non-targeted metabolomics analysis revealed distinct different gut microbiota and immune infiltrating state between TMZ sensitive and non-sensitive mice, while abundance of differential gut bacteria and related metabolites was significantly correlated with TMZ pharmacodynamics indices. Further verification suggested that gut microbiota deletion by antibiotics treatment could accelerate glioma development, attenuate TMZ efficacy and inhibit immune cells (macrophage and CD8α+ T cell) recruitment. CONCLUSIONS The current study confirmed the involvement of gut microbiota in glioma development and individualized TMZ efficacy via immunomodulation, hence gut bacteria may serve as a predictive biomarker as well as a therapeutic target for clinical TMZ application.
Collapse
Affiliation(s)
- Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Jinmi Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China. .,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China. .,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
7
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:ijms232012270. [PMID: 36293126 PMCID: PMC9602794 DOI: 10.3390/ijms232012270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The lysyl oxidase (LOX) family, consisting of LOX and LOX-like proteins 1–4 (LOXL1–4), is responsible for the covalent crosslinking of collagen and elastin, thus maintaining the stability of the extracellular matrix (ECM) and functioning in maintaining connective tissue function, embryonic development, and wound healing. Recent studies have found the aberrant expression or activity of the LOX family occurs in various types of cancer. It has been proved that the LOX family mainly performs tumor microenvironment (TME) remodeling function and is extensively involved in tumor invasion and metastasis, immunomodulation, proliferation, apoptosis, etc. With relevant translational research in progress, the LOX family is expected to be an effective target for tumor therapy. Here, we review the research progress of the LOX family in tumor progression and therapy to provide novel insights for future exploration of relevant tumor mechanism and new therapeutic targets.
Collapse
|
10
|
Quan X, Han Y, Lu P, Ding Y, Wang Q, Li Y, Wei J, Huang Q, Wang R, Zhao Y. Annexin V-Modified Platelet-Biomimetic Nanomedicine for Targeted Therapy of Acute Ischemic Stroke. Adv Healthc Mater 2022; 11:e2200416. [PMID: 35708176 DOI: 10.1002/adhm.202200416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Indexed: 01/24/2023]
Abstract
Thromboembolic stroke is typically characterized by the activation of platelets, resulting in thrombus in the cerebral vascular system, leading to high morbidity and mortality globally. Intravenous thrombolysis by tissue plasminogen activator (tPA) administration within 4.5 h from the onset of symptoms is providing a standard therapeutic strategy for ischemic stroke, but this reagent simultaneously shows potential serious adverse effects, e.g., hemorrhagic transformation. Herein, a novel delivery platform based on Annexin V and platelet membrane is developed for tPA (APLT-PA) to enhance targeting efficiency, therapeutic effects, and reduce the risk of intracerebral hemorrhage in acute ischemic stroke. After preparation by extrusion of platelet membrane and subsequent insertion of Annexin V to liposomes, APLT-PA exhibits a high targeting efficiency to activated platelet in vitro and thrombosis site in vivo, due to the binding to phosphatidylserine (PS) and activated platelet membrane proteins. One dose of APLT-PA leads to obvious thrombolysis and significant improvement of neurological function within 7 days in mice with photochemically induced acute ischemic stroke. This study provides a novel, safe platelet-biomimetic nanomedicine for precise thrombolytic treatment of acute ischemic stroke, and offers new theories for the design and exploitation of cell-mimetic nanomedicine for diverse biomedical applications.
Collapse
Affiliation(s)
- Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Pengde Lu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yuanfu Ding
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qingfu Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Jianwen Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qiaoxian Huang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
11
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
12
|
Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23052672. [PMID: 35269825 PMCID: PMC8911024 DOI: 10.3390/ijms23052672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.
Collapse
Affiliation(s)
| | | | | | | | - Guangchao Sui
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| | - Jinming Shi
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| |
Collapse
|
13
|
Perryman L, Gray SG. Fibrosis in Mesothelioma: Potential Role of Lysyl Oxidases. Cancers (Basel) 2022; 14:981. [PMID: 35205728 PMCID: PMC8870010 DOI: 10.3390/cancers14040981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies (such as checkpoint inhibitors) and standard chemotherapies (such as cisplatin) have limitations in the successful treatment of malignant pleural mesothelioma (MPM). Fibrosis is the accumulation of collagen in the extracellular matrix (ECM) of tissues, making them denser than that of healthy tissues and thereby affecting drug delivery and immune cell infiltration. Moreover, fibrosis severely affects the patient's breathing and quality of life. The production of collagen and its assembly is highly regulated by various enzymes such as lysyl oxidases. Many solid tumors aberrantly express the family of lysyl oxidases (LOX/LOXL). This review examines how LOX/LOXLs were found to be dysregulated in noncancerous and cancerous settings, discusses their roles in solid tumor fibrosis and pathogenesis and explores the role of fibrosis in the development and poor clinical outcomes of patients with MPM. We examine the current preclinical status of drugs targeting LOX/LOXLs and how the incorporation of such drugs may have therapeutic benefits in the treatment and management of patients with MPM.
Collapse
Affiliation(s)
- Lara Perryman
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW 2086, Australia;
| | - Steven G. Gray
- Thoracic Oncology, Labmed Directorate, St James’s Hospital, D08 RX0X Dublin, Ireland
| |
Collapse
|
14
|
Hou X, Zhang P, Du H, Chu W, Sun R, Qin S, Tian Y, Zhang Z, Xu F. Akkermansia Muciniphila Potentiates the Antitumor Efficacy of FOLFOX in Colon Cancer. Front Pharmacol 2021; 12:725583. [PMID: 34603035 PMCID: PMC8484791 DOI: 10.3389/fphar.2021.725583] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
FOLFOX (oxaliplatin, fluorouracil and calcium folinate) is the first-line chemotherapy regimen for colon cancer therapy in the clinic. It provides superior efficacy than oxaliplatin alone, but the underlying mechanism remains unclear. In the present study, pharmacomicrobiomics integrated with metabolomics was conducted to uncover the role of the gut microbiome behind this. First, in vivo study demonstrated that FOLFOX exhibited better efficacy than oxaliplatin alone in colon cancer animal models. Second, 16S rDNA gene sequencing analysis showed that the abundance of Akkermansia muciniphila (A. muciniphila) remarkably increased in the FOLFOX treated individuals and positively correlated with the therapeutic effect. Third, further exploration confirmed A. muciniphila colonization significantly enhanced the anti-cancer efficacy of FOLFOX. Last, metabolomics analysis suggested dipeptides containing branched-chain amino acid (BCAA) might be responsible for gut bacteria mediated FOLFOX efficacy. In conclusion, our study revealed the key role of A. muciniphila in mediating FOLFOX efficacy, and manipulating A. muciniphila might serve as a novel strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Xiaoying Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Weihua Chu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruiqi Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Zhu J, Luo C, Zhao J, Zhu X, Lin K, Bu F, Yu Z, Zou F, Zhu Z. Expression of LOX Suggests Poor Prognosis in Gastric Cancer. Front Med (Lausanne) 2021; 8:718986. [PMID: 34595188 PMCID: PMC8476844 DOI: 10.3389/fmed.2021.718986] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Lysyl oxidase (LOX) is a key enzyme for the cross-linking of collagen and elastin in the extracellular matrix. This study evaluated the prognostic role of LOX in gastric cancer (GC) by analyzing the data of The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) dataset. Methods: The Wilcoxon rank-sum test was used to calculate the expression difference of LOX gene in gastric cancer and normal tissues. Western blot and immunohistochemical staining were used to evaluate the expression level of LOX protein in gastric cancer. Kaplan-Meier analysis was used to calculate the survival difference between the high expression group and the low expression group in gastric cancer. The relationship between statistical clinicopathological characteristics and LOX gene expression was analyzed by Wilcoxon or Kruskal-Wallis test and logistic regression. Univariate and multivariate Cox regression analysis was used to find independent risk factors affecting the prognosis of GC patients. Gene set enrichment analysis (GSEA) was used to screen the possible mechanisms of LOX and GC. The CIBERSORT calculation method was used to evaluate the distribution of tumor-infiltrating immune cell (TIC) abundance. Results: LOX is highly expressed in gastric cancer tissues and is significantly related to poor overall survival. Wilcoxon or Kruskal-Wallis test and Logistic regression analysis showed, LOX overexpression is significantly correlated with T-stage progression in gastric cancer. Multivariate Cox regression analysis on TCGA and GEO data found that LOX (all p < 0.05) is an independent factor for poor GC prognosis. GSEA showed that high LOX expression is related to ECM receptor interaction, cancer, Hedgehog, TGF-beta, JAK-STAT, MAPK, Wnt, and mTOR signaling pathways. The expression level of LOX affects the immune activity of the tumor microenvironment in gastric cancer. Conclusion: High expression of LOX is a potential molecular indicator for poor prognosis of gastric cancer.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiefeng Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojian Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kang Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fanqin Bu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhonglin Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feilong Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Rugamba A, Kang DY, Sp N, Jo ES, Lee JM, Bae SW, Jang KJ. Silibinin Regulates Tumor Progression and Tumorsphere Formation by Suppressing PD-L1 Expression in Non-Small Cell Lung Cancer (NSCLC) Cells. Cells 2021; 10:cells10071632. [PMID: 34209829 PMCID: PMC8307196 DOI: 10.3390/cells10071632] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.
Collapse
Affiliation(s)
- Alexis Rugamba
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Dong Young Kang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Nipin Sp
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
17
|
Verdura S, Cuyàs E, Ruiz-Torres V, Micol V, Joven J, Bosch-Barrera J, Menendez JA. Lung Cancer Management with Silibinin: A Historical and Translational Perspective. Pharmaceuticals (Basel) 2021; 14:ph14060559. [PMID: 34208282 PMCID: PMC8230811 DOI: 10.3390/ph14060559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023] Open
Abstract
The flavonolignan silibinin, the major bioactive component of the silymarin extract of Silybum marianum (milk thistle) seeds, is gaining traction as a novel anti-cancer therapeutic. Here, we review the historical developments that have laid the groundwork for the evaluation of silibinin as a chemopreventive and therapeutic agent in human lung cancer, including translational insights into its mechanism of action to control the aggressive behavior of lung carcinoma subtypes prone to metastasis. First, we summarize the evidence from chemically induced primary lung tumors supporting a role for silibinin in lung cancer prevention. Second, we reassess the preclinical and clinical evidence on the effectiveness of silibinin against drug resistance and brain metastasis traits of lung carcinomas. Third, we revisit the transcription factor STAT3 as a central tumor-cell intrinsic and microenvironmental target of silibinin in primary lung tumors and brain metastasis. Finally, by unraveling the selective vulnerability of silibinin-treated tumor cells to drugs using CRISPR-based chemosensitivity screenings (e.g., the hexosamine biosynthesis pathway inhibitor azaserine), we illustrate how the therapeutic use of silibinin against targetable weaknesses might be capitalized in specific lung cancer subtypes (e.g., KRAS/STK11 co-mutant tumors). Forthcoming studies should take up the challenge of developing silibinin and/or next-generation silibinin derivatives as novel lung cancer-preventive and therapeutic biomolecules.
Collapse
Affiliation(s)
- Sara Verdura
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Verónica Ruiz-Torres
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Joaquim Bosch-Barrera
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona (UdG), 17003 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| | - Javier A. Menendez
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| |
Collapse
|
18
|
Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front Med (Lausanne) 2021; 8:593874. [PMID: 34095157 PMCID: PMC8172798 DOI: 10.3389/fmed.2021.593874] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.
Collapse
Affiliation(s)
- Ceylan Onursal
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
19
|
Kalita B, Coumar MS. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol (Dordr) 2021; 44:751-775. [PMID: 33914273 DOI: 10.1007/s13402-021-00611-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.
Collapse
Affiliation(s)
- Bikashita Kalita
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
20
|
Kaipa JM, Starkuviene V, Erfle H, Eils R, Gladilin E. Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells. PeerJ 2020; 8:e10373. [PMID: 33362957 PMCID: PMC7749657 DOI: 10.7717/peerj.10373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum), is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting effects in different cancer cells by targeting multiple molecular targets and pathways. However, the predominant majority of previous studies investigated effects of this phytocompound in a one particular cell line. Here, we carry out a systematic analysis of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC) lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response, a group of cell cycle, survival and stress responsive genes, including some prominent targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these computationally selected genes to SIL viability response of NSCLC cells was confirmed by the transient knockdown test. In contrast to other EMT-inhibiting compounds, no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells was observed. Our experimental results show that SIL viability response of differently constituted NSCLC cells is linked to a subnetwork of tightly interconnected genes whose transcriptomic pattern can be used as a benchmark for assessment of individual SIL sensitivity instead of the conventional EMT signature. Insights gained in this study pave the way for optimization of customized adjuvant therapy of malignancies using Silibinin.
Collapse
Affiliation(s)
- Jagan Mohan Kaipa
- Helmholtz Center for Infection Research, Braunschweig, Germany.,BioQuant, University Heidelberg, Heidelberg, Germany.,Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, University Heidelberg, Heidelberg, Germany.,Institute of Biosciences, Vilnius University Life Science Center, Vilnius, Lithuania
| | - Holger Erfle
- BioQuant, University Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Evgeny Gladilin
- BioQuant, University Heidelberg, Heidelberg, Germany.,Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany.,Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
21
|
Tuli HS, Mittal S, Aggarwal D, Parashar G, Parashar NC, Upadhyay SK, Barwal TS, Jain A, Kaur G, Savla R, Sak K, Kumar M, Varol M, Iqubal A, Sharma AK. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin Cancer Biol 2020; 73:196-218. [PMID: 33130037 DOI: 10.1016/j.semcancer.2020.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | | | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Raj Savla
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| |
Collapse
|
22
|
Mashhadi Akbar Boojar M, Mashhadi Akbar Boojar M, Golmohammad S. Overview of Silibinin anti-tumor effects. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Laczko R, Csiszar K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules 2020; 10:biom10081093. [PMID: 32708046 PMCID: PMC7465975 DOI: 10.3390/biom10081093] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cu-dependent lysyl oxidase (LOX) plays a catalytic activity-related, primary role in the assembly of the extracellular matrix (ECM), a dynamic structural and regulatory framework which is essential for cell fate, differentiation and communication during development, tissue maintenance and repair. LOX, additionally, plays both activity-dependent and independent extracellular, intracellular and nuclear roles that fulfill significant functions in normal tissues, and contribute to vascular, cardiac, pulmonary, dermal, placenta, diaphragm, kidney and pelvic floor disorders. LOX activities have also been recognized in glioblastoma, diabetic neovascularization, osteogenic differentiation, bone matrix formation, ligament remodeling, polycystic ovary syndrome, fetal membrane rupture and tumor progression and metastasis. In an inflammatory context, LOX plays a role in diminishing pluripotent mesenchymal cell pools which are relevant to the pathology of diabetes, osteoporosis and rheumatoid arthritis. Most of these conditions involve mechanisms with complex cell and tissue type-specific interactions of LOX with signaling pathways, not only as a regulatory target, but also as an active player, including LOX-mediated alterations of cell surface receptor functions and mutual regulatory activities within signaling loops. In this review, we aim to provide insight into the diverse ways in which LOX participates in signaling events, and explore the mechanistic details and functional significance of the regulatory and cross-regulatory interactions of LOX with the EGFR, PDGF, VEGF, TGF-β, mechano-transduction, inflammatory and steroid signaling pathways.
Collapse
|
24
|
Ye M, Song Y, Pan S, Chu M, Wang ZW, Zhu X. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther 2020; 215:107633. [PMID: 32693113 DOI: 10.1016/j.pharmthera.2020.107633] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The lysyl oxidase (LOX) family is comprised of LOX and four LOX-like proteins (LOXL1, LOXL2, LOXL3, and LOXL4), and mainly functions in the remodeling of extracellular matrix (ECM) and the cross-linking of collagen and elastic fibers. Recently, a growing body of research has demonstrated that LOX family is critically involved in the regulation of cancer cell proliferation, migration, invasion and metastasis. In this review, we discuss the roles of LOX family members in the development and progression of different types of human cancers. Furthermore, we also describe the potential inhibitors of LOX family proteins and highlight that LOX family might be an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China..
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
25
|
Xu S, Zhang H, Wang A, Ma Y, Gan Y, Li G. Silibinin suppresses epithelial-mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1. Cell Mol Biol Lett 2020; 25:36. [PMID: 32528541 PMCID: PMC7285460 DOI: 10.1186/s11658-020-00229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Rhomboid domain containing 1 (RHBDD1) plays a crucial role in tumorigenesis. Silibinin, which is a natural extract from milk thistle, has shown anti-tumor effects against various tumors. Here, we investigate whether silibinin affects the function of RHBDD1 in non-small cell lung cancer (NSCLC) cell proliferation, migration and invasion. Methods The Oncomine database and an immunohistochemistry (IHC) assay were used to determine the RHBDD1 expression levels in lung cancer tissues. The associations between RHBDD1 and overall survival rate or clinicopathological parameters were respectively assessed using the Kaplan-Meier overall survival analysis or Chi-squared test. CCK-8 and Transwell assays were applied to analyze cell proliferation, migration and invasion. A549 cells were incubated with increasing concentrations of silibinin. RHBDD1 knockdown and overexpression were achieved via transfection with si-RHBDD1 or RHBDD1 overexpression plasmid, respectively. Western blotting was performed to measure the expressions of epithelial–mesenchymal transition (EMT) markers. Results We found that overexpression of RHBDD1 in lung cancer tissues correlates with a poor prognosis of survival. Clinical specimen analysis showed that upregulation of RHBDD1 correlates remarkably well with TNM stage and lymph node metastasis. Silibinin suppresses A549 cell proliferation, migration, invasion and EMT in a dose-dependent manner. Importantly, RHBDD1 was downregulated in silibinin-treated A549 cells. RHBDD1 overexpression reversed the suppressive effects of silibinin on A549 cell proliferation, migration, invasion and EMT expression, while its knockdown enhanced them. Conclusions These findings shown an anti-tumor impact of silibinin on NSCLC cells via repression of RHBDD1.
Collapse
Affiliation(s)
- Suyan Xu
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Hongyan Zhang
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Aifeng Wang
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Yongcheng Ma
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Yuan Gan
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Guofeng Li
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
26
|
Quan X, Du H, Xu J, Hou X, Gong X, Wu Y, Zhou Y, Jiang J, Lu L, Yuan S, Yang X, Shi L, Sun L. Novel Quinoline Compound Derivatives of NSC23925 as Potent Reversal Agents Against P-Glycoprotein-Mediated Multidrug Resistance. Front Chem 2020; 7:820. [PMID: 31921759 PMCID: PMC6931887 DOI: 10.3389/fchem.2019.00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/12/2019] [Indexed: 12/02/2022] Open
Abstract
Multidrug resistance is a serious problem and a common cause of cancer treatment failure, leading to patient death. Although numerous reversal resistance inhibitors have been evaluated in preclinical or clinical trials, efficient and low-toxicity reversal agents have not been identified. In this study, a series of novel quinoline compound derivatives from NSC23925 were designed to inhibit P-glycoprotein (P-gp). Among them, YS-7a showed a stronger inhibitory effect against P-gp than verapamil, as a positive control, when co-incubated with chemotherapy drugs at minimally cytotoxic concentrations. YS-7a suppressed the P-gp transport function without affecting the expression of P-gp but stimulated the ATPase activity of P-gp in a dose-dependent manner. Next, molecular docking was used to predict the six most probable binding sites, namely, SER270, VAL273, VAL274, ILE354, VAL357, and PHE390. Moreover, YS-7a had no effect on cytochrome P450 3A4 activity and showed little toxicity to normal cells. In addition, combined treatment of YS-7a with vincristine showed a better inhibitory effect than the positive control verapamil in vivo without a negative effect on mouse weight. Overall, our results showed that YS-7a could reverse cancer multidrug resistance through the inhibition of P-gp transport function in vitro and in vivo, suggesting that YS-7a may be a novel therapeutic agent.
Collapse
Affiliation(s)
- Xingping Quan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Xu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaofeng Gong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yuqi Zhou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiangyu Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Lei Shi
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
27
|
Ding X, Ge L, Yan A, Ding Y, Tao J, Liu Q, Qiao C. Docosahexaenoic Acid Serving As Sensitizing Agents And Gefitinib Resistance Revertants In EGFR Targeting Treatment. Onco Targets Ther 2019; 12:10547-10558. [PMID: 31819534 PMCID: PMC6897069 DOI: 10.2147/ott.s225918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Due to the resistance of cancer cells, chemotherapy has been severely restricted. Docosahexaenoic acid (DHA) has been broadly identified as the chemo-sensitizing agent and revertant of multidrug resistance owing to its pleiotropic characteristics; however, it has not been well interpreted. The purpose of this research was to identify the anticancer role of DHA and its combination with the chemotherapeutic agent Gefitinib in non-small cell lung cancer (NSCLC). Methods Human chemo-sensitive NSCLC PC-9 cells and the Gefitinib-resistant counterpart PC-9/GR cells were adopted to assess the effects of the integrated DHA and Gefitinib treatments in vitro and vivo, for which the combination index (CI), apoptosis rate and the epithelial growth factor receptor (EGFR) pathway were analyzed. Results Comparing with the control cells, the DHA-treated PC-9/GR cells triggered the increase of drug absorption and sensitivity, suggesting that the sensitivity of chemotherapeutic drug could be induced by DHA. Moreover, the elevation of phosphorylation levels of EGFR and the downstream extracellular signal-regulated kinase (ERK) in the cellular lysates were induced by the DHA+Gefitinib treatment. Additionally, the long-term Gefitinib stimulated PC-9 model revealed that DHA could revert the Gefitinib resistance. Conclusion This is the first research that indicated the novel biochemical effect of DHA, which can help in overcoming the resistance of EGFR-TKI in NSCLC cells and broaden the horizon of the DHA supplementation during the NSCLC therapy.
Collapse
Affiliation(s)
- Xuansheng Ding
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Ge
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Aiwen Yan
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuyin Ding
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Junye Tao
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qianqian Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chen Qiao
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
28
|
Zeltz C, Pasko E, Cox TR, Navab R, Tsao MS. LOXL1 Is Regulated by Integrin α11 and Promotes Non-Small Cell Lung Cancer Tumorigenicity. Cancers (Basel) 2019; 11:cancers11050705. [PMID: 31121900 PMCID: PMC6562909 DOI: 10.3390/cancers11050705] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
Integrin α11, a stromal collagen receptor, promotes tumor growth and metastasis of non-small cell lung cancer (NSCLC) and is associated with the regulation of collagen stiffness in the tumor stroma. We have previously reported that lysyl oxidase like-1 (LOXL1), a matrix cross-linking enzyme, is down-regulated in integrin α11-deficient mice. In the present study, we investigated the relationship between LOXL1 and integrin α11, and the role of LOXL1 in NSCLC tumorigenicity. Our results show that the expression of LOXL1 and integrin α11 was correlated in three lung adenocarcinoma patient datasets and that integrin α11 indeed regulated LOXL1 expression in stromal cells. Using cancer-associated fibroblast (CAF) with either a knockdown or overexpression of LOXL1, we demonstrated a role for LOXL1 in collagen matrix remodeling and collagen fiber alignment in vitro and in vivo in a NSCLC xenograft model. As a consequence of collagen reorganization in NSCLC tumor stroma, we showed that LOXL1 supported tumor growth and progression. Our findings demonstrate that stromal LOXL1, under regulation of integrin α11, is a determinant factor of NSCLC tumorigenesis and may be an interesting target in this disease.
Collapse
Affiliation(s)
- Cédric Zeltz
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Elena Pasko
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Thomas R Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Roya Navab
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
29
|
Duan Z, Li L, Li Y. Involvement of miR-30b in kynurenine-mediated lysyl oxidase expression. J Physiol Biochem 2019; 75:135-142. [PMID: 31093946 DOI: 10.1007/s13105-019-00686-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 05/05/2019] [Indexed: 01/09/2023]
Abstract
Microenvironment components profoundly influence the propensity of cancer metastasis through regulating key molecules controlling metastasis. Lysyl oxidase (LOX) contributes to extracellular matrix (ECM) remodeling, and finally promoting bone metastasis in breast cancer. Kynurenine (Kyn), a microenvironment component, is capable of regulating the biological behaviors of cancer cells, such as promoting node metastasis in vivo. However, it is still unclear whether Kyn controls the generation of LOX. In the current study, a significant increase of migration in the Kyn (30, 50, 100, 200, and 500 μM) group was detected compared with that in the control group in 95D cells in vitro. Subsequently, we demonstrated that 50 μM Kyn not only substantially upregulated the mRNA and secreted levels of LOX rather than cytoplasmic LOX, but also markedly reduced the level of miR-30b at the same time. Furthermore, the direct interaction between LOX mRNA and miR-30b was also confirmed by dual-luciferase assay system. Most importantly, not only was Kyn-induced increase of LOX mRNA significantly attenuated on miR-30b mimics treatment, but also Kyn-mediated the upregulation of the mRNA, and secreted levels of LOX were distinctly strengthened on miR-30b inhibitor treatment. These results suggest that miR-30b is involved in Kyn-mediated LOX expression.
Collapse
Affiliation(s)
- Zhiqing Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, 56 South Xinjian Road, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Lu Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yan Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
| |
Collapse
|
30
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
31
|
Boldrini L, Giordano M, Lucchi M, Melfi F, Fontanini G. Expression profiling and microRNA regulation of the LKB1 pathway in young and aged lung adenocarcinoma patients. Biomed Rep 2018; 9:198-205. [PMID: 30271594 PMCID: PMC6158392 DOI: 10.3892/br.2018.1122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Lung cancer in young patients appears to have distinct clinicopathological features. The present study focused on the role of the serine/threonine kinase liver kinase B1 (LKB1), a known tumor suppressor gene, and its miRNA regulation in lung adenocarcinoma, particularly in young versus elderly patients. A total of 88 patients with lung adenocarcinoma were retrospectively analysed. A simultaneous quantification was performed of the expression of LKB1 mRNA and 15 microRNAs (miRNA/miRs; miRs −93, −96, −34a, −34c, −214, −33a, −30b, −145, −182, −30c, −183, −29b, −29c, −153 and −138) involved in the LKB1 pathway, as well as of 5 identified target mRNAs [cyclin D1 (CCND1), catenin β-1 (CTNNB1), lysyl oxidase (LOX), yes-associated protein 1 (YAP1) and survivin], using NanoString technology. KRAS mutations were investigated by pyrosequencing analysis. Patients ≤50 years were defined as a younger group, while patients >50 years old as an older group (n=44/group). No difference between the two groups was identified in terms of survival times analysed using the Kaplan-Meier method or KRAS mutations. Subsequently, the LKB1 signalling pathway was focused on, as a target for therapy in lung adenocarcinoma, and assessed with regards to clinicopathological features; we found that LOX levels in adenocarcinoma patients were significantly associated with histological subtype (P=0.03), stage (P<0.0001) and prognosis (P=0.02 for disease-free interval and P=0.005 for overall survival), but not with age. Furthermore, the miRNA target prediction model indicated that miR-93 and miR-30b appeared to have functional binding sites and downregulate the gene expression of LKB1 and LOX, respectively. In conclusion, young patients appeared have similar survival rates to elderly patients. The assessment of LKB1, its downstream genes and its regulation by miRNAs may have an impact on future research on lung adenocarcinoma in young and elderly patients. Further investigations will be necessary to elucidate the potential of this pathway as a novel target for therapy.
Collapse
Affiliation(s)
- Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Mirella Giordano
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Marco Lucchi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Franca Melfi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, I-56126 Pisa, Italy
| |
Collapse
|