1
|
Eiró-Quirino L, Yoshino FK, de Amorim GC, de Araújo DB, Barbosa GB, de Souza LV, Dos Santos MF, Hamoy MKO, Dos Santos RG, Amóras LHB, Gurgel do Amaral AL, Hartcopff PFP, de Souza RV, da Silva Deiga Y, Hamoy M. Recording of hippocampal activity on the effect of convulsant doses of caffeine. Biomed Pharmacother 2024; 178:117148. [PMID: 39032287 DOI: 10.1016/j.biopha.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Seizures occur when there is a hyper-excitation of the outer layer of the brain, with subsequent excessive synchrony in a group of neurons. According to the World Health Organization (WHO), an estimated 50 million people are affected by this disease, a third of whom are resistant to the treatments available on the market. Caffeine (1,3,7-trimethylxanthine), which belongs to the purine alkaloid family, is the most widely consumed psychoactive drug in the world. It is ingested by people through drinks containing this substance, such as coffee, and as an adjuvant in analgesic therapy with non-steroidal antiflammatory drugs. The present study evaluated the electrocorticographic changes observed in the hippocampus of Wistar rats subjected to acute doses of caffeine (150 mg/kg i.p), which represents a toxic dose of caffeine corresponding to an estimated acute intake of more than 12 cups of coffee to record its convulsant activity. Our results showed, for the first time, that the administration of high doses of caffeine (150 mg/kg i.p.) in rats caused an increase in the spectral distribution of power in all frequency bands and suggested the appearance of periods of ictal and interictal peaks in the electrocorticogram (ECog). We have also shown that the anticonvulsants phenytoin, diazepam and phenobarbital have a satisfactory response when associated with caffeine.
Collapse
Affiliation(s)
- Luciana Eiró-Quirino
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil.
| | - Felipe Kiyoshi Yoshino
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Gloria Calandrini de Amorim
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Daniella Bastos de Araújo
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Gabriela Brito Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Luana Vasconcelos de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Murilo Farias Dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Maria Klara Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Rodrigo Gonçalves Dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Laís Helena Baptista Amóras
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Anthony Lucas Gurgel do Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Priscille Fidelis Pacheco Hartcopff
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Raíssa Vieira de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Yris da Silva Deiga
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil.
| |
Collapse
|
2
|
Chitolina R, Reis CG, Stahlhofer-Buss T, Linazzi A, Benvenutti R, Marcon M, Herrmann AP, Piato A. Effects of N-acetylcysteine and acetyl-L-carnitine on acute PTZ-induced seizures in larval and adult zebrafish. Pharmacol Rep 2023; 75:1544-1555. [PMID: 37814098 DOI: 10.1007/s43440-023-00536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Epilepsy is a prevalent neurological disease, affecting approximately 1-2% of the global population. The hallmark of epilepsy is the occurrence of epileptic seizures, which are characterized by predictable behavioral changes reflecting the underlying neural mechanisms of the disease. Unfortunately, around 30% of patients do not respond to current pharmacological treatments. Consequently, exploring alternative therapeutic options for managing this condition is crucial. Two potential candidates for attenuating seizures are N-acetylcysteine (NAC) and Acetyl-L-carnitine (ALC), as they have shown promising neuroprotective effects through the modulation of glutamatergic neurotransmission. METHODS This study aimed to assess the effects of varying concentrations (0.1, 1.0, and 10 mg/L) of NAC and ALC on acute PTZ-induced seizures in zebrafish in both adult and larval stages. The evaluation of behavioral parameters such as seizure intensity and latency to the crisis can provide insights into the efficacy of these substances. RESULTS Our results indicate that both drugs at any of the tested concentrations were not able to reduce PTZ-induced epileptic seizures. On the other hand, the administration of diazepam demonstrated a notable reduction in seizure intensity and increased latencies to higher scores of epileptic seizures. CONCLUSION Consequently, we conclude that, under the conditions employed in this study, NAC and ALC do not exhibit any significant effects on acute seizures in zebrafish.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Amanda Linazzi
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Ana P Herrmann
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Bayat AH, Eskandari N, Sani M, Fotouhi F, Shenasandeh Z, Saeidikhoo S, Rohani R, Sabbagh Alvani M, Mafi Balani M, Eskandarian Boroujeni M, Abdollahifar MA, Tajari F, Aliaghaei A, Hassani Moghaddam M. Anti-inflammatory and antioxidative effects of elderberry diet in the rat model of seizure: a behavioral and histological investigation on the hippocampus. Toxicol Res (Camb) 2023; 12:783-795. [PMID: 37915479 PMCID: PMC10615822 DOI: 10.1093/toxres/tfad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 11/03/2023] Open
Abstract
The present study was designed to evaluate whether elderberry (EB) effectively reduces inflammation and oxidative stress in hippocampal cells to modify seizure damage. Seizure was induced in rats by the injection of pentylenetetrazol (PTZ). In the Seizure + EB group, EB powder was added to the rats' routine diet for eight consecutive weeks. The study included several behavioral tests, immunohistopathology, Voronoi tessellation (to estimate the spatial distribution of cells in the hippocampus), and Sholl analysis. The results in the Seizure + EB group showed an improvement in the behavioral aspects of the study, a reduction in astrogliosis, astrocyte process length, number of branches, and intersections distal to the soma in the hippocampus of rats compared to controls. Further analysis showed that EB diet increased nuclear factor-like 2 expression and decreased caspase-3 expression in the hippocampus in the Seizure + EB group. In addition, EB protected hippocampal pyramidal neurons from PTZ toxicity and improved the spatial distribution of hippocampal neurons in the pyramidal layer and dentate gyrus. The results of the present study suggest that EB can be considered a potent modifier of astrocyte reactivation and inflammatory responses.
Collapse
Affiliation(s)
- Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Department of Educational Neuroscience, Aras International Campus, University of Tabriz, Tabriz, Iran
| | - Farid Fotouhi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shenasandeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Saeidikhoo
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Rohani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadamin Sabbagh Alvani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mafi Balani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Tajari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sun Q, Xu W, Piao J, Su J, Ge T, Cui R, Yang W, Li B. Transcription factors are potential therapeutic targets in epilepsy. J Cell Mol Med 2022; 26:4875-4885. [PMID: 36065764 PMCID: PMC9549512 DOI: 10.1111/jcmm.17518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Academics generally believe that imbalance between excitation and inhibition of the nervous system is the root cause of epilepsy. However, the aetiology of epilepsy is complex, and its pathogenesis remains unclear. Many studies have shown that epilepsy is closely related to genetic factors. Additionally, the involvement of a variety of tumour‐related transcription factors in the pathogenesis of epilepsy has been confirmed, which also confirms the heredity of epilepsy. In this review, we summarize the existing research on a variety of transcription factors and epilepsy and present relevant evidence related to transcription factors that may be targets in epilepsy. This information is of great significance for revealing the in‐depth molecular and cellular mechanisms of epilepsy.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Aquatic Freshwater Vertebrate Models of Epilepsy Pathology: Past Discoveries and Future Directions for Therapeutic Discovery. Int J Mol Sci 2022; 23:ijms23158608. [PMID: 35955745 PMCID: PMC9368815 DOI: 10.3390/ijms23158608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is an international public health concern that greatly affects patients’ health and lifestyle. About 30% of patients do not respond to available therapies, making new research models important for further drug discovery. Aquatic vertebrates present a promising avenue for improved seizure drug screening and discovery. Zebrafish (Danio rerio) and African clawed frogs (Xenopus laevis and tropicalis) are increasing in popularity for seizure research due to their cost-effective housing and rearing, similar genome to humans, ease of genetic manipulation, and simplicity of drug dosing. These organisms have demonstrated utility in a variety of seizure-induction models including chemical and genetic methods. Past studies with these methods have produced promising data and generated questions for further applications of these models to promote discovery of drug-resistant seizure pathology and lead to effective treatments for these patients.
Collapse
|
7
|
Lee VLL, Norazit A, Noor SM, Shaikh MF. Channa Striatus Protects Against PTZ-Induced Seizures in LPS Pre-conditioned Zebrafish Model. Front Pharmacol 2022; 13:821618. [PMID: 35444543 PMCID: PMC9014177 DOI: 10.3389/fphar.2022.821618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent unprovoked seizures. Mounting evidence suggests the link between epileptogenesis and neuroinflammation. We hypothesize that eliminating neuroinflammation can alleviate seizure severity and prolong seizure onset. Channa striatus (CS) is a snakehead murrel commonly consumed by locals in Malaysia, believed to promote wound healing and mitigate inflammation. This study aims to unravel the anticonvulsive potential of CS extract on neuroinflammation-induced seizures using an adult zebrafish model. Neuroinflammation was induced via cerebroventricular microinjection of lipopolysaccharides from E. coli and later challenged with a second-hit pentylenetetrazol at a subconvulsive dose of 80 mg/kg. Zebrafish behaviour and swimming pattern analysis, as well as gene expression analysis, were done to study the pharmacological property of CS. CS extract pre-treatment in all doses significantly reduced seizure score, prolonged seizure onset time and slightly improved the locomotor swimming pattern of the zebrafish. CS extract pre-treatment at all doses significantly reduced the expression of NFKB gene in the brain, and CS extract at 25 mg/L significantly reduced the IL-1 gene expression suggesting anti-neuroinflammatory properties. However, there were no significant changes in the TNFα. Besides, CS extract at 50 mg/L also elevated the expression of the CREB gene, which exerts neuroprotective effects on the neurons and the NPY gene, which plays a role in modulating the inhibition of the excitatory neurotransmission. To sum up, CS extract demonstrated some anticonvulsive and anti-inflammatory activity on neuroinflammation-induced seizures. Still, more studies need to be done to elucidate the mechanism of action of CS extract.
Collapse
Affiliation(s)
- Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
8
|
Bhuvanendran S, Paudel YN, Kumari Y, Othman I, Shaikh MF. Embelin prevents amyloid-beta accumulation via modulation of SOD1 in a Streptozotocin-induced AD-like condition: An evidence from in vitro investigation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100032. [DOI: 10.1016/j.crneur.2022.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/01/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
|
9
|
Rai AR, Joy T, Rashmi KS, Rai R, Vinodini NA, Jiji PJ. Zebrafish as an experimental model for the simulation of neurological and craniofacial disorders. Vet World 2022; 15:22-29. [PMID: 35369579 PMCID: PMC8924399 DOI: 10.14202/vetworld.2022.22-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Zebrafish have gained momentum as a leading experimental model in recent years. At present, the zebrafish vertebrate model is increasingly used due to its multifactorial similarities to humans that include genetic, organ, and cellular factors. With the emergence of novel research techniques that are very expensive, it is necessary to develop affordable and valid experimental models. This review aimed to highlight some of the most important similarities between zebrafish and humans by emphasizing the relevance of the first in simulating neurological disorders and craniofacial deformity.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Coolidge, St. John's, Antigua
| | - K. S. Rashmi
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N. A. Vinodini
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P. J. Jiji
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Li Z, Qu B, Zhou L, Chen H, Wang J, Zhang W, Chen C. A New Strategy to Investigate the Efficacy Markers Underlying the Medicinal Potentials of Orthosiphon stamineus Benth. Front Pharmacol 2021; 12:748684. [PMID: 34630118 PMCID: PMC8497827 DOI: 10.3389/fphar.2021.748684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Orthosiphon stamineus Benth. (OSB) is a well-known herbal medicine exerting various pharmacological effects and medicinal potentials. Owing to its complex of phytochemical constituents, as well as the ambiguous relationship between phytochemical constituents and varied bioactivities, it is a great challenge to explore which constituents make a core contribution to the efficacy of OSB, making it difficult to determine the efficacy makers underlying the varied efficacies of OSB. In our work, a new strategy was exploited and applied for investigating efficacy markers of OSB consisting of phytochemical analysis, in vivo absorption analysis, bioactive compound screening, and bioactive compound quantification. Using liquid chromatography coupled with mass spectrometry, a total of 34 phytochemical components were detected in the OSB extract. Subsequently, based on in vivo absorption analysis, 14 phytochemical constituents in the form of prototypes were retained as potential bioactive compounds. Ten diseases were selected as the potential indications of OSB based on previous reports, and then the overall interaction between compounds, action targets, action pathways, and diseases was revealed based on bioinformatic analysis. After refining key pathways and targets, the interaction reversing from pathways, targets to constituents was deduced, and the core constituents, including tanshinone IIA, sinensetin, salvianolic acid B, rosmarinic acid, and salvigenin, were screened out as the efficacy markers of OSB. Finally, the contents of these five constituents were quantified in three different batches of OSB extracts. Among them, the content of salvianolic acid B was the highest while the content of tanshinone IIA was the lowest. Our work could provide a promising direction for future research on the quality control and pharmacological mechanism of OSB.
Collapse
Affiliation(s)
- Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Biao Qu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Lei Zhou
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Caifa Chen
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
11
|
Bertoncello KT, Bonan CD. Zebrafish as a tool for the discovery of anticonvulsant compounds from botanical constituents. Eur J Pharmacol 2021; 908:174342. [PMID: 34265297 DOI: 10.1016/j.ejphar.2021.174342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/23/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
Epilepsy affects about 65 million people in the world, which makes this disease a public health problem. In addition to the incidence of recurrent seizures, this neurological condition also culminates in cognitive, psychological, behavioral, and social consequences to the patients. Epilepsy treatment is based on the use of drugs that aim to inhibit repetitive neuronal discharges, and consequently, the recurrence of seizures. However, despite the large number of antiepileptic drugs currently available, about 30-40% of patients with epilepsy do not respond satisfactorily to treatments. Therefore, the investigation of new therapeutic alternatives for epilepsy becomes relevant, especially the search for new compounds with anticonvulsant properties. The therapeutic potential of plant-derived bioactive compounds has been a target for alternative treatments for epilepsy. The use of animal models for drug screening, such as zebrafish, contributes to a better understanding of the mechanisms involved in seizures and for investigating methods and alternative treatments to decrease seizure incidence. The sensitivity of zebrafish to chemoconvulsants and its use in genetic approaches reinforces the contribution of this animal to epilepsy research. Moreover, we summarize advances in zebrafish-based studies that focus on plant-derived bioactive compounds with potential antiseizure properties, contributing to the screening of new drugs for epilepsy treatment.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Paudel YN, Khan SU, Othman I, Shaikh MF. Naturally Occurring HMGB1 Inhibitor, Glycyrrhizin, Modulates Chronic Seizures-Induced Memory Dysfunction in Zebrafish Model. ACS Chem Neurosci 2021; 12:3288-3302. [PMID: 34463468 DOI: 10.1021/acschemneuro.0c00825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycyrrhizin (GL) is a well-known pharmacological inhibitor of high mobility group box 1 (HMGB1) and is abundantly present in the licorice root (Glycyrrhiza radix). HMGB1 protein, a key mediator of neuroinflammation, has been implicated in several neurological disorders, including epilepsy. Epilepsy is a devastating neurological disorder with no effective disease-modifying treatment strategies yet, suggesting a pressing need for exploring novel therapeutic options. In the current investigation, using a second hit pentylenetetrazol (PTZ) induced chronic seizure model in adult zebrafish, regulated mRNA expression of HMGB1 was inhibited by pretreatment with GL (25, 50, and 100 mg/kg, ip). A molecular docking study suggests that GL establishes different binding interactions with the various amino acid chains of HMGB1 and Toll-like receptor-4 (TLR4). Our finding suggests that GL pretreatment reduces/suppresses second hit PTZ induced seizure, as shown by the reduction in the seizure score. GL also regulates the second hit PTZ induced behavioral impairment and rescued second hit PTZ related memory impairment as demonstrated by an increase in the inflection ratio (IR) at the 3 h and 24 h T-maze trial. GL inhibited seizure-induced neuronal activity as demonstrated by reduced C-fos mRNA expression. GL also modulated mRNA expression of BDNF, CREB-1, and NPY. The possible mechanism underlying the anticonvulsive effect of GL could be attributed to its anti-inflammatory activity, as demonstrated by the downregulated mRNA expression level of HMGB1, TLR4, NF-kB, and TNF-α. Overall, our finding suggests that GL exerts an anticonvulsive effect and ameliorates seizure-related memory disruption plausibly through regulating of the HMGB1-TLR4-NF-kB axis.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
- Department of Pharmacy, Abasyn University, Ring Road, Peshawar 25120, Pakistan
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
13
|
Dang J, Paudel YN, Yang X, Ren Q, Zhang S, Ji X, Liu K, Jin M. Schaftoside Suppresses Pentylenetetrazol-Induced Seizures in Zebrafish via Suppressing Apoptosis, Modulating Inflammation, and Oxidative Stress. ACS Chem Neurosci 2021; 12:2542-2552. [PMID: 34128378 DOI: 10.1021/acschemneuro.1c00314] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lack of disease-modifying therapeutic strategies against epileptic seizures has caused a surge in preclinical research focused on exploring and developing novel therapeutic candidates for epilepsy. Compounds from traditional Chinese medicines (TCMs) have gained much attention for a plethora of neurological diseases, including epilepsy. Herein, for the first time, we evaluated the anticonvulsive effects of schaftoside (SS), a TCM, on pentylenetetrazol (PTZ)-induced epileptic seizures in zebrafish and examined the underlying mechanisms. We observed that SS pretreatments significantly suppressed seizure-like behavior and prolonged the onset of seizures. Zebrafish larvae pretreated with SS demonstrated downregulation of c-fos expression during seizures. PTZ-induced upregulation of apoptotic cells was decreased upon pretreatment with SS. Inflammatory phenomena during seizure progression including the upregulation of interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated upon pretreatment with SS. The PTZ-induced recruitment of immunocytes was in turn reduced upon SS pretreatment. Moreover, SS pretreatment modulated oxidative stress, as demonstrated by decreased levels of catalase (CAT) and increased levels of glutathione peroxidase-1a (GPx1a) and manganese superoxide dismutase (Mn-SOD). However, pretreatment with SS modulated the PTZ-induced downregulation of the relative enzyme activity of CAT, GPx, and SOD. Hence, our findings suggest that SS pretreatment ameliorates PTZ-induced seizures, suppresses apoptosis, and downregulates the inflammatory response and oxidative stress, which potentially protect against further seizures in zebrafish.
Collapse
Affiliation(s)
- Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Qingyu Ren
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang’shan 063210, Hebei Province, People’s Republic of China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| |
Collapse
|
14
|
Chung YS, Ahmed PK, Othman I, Shaikh MF. Orthosiphon stamineus Proteins Alleviate Hydrogen Peroxide Stress in SH-SY5Y Cells. Life (Basel) 2021; 11:life11060585. [PMID: 34202937 PMCID: PMC8235403 DOI: 10.3390/life11060585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The neuroprotective potential of Orthosiphon stamineus leaf proteins (OSLPs) has never been evaluated in SH-SY5Y cells challenged by hydrogen peroxide (H2O2). This work thus aims to elucidate OSLP neuroprotective potential in alleviating H2O2 stress. OSLPs at varying concentrations were evaluated for cytotoxicity (24 and 48 h) and neuroprotective potential in H2O2-induced SH-SY5Y cells (24 h). The protective mechanism of H2O2-induced SH-SY5Y cells was also explored via mass-spectrometry-based label-free quantitative proteomics (LFQ) and bioinformatics. OSLPs (25, 50, 125, 250, 500, and 1000 µg/mL; 24 and 48 h) were found to be safe. Pre-treatments with OSLP doses (250, 500, and 1000 µg/mL, 24 h) significantly increased the survival of SH-SY5Y cells in a concentration-dependent manner and improved cell architecture—pyramidal-shaped cells, reduced clumping and shrinkage, with apparent neurite formations. OSLP pre-treatment (1000 µg/mL, 24 h) lowered the expressions of two major heat shock proteins, HSPA8 (heat shock protein family A (Hsp70) member 8) and HSP90AA1 (heat shock protein 90), which promote cellular stress signaling under stress conditions. OSLP is, therefore, suggested to be anti-inflammatory by modulating the “signaling of interleukin-4 and interleukin-13” pathway as the predominant mechanism in addition to regulating the “attenuation phase” and “HSP90 chaperone cycle for steroid hormone receptors” pathways to counteract heat shock protein (HSP)-induced damage under stress conditions.
Collapse
Affiliation(s)
- Yin-Sir Chung
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
| | - Pervaiz Khalid Ahmed
- School of Business, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
15
|
Ferreira MKA, da Silva AW, Dos Santos Moura AL, Sales KVB, Marinho EM, do Nascimento Martins Cardoso J, Marinho MM, Bandeira PN, Magalhães FEA, Marinho ES, de Menezes JESA, Dos Santos HS. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav 2021; 117:107881. [PMID: 33711684 DOI: 10.1016/j.yebeh.2021.107881] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 02/20/2021] [Indexed: 01/07/2023]
Abstract
In the treatment of anxiety and seizures, drugs of the benzodiazepine (BZD) class are used, which act on the Central Nervous System (CNS) through the neurotransmitter gamma-aminobutyric acid (GABA). Flavonoids modulate GABAA receptors. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of synthetic chalcones and their mechanisms of action via the GABAergic system, using adult zebrafish (ZFa). The animals were treated with chalcones (4.0 or 20 or 40 mg/kg; 20 µL; i.p) and submitted to the open field and 96 h toxicity test. Chalcones that cause locomotor alteration were evaluated in the light and dark anxiolytic test. The same doses of chalcones were evaluated in the anticonvulsant test. The lowest effective dose was chosen to assess the possible involvement in the GABAA receptor by blocking the flumazenil (fmz) antagonist. No chalcone was toxic and altered ZFa's locomotion. All chalcones had anxiolytic and anticonvulsant effects, mainly chalcones 1, where all doses showed effects in both tests. These effects were blocked by Fmz (antagonist GABAA), where it shows evidence of the performance of these activities of the GABA system. Therefore, this study demonstrated in relation to structure-activity, that the position of the substituents is important in the intensity of activities and that the absence of toxicity and the action of these compounds in the CNS, shows the pharmacological potential of these molecules, and, therefore, the insights are designed for the development of new drugs.
Collapse
Affiliation(s)
| | | | - Atilano Lucas Dos Santos Moura
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil
| | - Ketelly Vanessa Barros Sales
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Federal University of Ceará, Department of Analytical Chemistry and Physical Chemistry, Group of Theoretical Chemistry, Fortaleza, Ceará, Brazil
| | | | - Márcia Machado Marinho
- State University of Ceará, Iguatu Faculty of Education, Science and Letters, Ceará, Brazil
| | - Paulo Nogueira Bandeira
- Center for Exact Sciences and Technology, Vale do Acaraú State University, Sobral, Ceará, Brazil
| | - Francisco Ernani Alves Magalhães
- State University of Ceará, Department of Chemistry, Laboratory of Natural Products Bioprospecting and Biotechnology, Tauá, Ceará, Brazil
| | - Emmanuel Silva Marinho
- State University of Ceará, Department of Chemistry, Group of Theoretical Chemistry And Electrochemistry, Limoeiro do Norte, Ceará, Brazil
| | | | - Hélcio Silva Dos Santos
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil; Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil; Center for Exact Sciences and Technology, Vale do Acaraú State University, Sobral, Ceará, Brazil.
| |
Collapse
|
16
|
Paudel YN, Othman I, Shaikh MF. Anti-High Mobility Group Box-1 Monoclonal Antibody Attenuates Seizure-Induced Cognitive Decline by Suppressing Neuroinflammation in an Adult Zebrafish Model. Front Pharmacol 2021; 11:613009. [PMID: 33732146 PMCID: PMC7957017 DOI: 10.3389/fphar.2020.613009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a chronic brain disease afflicting around 70 million global population and is characterized by persisting predisposition to generate epileptic seizures. The precise understanding of the etiopathology of seizure generation is still elusive, however, brain inflammation is considered as a major contributor to epileptogenesis. HMGB1 protein being an initiator and crucial contributor of inflammation is known to contribute significantly to seizure generation via activating its principal receptors namely RAGE and TLR4 reflecting a potential therapeutic target. Herein, we evaluated an anti-seizure and memory ameliorating potential of an anti-HMGB1 monoclonal antibody (mAb) (1, 2.5 and 5 mg/kg, I.P.) in a second hit Pentylenetetrazol (PTZ) (80 mg/kg, I.P.) induced seizure model earlier stimulated with Pilocarpine (400 mg/kg, I.P.) in adult zebrafish. Pre-treatment with anti-HMGB1 mAb dose-dependently lowered the second hit PTZ-induced seizure but does not alter the disease progression. Moreover, anti-HMGB1 mAb also attenuated the second hit Pentylenetetrazol induced memory impairment in adult zebrafish as evidenced by an increased inflection ration at 3 and 24 h trail in T-maze test. Besides, decreased level of GABA and an upregulated Glutamate level was observed in the second hit PTZ induced group, which was modulated by pre-treatment with anti-HMGB1 mAb. Inflammatory responses occurred during the progression of seizures as evidenced by upregulated mRNA expression of HMGB1, TLR4, NF-κB, and TNF-α, in a second hit PTZ group, which was in-turn downregulated upon pre-treatment with anti-HMGB1 mAb reflecting its anti-inflammatory potential. Anti-HMGB1 mAb modulates second hit PTZ induced changes in mRNA expression of CREB-1 and NPY. Our findings indicates anti-HMGB1 mAb attenuates second hit PTZ-induced seizures, ameliorates related memory impairment, and downregulates the seizure induced upregulation of inflammatory markers to possibly protect the zebrafish from the incidence of further seizures through via modulation of neuroinflammatory pathway.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Liquid Chromatography-Mass Spectrometry Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
17
|
Mishra P, Mittal AK, Rajput SK, Sinha JK. Cognition and memory impairment attenuation via reduction of oxidative stress in acute and chronic mice models of epilepsy using antiepileptogenic Nux vomica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113509. [PMID: 33141053 DOI: 10.1016/j.jep.2020.113509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Ethnopharmacological relevance Processed Nux vomica seed extracts and homeopathic medicinal preparations (HMPs) are widely used in traditional Indian and Chinese medicine for respiratory, digestive, neurological and behavioral disorders. Antioxidant property of Nux vomica is well known and recent investigation has highlighted the anticonvulsant potential of its homeopathic formulation. AIM OF THE STUDY To explore the anticonvulsant and antiepileptogenic potential of Nux vomica HMPs (6CH, 12CH and 30CH potency) in pentylenetetrazole (PTZ) induced acute and chronic experimental seizure models in mice and investigate their effects on cognition, memory, motor activity and oxidative stress markers in kindled animals. MATERIALS AND METHODS Acute seizures were induced in the animals through 70 mg/kg (i.p.) administration of PTZ followed by the evaluation of latency and duration of Generalized tonic-clonic seizures (GTCS). Subconvulsive PTZ doses (35 mg/kg, i.p.) induced kindling in 29 days, which was followed by assessment of cognition, memory and motor impairment through validated behavioral techniques. The status of oxidative stress was estimated through measurement of MDA, GSH and SOD. RESULTS HMPs delayed the latency and reduced the duration of GTCS in acute model signifying possible regulation of GABAergic neurotransmission. Kindling was significantly hindered by the HMPs that justified the ameliorated cognition, memory and motor activity impairment. The HMPs attenuated lipid peroxidation by reducing MDA level and strengthened the antioxidant mechanism by enhancing the GSH and SOD levels in the kindled animals. CONCLUSIONS Nux vomica HMPs showed anticonvulsant and antiepileptogenic potency in acute and chronic models of epilepsy. The test drugs attenuated behavioral impairment and reduced the oxidative stress against PTZ induced kindling owing to which they can be further explored for their cellular and molecular mechanism(s).
Collapse
Affiliation(s)
- Priya Mishra
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Amit Kumar Mittal
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Satyendra Kumar Rajput
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India; Department of Pharmaceutical Sciences, Gurukul Kangri (deemed to be University), Haridwar, Uttrakhand, 249404, India.
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
18
|
Evaluation of Anti-Convulsive Properties of Aqueous Kava Extract on Zebrafish Using the PTZ-Induced Seizure Model. Brain Sci 2020; 10:brainsci10080541. [PMID: 32796575 PMCID: PMC7463627 DOI: 10.3390/brainsci10080541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
Kava roots have been extensively studied in clinical trials as potential candidate anti-anxiety drugs. However, anti-convulsive properties of various tissues of stems of Kava have not been reported to date. The objective of the study was to evaluate the anti-convulsive potential of aqueous extracts prepared from specific tissues of Kava (Piper methysticum) stems in zebrafish, using the PTZ-induced seizure model. The potency of each extract was compared in terms of the intensity of seizure scores and onset time after pre-treating the zebrafish before the PTZ challenge. The results indicate that aqueous extract of Kava stems without peel after 45 min of pre-treatment exhibited anti-convulsive potential at the dose of 50 mg/L. This study provides evidence to the anti-convulsive properties of peeled Kava stems and its potential for investigation and design of candidate anti-convulsive drugs.
Collapse
|
19
|
Chung YS, Choo BKM, Ahmed PK, Othman I, Shaikh MF. Orthosiphon stamineus Proteins Alleviate Pentylenetetrazol-Induced Seizures in Zebrafish. Biomedicines 2020; 8:biomedicines8070191. [PMID: 32630817 PMCID: PMC7400404 DOI: 10.3390/biomedicines8070191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
The anticonvulsive potential of proteins extracted from Orthosiphon stamineus leaves (OSLP) has never been elucidated in zebrafish (Danio rerio). This study thus aims to elucidate the anticonvulsive potential of OSLP in pentylenetetrazol (PTZ)-induced seizure model. Physical changes (seizure score and seizure onset time, behavior, locomotor) and neurotransmitter analysis were elucidated to assess the pharmacological activity. The protective mechanism of OSLP on brain was also studied using mass spectrometry-based label-free proteomic quantification (LFQ) and bioinformatics. OSLP was found to be safe up to 800 µg/kg and pre-treatment with OSLP (800 µg/kg, i.p., 30 min) decreased the frequency of convulsive activities (lower seizure score and prolonged seizure onset time), improved locomotor behaviors (reduced erratic swimming movements and bottom-dwelling habit), and lowered the excitatory neurotransmitter (glutamate). Pre-treatment with OSLP increased protein Complexin 2 (Cplx 2) expression in the zebrafish brain. Cplx2 is an important regulator in the trans-SNARE complex which is required during the vesicle priming phase in the calcium-dependent synaptic vesicle exocytosis. Findings in this study collectively suggests that OSLP could be regulating the release of neurotransmitters via calcium-dependent synaptic vesicle exocytosis mediated by the "Synaptic Vesicle Cycle" pathway. OSLP's anticonvulsive actions could be acting differently from diazepam (DZP) and with that, it might not produce the similar cognitive insults such as DZP.
Collapse
Affiliation(s)
- Yin-Sir Chung
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (B.K.M.C.); (I.O.)
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (B.K.M.C.); (I.O.)
| | - Pervaiz Khalid Ahmed
- School of Business, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (B.K.M.C.); (I.O.)
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (B.K.M.C.); (I.O.)
- Correspondence:
| |
Collapse
|
20
|
Chung YS, Choo BKM, Ahmed PK, Othman I, Shaikh MF. A Systematic Review of the Protective Actions of Cat's Whiskers (Misai Kucing) on the Central Nervous System. Front Pharmacol 2020; 11:692. [PMID: 32477146 PMCID: PMC7237571 DOI: 10.3389/fphar.2020.00692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Orthosiphon stamineus (OS) or Orthosiphon aristatus var. aristatus (OAA) is commonly known as cat's whiskers or "misai kucing". It is an herbaceous shrub that is popular in many different traditional and complementary medicinal systems. Its popularity has been justified by the plethora of studies that have shown that the secondary metabolites of the plant has effects that range from anti-inflammatory and gastroprotective to anorexic and antihypertensive. As such, OS could also be a potential treatment for Central Nervous System (CNS) disorders. However, a cohesive synthesis of the protective actions of OS was lacking. This systematic review was therefore commenced to elaborate on the various protective mechanisms of OS in the CNS. The PRISMA model was used and five databases (Google Scholar, SCOPUS, SpringerLink, ScienceDirect, and PubMed) were searched with relevant keywords to finally identify four articles that met the inclusion criteria. The articles described the protective effects of OS extracts on Alzheimer's disease, epilepsy, learning and memory, oxidative stress, and neurotoxicity. All the articles found were experimental or preclinical studies on animal models or in vitro systems. The reported activities demonstrated that OS could be a potential neuroprotective agent and might improve CNS conditions like neurodegeneration, neuroinflammation, and oxidative stress.
Collapse
Affiliation(s)
- Yin-Sir Chung
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Pervaiz Khalid Ahmed
- School of Business, Monash University Malaysia, Bandar Sunway, Malaysia.,Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
21
|
Paudel YN, Kumari Y, Abidin SAZ, Othman I, Shaikh MF. Pilocarpine Induced Behavioral and Biochemical Alterations in Chronic Seizure-Like Condition in Adult Zebrafish. Int J Mol Sci 2020; 21:ijms21072492. [PMID: 32260203 PMCID: PMC7178024 DOI: 10.3390/ijms21072492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
| | - Yatinesh Kumari
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
| | - Syafiq Asnawi Zainal Abidin
- LC-MS/MS Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
- LC-MS/MS Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
- Correspondence: ; Tel.: +603 5514 4483
| |
Collapse
|
22
|
Anti-Inflammation Associated Protective Mechanism of Berberine and its Derivatives on Attenuating Pentylenetetrazole-Induced Seizures in Zebrafish. J Neuroimmune Pharmacol 2020; 15:309-325. [DOI: 10.1007/s11481-019-09902-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
|
23
|
Canzian J, Müller TE, Franscescon F, Michelotti P, Fontana BD, Costa FV, Rosemberg DB. Modeling psychiatric comorbid symptoms of epileptic seizures in zebrafish. J Psychiatr Res 2019; 119:14-22. [PMID: 31542703 DOI: 10.1016/j.jpsychires.2019.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/31/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Epilepsy is a debilitating neurological disorder characterized by recurrent unprovoked seizures. Anxiety, cognitive deficits, depressive-like symptoms, and social dysfunction are psychiatric comorbidities with high prevalence in epileptic patients. Due to the genetic and behavioral tractability, the zebrafish is a promising model organism to understand the neural bases involved in epilepsy-related comorbidities. Here, we aimed to characterize some behavioral phenotypes paralleling those observed in epilepsy-related comorbidities after a single pentylenetetrazole (PTZ) exposure in zebrafish. We also analyzed the influence of whole-body cortisol levels in the behavioral responses measured. Fish were exposed to 10 mM PTZ for 20 min to induce epileptic seizures. After 24 h recovery period, locomotion and anxiety-like responses (novel tank and light-dark tests), social interaction (shoaling behavior task), and memory retention (inhibitory avoidance protocol) were assessed. Basically, PTZ impaired habituation to novelty stress, evoked anxiogenic-like behaviors, disrupted shoaling, and caused memory consolidation deficits in zebrafish without changing whole-body cortisol levels. In conclusion, our novel findings further validate the use of zebrafish as a suitable tool for modeling epilepsy-related comorbidities in translational neuropsychiatric research.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Paula Michelotti
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
| |
Collapse
|
24
|
In Vitro Regeneration and ISSR-Based Genetic Fidelity Analysis of Orthosiphon stamineus Benth. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Orthosiphon stamineus has been widely used as traditional remedy for various illnesses and diseases, such as cardiovascular diseases and epileptic seizures. In this study, direct regeneration through nodal segment of this species was attempted using Kinetin (6-Furfurylaminopurine) and IAA (indole-3-acetic acid). Optimum regeneration media was identified as MS media supplemented with 2.0 mg L−1 Kin plus 0.5 mg L−1 IAA. This yielded the highest number of shoots (5.57 ± 0.42) and leaves (20.53 ± 1.91) per explant. Acclimatization of the resulting in vitro regenerants was successful in all potting mixtures tested. However, potting mixture PF (1:1:1 ratio of black soil/red soil/compost) was identified as the best medium for acclimatization of this species, as it yielded 100% survival percentage after 90 days of acclimatization. Ten in vitro regenerants of O. stamineus were randomly collected after the third subculture and subjected to genetic variation analysis using inter-simple sequence repeat (ISSR) markers. Out of 20 ISSR markers tested, 10 working primers were observed to produce satisfactory amplification of bands, with an average of 7.11 bands per primer. A total of 610 bands were produced by the 10 primers. The percentage of polymorphism was observed to be very low, yielding only 7.32% polymorphism among all samples. Jaccard dissimilarity analysis was also conducted and very low genetic distance (about 0.1) was found among the in vitro regenerants and between the regenerants with the mother plant, thus ascertaining the clonal nature of the plantlets produced in this study.
Collapse
|
25
|
Kundap UP, Choo BKM, Kumari Y, Ahmed N, Othman IB, Shaikh MF. Embelin Protects Against Acute Pentylenetetrazole-Induced Seizures and Positively Modulates Cognitive Function in Adult Zebrafish. Front Pharmacol 2019; 10:1249. [PMID: 31708779 PMCID: PMC6823247 DOI: 10.3389/fphar.2019.01249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/27/2019] [Indexed: 01/29/2023] Open
Abstract
Purpose of the research: Epilepsy is a continuous process of neurodegeneration categorized by an enduring tendency to generate uncontrolled electrical firing known as seizures causing involuntary movement all over the body. Cognitive impairment and behavioral disturbances are among the more alarming co-morbidities of epilepsy. Anti-epileptic drugs (AEDs) were found to be successful in controlling epilepsy but are reported to worsen cognitive status in patients. Embelin (EMB) is a benzoquinone derived from the plant Embelia ribes and is reported to have central nervous system (CNS) activity. This study aims to evaluate the effectiveness of EMB against pentylenetetrazole (PTZ) induced acute seizures and its associated cognitive dysfunction. This was done via docking studies as well as evaluating neurotransmitter and gene expression in the zebrafish brain. The principal results: Behavioral observations showed that EMB reduced epileptic seizures and the T-maze study revealed that EMB improved the cognitive function of the fish. The docking study of EMB showed a higher affinity toward gamma-aminobutyric acid (GABAA) receptor as compared to the standard diazepam, raising the possibility of EMB working via the alpha subunit of the GABA receptor. EMB was found to modulate several genes, neurotransmitters, and also neuronal growth, all of which play an important role in improving cognitive status after epileptic seizures. Healthy zebrafish treated with EMB alone were found to have no behavioral and biochemical interference or side effects. The immunohistochemistry data suggested that EMB also promotes neuronal protection and neuronal migration in zebrafish brains. Major Conclusions: It was perceived that EMB suppresses seizure-like behavior via GABAA receptor pathway and has a positive impact on cognitive functions. The observed effect was supported by docking study, T-maze behavior, neurotransmitter and gene expression levels, and immunohistology study. The apparatus such as the T-maze and seizure scoring behavior tank were found to be a straightforward technique to score seizure and test learning ability after acute epileptic seizures. These research findings suggest that EMB could be a promising molecule for epilepsy induced learning and memory dysfunction.
Collapse
Affiliation(s)
- Uday Praful Kundap
- Department of Neurosciences, University of Montreal Hospital Centre (CRCHUM), Montreal, Canada.,Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Kuala Lumpur, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Kuala Lumpur, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Kuala Lumpur, Malaysia
| | - Nafees Ahmed
- School of Pharmacy, Monash University Malaysia, Kuala Lumpur, Malaysia
| | - Iekhsan Bin Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Kuala Lumpur, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Kundap UP, Paudel YN, Kumari Y, Othman I, Shaikh MF. Embelin Prevents Seizure and Associated Cognitive Impairments in a Pentylenetetrazole-Induced Kindling Zebrafish Model. Front Pharmacol 2019; 10:315. [PMID: 31057394 PMCID: PMC6478791 DOI: 10.3389/fphar.2019.00315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a neuronal disorder associated with several neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Despite having more than 20 anti-epileptic drugs (AEDs), they only provide a symptomatic treatment. As well as, currently available AEDs also displayed cognitive alterations in addition to retarding seizure. This leads to the need for exploring new molecules that not only retard seizure but also improve cognitive impairment. Embelin (EMB) is a benzoquinone derivative which has already demonstrated its pharmacological potentials against arrays of neurological conditions. The current study developed a chronic kindling model in adult zebrafish by using repeated administration of small doses of pentylenetetrazole (PTZ) and a single dose of Kainic acid (KA) to investigate the associated memory impairment. This has been done by using the three-axis maze which is a conventional method to test the learning ability and egocentric memory in zebrafish. As well as, the ameliorative potential of EMB has been evaluated against chronic epilepsy-related memory alterations. Moreover the expression level of pro-inflammatory genes such as C-C motif ligand 2 (CCL2), toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interferon-γ (IFN-γ) were evaluated. The level of several neurotransmitters such as γ-aminobutyric acid (GABA), acetylcholine (Ach) and glutamate (Glu) was evaluated by liquid chromatography-mass spectrometry (LC-MS). The results showed that daily dose of PTZ 80 mg/kg for 10 days successfully induces a kindling effect in zebrafish, whereas the single dose of KA did not. As compared to control, the PTZ and KA group demonstrates impairment in memory as demonstrated by the three-axis maze. The PTZ group treated with a series of EMB doses (ranging from 0.156 to 0.625 mg/kg) was found to have retarded seizure as well as significantly reduces epilepsy-induced memory alteration. In addition, EMB treatment reduces the expression of inflammatory markers implicating its anti-inflammatory potential. Moreover, levels of GABA, Ach, and glutamate are increased in EMB administered group as compared to the PTZ administered group. Overall, findings demonstrate that EMB might be a potential candidate against chronic epilepsy-related cognitive dysfunction as EMB prevents the seizures, so we expect it to prevent the associated neuroinflammation and learning deficit.
Collapse
Affiliation(s)
- Uday Praful Kundap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,University of Montreal Hospital Centre (CRCHUM), Montreal, QC, Canada
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekshan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF. A Systematic Review on Non-mammalian Models in Epilepsy Research. Front Pharmacol 2018; 9:655. [PMID: 29997502 PMCID: PMC6030834 DOI: 10.3389/fphar.2018.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by seizures which result in distinctive neurobiological and behavioral impairments. Not much is known about the causes of epilepsy, making it difficult to devise an effective cure for epilepsy. Moreover, clinical studies involving epileptogenesis and ictogenesis cannot be conducted in humans due to ethical reasons. As a result, animal models play a crucial role in the replication of epileptic seizures. In recent years, non-mammalian models have been given a primary focus in epilepsy research due to their advantages. This systematic review aims to summarize the importance of non-mammalian models in epilepsy research, such as in the screening of anti-convulsive compounds. The reason for this review is to integrate currently available information on the use and importance of non-mammalian models in epilepsy testing to aid in the planning of future studies as well as to provide an overview of the current state of this field. A PRISMA model was utilized and PubMed, Springer, ScienceDirect and SCOPUS were searched for articles published between January 2007 and November 2017. Fifty-one articles were finalized based on the inclusion/exclusion criteria and were discussed in this review. The results of this review demonstrated the current use of non-mammalian models in epilepsy research and reaffirmed their potential to supplement the typical rodent models of epilepsy in future research into both epileptogenesis and the treatment of epilepsy. This review also revealed a preference for zebrafish and fruit flies in lieu of other non-mammalian models, which is a shortcoming that should be corrected in future studies due to the great potential of these underutilized animal models.
Collapse
Affiliation(s)
- Muhammad Faiz Johan Arief
- MBBS Young Scholars Program, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jia Ling Yap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|