1
|
Zou X, Zhang K, Li X, Zhang Y, Chen L, Li H. Current advances on the phytochemistry, pharmacology, quality control and applications of Anoectochilus roxburghii. Front Pharmacol 2025; 15:1527341. [PMID: 39830330 PMCID: PMC11739135 DOI: 10.3389/fphar.2024.1527341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Anoectochilus roxburghii (Wall.) Lindl. (AR) is a perennial herb that has long been used as medicinal and edible plant. In Traditional Chinese Medicine (TCM), AR is utilized to treat various diseases including hyperuricemia, type 2 diabetes mellitus, cancers and inflammatory diseases. Recent advances in the discovery and isolation of bio-active compounds have unveils the main medicinal ingredients, such as quercetin, kinsenoside and rhamnazin. Pharmacological studies further demonstrated its activities, containing anti-inflammation, anti-oxidation, and antihyperlipidemia effects. The processed AR products have various commercial applications in functional foods and cosmetics. AR has been used to prepare soup, drinkbeverage, jelly, face masks, soap, etc. However, despite the abundant medicinal value, it hasn't been included in the 2020 Chinese Pharmacopoeia up to now. There is also no consistent evaluation standard across provinces. This seriously affects the safety and the efficacy of TCM prescriptions, not to mention the development question. This review summarizes recent research on AR in phytochemistry, pharmacology, quality control and applications, raises the corresponding solutions to provide references and potential directions for further studies.
Collapse
Affiliation(s)
- Xiaoxue Zou
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kexin Zhang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xuezhen Li
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuqin Zhang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Wuya College of Innovation, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Hua Li
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Wuya College of Innovation, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
3
|
Tsou SC, Chuang CJ, Wang I, Chen TC, Yeh JH, Hsu CL, Hung YC, Lee MC, Chang YY, Lin HW. Lemon Peel Water Extract: A Novel Material for Retinal Health, Protecting Retinal Pigment Epithelial Cells against Dynamin-Related Protein 1-Mediated Mitochondrial Fission by Blocking ROS-Stimulated Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathway. Antioxidants (Basel) 2024; 13:538. [PMID: 38790643 PMCID: PMC11117509 DOI: 10.3390/antiox13050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies showed that NaIO3 can induce oxidative stress-mediated retinal pigment epithelium (RPE) damage to simulate age-related macular degeneration (AMD). Lemon peel is rich in antioxidants and components that can penetrate the blood-retinal barrier, but their role in retinal oxidative damage remains unexplored. Here, we explore the protection of lemon peel ultrasonic-assisted water extract (LUWE), containing large amounts of flavonoids and polyphenols, against NaIO3-induced retinal degeneration. We initially demonstrated that LUWE, orally administered, prevented retinal distortion and thinning on the inner and outer nuclei layers, downregulating cleaved caspase-3 protein expression in RPE cells in NaIO3-induced mice. The effect of LUWE was achieved through the suppression of apoptosis and the associated proteins, such as cleaved PARP and cleaved caspase-3, as suggested by NaIO3-induced ARPE-19 cell models. This is because LUWE reduced reactive oxygen species-mediated mitochondrial fission via regulating p-Drp-1 and Fis1 expression. We further confirmed that LUWE suppresses the expression of p-MEK-1/2 and p-ERK-1/2 in NaIO3-induced ARPE-19 cells, thereby providing the protection described above, which was confirmed using PD98059 and U0126. These results indicated that LUWE prevents mitochondrial oxidative stress-mediated RPE damage via the MEK/ERK pathway. Elucidation of the molecular mechanism may provide a new protective strategy against retinal degeneration.
Collapse
Affiliation(s)
- Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.T.); (C.-L.H.)
| | - Chen-Ju Chuang
- Emergency Department, St. Martin De Porres Hospital, Chiayi 60069, Taiwan;
| | - Inga Wang
- Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (T.-C.C.); (J.-H.Y.)
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (T.-C.C.); (J.-H.Y.)
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.T.); (C.-L.H.)
| | - Yu-Chien Hung
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City 23143, Taiwan;
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
4
|
Wang L, Zhang C, Pang L, Wang Y. Integrated network pharmacology and experimental validation to explore the potential pharmacological mechanism of Qihuang Granule and its main ingredients in regulating ferroptosis in AMD. BMC Complement Med Ther 2023; 23:420. [PMID: 37990310 PMCID: PMC10664676 DOI: 10.1186/s12906-023-04205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/07/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Qihuang Granule (QHG) is a traditional prescription that has exhibited potential in safeguarding against age-related maculopathy (AMD). Salvia miltiorrhiza (SM) and Fructus lycii (FL) are the main components of QHG. Ferroptosis, a newly discovered, iron-dependent, regulated cell death pathway, have been implicated in the pathogenesis of AMD. This study delves into the intricate mechanism by which SM/FL and QHG confer protection against AMD by modulating the ferroptosis pathway, employing a combination of network pharmacology and experimental validation. METHODS Bioactive compounds and potential targets of SM and FL were gathered from databases such as TCMSP, GeneCard, OMIM, and FerrDb, along with AMD-related genes and key genes responsible for ferroptosis regulation. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction (PPI) network were performed to discover the potential mechanism. The construction of an interaction network involving AMD, ferroptosis, SM/FL potential target genes was facilitated by the STRING database and realized using Cytoscape software. Subsequent validation was accomplished through molecular docking and in vitro cell experiments. RESULTS Noteworthy active compounds including quercetin, tanshinone IIA, luteolin, cryptotanshinone, and hub targets such as HIF-1α, EGFR, IL6, and VEGFA were identified. KEGG enrichment unveiled the HIF-1 signalling pathway as profoundly enriched, and IL6 and VEGF were involved. The molecular docking revealed the significant active compounds with hub genes and quercetin showed good binding to HIF-1α, which is involved in inflammation and angiogenesis. Experimental results verified that both herbs and QHG could regulate key ferroptosis-related targets in the retinal pigment epithelium and inhibit the expression of HIF-1α, VEGFA, and IL-6, subsequently increase cell viability and decrease the ROS content induced by H2O2. CONCLUSION This study demonstrates the molecular mechanism through which SM/FL and QHG protect against AMD and emerges as a plausible mechanism underlying this protection.
Collapse
Affiliation(s)
- Lu Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111DaDe Road, Guangzhou, Guangdong, 510120, China
| | - Canyang Zhang
- Department of Ophthalmology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Long Pang
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111DaDe Road, Guangzhou, Guangdong, 510120, China.
| | - Yan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111DaDe Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
5
|
MAPK Pathways in Ocular Pathophysiology: Potential Therapeutic Drugs and Challenges. Cells 2023; 12:cells12040617. [PMID: 36831285 PMCID: PMC9954064 DOI: 10.3390/cells12040617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous cellular signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Once activated through phosphorylation, these MAPKs in turn phosphorylate and activate transcription factors present either in the cytoplasm or in the nucleus, leading to the expression of target genes and, as a consequence, they elicit various biological responses. The aim of this work is to provide a comprehensive review focusing on the roles of MAPK signaling pathways in ocular pathophysiology and the potential to influence these for the treatment of eye diseases. We summarize the current knowledge of identified MAPK-targeting compounds in the context of ocular diseases such as macular degeneration, cataract, glaucoma and keratopathy, but also in rare ocular diseases where the cell differentiation, proliferation or migration are defective. Potential therapeutic interventions are also discussed. Additionally, we discuss challenges in overcoming the reported eye toxicity of some MAPK inhibitors.
Collapse
|
6
|
Zong Y, Kamoi K, Kurozumi-Karube H, Zhang J, Yang M, Ohno-Matsui K. Safety of intraocular anti-VEGF antibody treatment under in vitro HTLV-1 infection. Front Immunol 2023; 13:1089286. [PMID: 36761168 PMCID: PMC9905742 DOI: 10.3389/fimmu.2022.1089286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction HTLV-1 (human T-cell lymphotropic virus type 1) is a retrovirus that infects approximately 20 million people worldwide. Many diseases are caused by this virus, including HTLV-1-associated myelopathy, adult T-cell leukemia, and HTLV-1 uveitis. Intraocular anti-vascular endothelial growth factor (VEGF) antibody injection has been widely used in ophthalmology, and it is reportedly effective against age-related macular degeneration, complications of diabetic retinopathy, and retinal vein occlusions. HTLV-1 mimics VEGF165, the predominant isoform of VEGF, to recruit neuropilin-1 and heparan sulfate proteoglycans. VEGF165 is also a selective competitor of HTLV-1 entry. Here, we investigated the effects of an anti-VEGF antibody on ocular status under conditions of HTLV-1 infection in vitro. Methods We used MT2 and TL-Om1 cells as HTLV-1-infected cells and Jurkat cells as controls. Primary human retinal pigment epithelial cells (HRPEpiCs) and ARPE19 HRPEpiCs were used as ocular cells; MT2/TL-Om1/Jurkat cells and HRPEpiCs/ARPE19 cells were co-cultured to simulate the intraocular environment of HTLV-1-infected patients. Aflibercept was administered as an anti-VEGF antibody. To avoid possible T-cell adhesion, we lethally irradiated MT2/TL-Om1/Jurkat cells prior to the experiments. Results Anti-VEGF antibody treatment had no effect on activated NF-κB production, inflammatory cytokines, chemokines, HTLV-1 proviral load (PVL), or cell counts in the retinal pigment epithelium (RPE) under MT2 co-culture conditions. Under TL-Om1 co-culture conditions, anti-VEGF antibody treatment did not affect the production of activated NF-κB, chemokines, PVL, or cell counts, but production of the inflammatory cytokine IL-6 was increased. In addition, anti-VEGF treatment did not affect PVL in HTLV-1-infected T cells. Conclusion This preliminary in vitro assessment indicates that intraocular anti-VEGF antibody treatment for HTLV-1 infection does not exacerbate HTLV-1-related inflammation and thus may be safe for use.
Collapse
|
7
|
Gao H, Chen M, Liu Y, Zhang D, Shen J, Ni N, Tang Z, Ju Y, Dai X, Zhuang A, Wang Z, Chen Q, Fan X, Liu Z, Gu P. Injectable Anti-Inflammatory Supramolecular Nanofiber Hydrogel to Promote Anti-VEGF Therapy in Age-Related Macular Degeneration Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204994. [PMID: 36349821 DOI: 10.1002/adma.202204994] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 06/16/2023]
Abstract
Age-related macular degeneration (AMD) is a major cause of visual impairment and severe vision loss worldwide, while the currently available treatments are often unsatisfactory. Previous studies have demonstrated both inflammation and oxidative-stress-induced damage to the retinal pigment epithelium are involved in the pathogenesis of aberrant development of blood vessels in wet AMD (wet-AMD). Although antivascular endothelial growth factor (VEGF) therapy (e.g., Ranibizumab) can impair the growth of new blood vessels, side effects are still found with repeated monthly intravitreal injections. Here, an injectable antibody-loaded supramolecular nanofiber hydrogel is fabricated by simply mixing betamethasone phosphate (BetP), a clinic anti-inflammatory drug, anti-VEGF, the gold-standard anti-VEGF drug for AMD treatment, with CaCl2 . Upon intravitreal injection, such BetP-based hydrogel (BetP-Gel), while enabling long-term sustained release of anti-VEGF to inhibit vascular proliferation in the retina and attenuate choroidal neovascularization, can also scavenge reactive oxygen species to reduce local inflammation. Remarkably, such BetP-Gel can dramatically prolong the effective treatment time of conventional anti-VEGF therapy. Notably, anti-VEGF-loaded supramolecular hydrogel based on all clinically approved agents may be readily translated into clinical use for AMD treatment, with the potential to replace the current anti-VEGF therapy.
Collapse
Affiliation(s)
- Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yan Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xiaochan Dai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Zhaoyang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
8
|
Lu L, Xiong Y, Lin Z, Chu X, Panayi AC, Hu Y, Zhou J, Mi B, Liu G. Advances in the therapeutic application and pharmacological properties of kinsenoside against inflammation and oxidative stress-induced disorders. Front Pharmacol 2022; 13:1009550. [PMID: 36267286 PMCID: PMC9576948 DOI: 10.3389/fphar.2022.1009550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Extensive research has implicated inflammation and oxidative stress in the development of multiple diseases, such as diabetes, hepatitis, and arthritis. Kinsenoside (KD), a bioactive glycoside component extracted from the medicinal plant Anoectochilus roxburghii, has been shown to exhibit potent anti-inflammatory and anti-oxidative abilities. In this review, we summarize multiple effects of KD, including hepatoprotection, pro-osteogenesis, anti-hyperglycemia, vascular protection, immune regulation, vision protection, and infection inhibition, which are partly responsible for suppressing inflammation signaling and oxidative stress. The protective action of KD against dysfunctional lipid metabolism is also associated with limiting inflammatory signals, due to the crosstalk between inflammation and lipid metabolism. Ferroptosis, a process involved in both inflammation and oxidative damage, is potentially regulated by KD. In addition, we discuss the physicochemical properties and pharmacokinetic profiles of KD. Advances in cultivation and artificial synthesis techniques are promising evidence that the shortage in raw materials required for KD production can be overcome. In addition, novel drug delivery systems can improve the in vivo rapid clearance and poor bioavailability of KD. In this integrated review, we aim to offer novel insights into the molecular mechanisms underlying the therapeutic role of KD and lay solid foundations for the utilization of KD in clinical practice.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
9
|
Wang DK, Zheng HL, Zhou WS, Duan ZW, Jiang SD, Li B, Zheng XF, Jiang LS. Mitochondrial Dysfunction in Oxidative Stress-Mediated Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1569-1582. [PMID: 35673928 PMCID: PMC9363752 DOI: 10.1111/os.13302] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the most common contributor to low back pain (LBP). Recent studies have found that oxidative stress and reactive oxygen species (ROS) play an important role in IVDD. As a by‐product of aerobic respiration, ROS is mainly produced in the mitochondria by the electron transport chain and other mitochondrial located proteins. With the excessive accumulation of ROS, mitochondria are also the primary target of ROS attack in disc cells. A disrupted balance between intracellular ROS production and antioxidant capacity will lead to oxidative stress, which is the key contributor to cell apoptosis, cell senescence, excessive autophagy, and mitochondrial dysfunction. As the pivotal ingredient of oxidative stress, mitochondrial dysfunction manifests as imbalanced mitochondrial dynamics and dysregulated mitophagy. Mitochondria can alter their own dynamics through the process of fusion and fission, so that disabled mitochondria can be separated from the mitochondrial pool. Moreover, mitophagy participates by clearing these dysfunctional mitochondria. Abnormality in any of these processes either increases the production or decreases the clearance of ROS, leading to a vicious cycle that results in the death of intervertebral disc cells in large quantities, combined with degradation of the extracellular matrix and overproduction of matrix metalloproteinase. In this review, we explain the changes in mitochondrial morphology and function during oxidative stress‐mediated IVDD and highlight the important role of mitochondria in this process. Eventually, we summarize the IVDD therapeutic strategies targeting mitochondrial dysfunction based on current understanding of the role of oxidative stress in IVDD.
Collapse
Affiliation(s)
- Dian-Kai Wang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wei Duan
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Tian D, Zhong X, Fu L, Zhu W, Liu X, Wu Z, Li Y, Li X, Li X, Tao X, Wei Q, Yang X, Huang Y. Therapeutic effect and mechanism of polysaccharides from Anoectochilus Roxburghii (Wall.) Lindl. in diet-induced obesity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154031. [PMID: 35272243 DOI: 10.1016/j.phymed.2022.154031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent studies have shown that polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. (ARPs) can reduce blood glucose levels, ameliorate oxidative stress and inflammation. However, whether ARPs have a beneficial effect on diet-induced obesity remain to be determined. PURPOSE This study aims to investigate the effect and mechanism of ARPs in improving obesity and metabolic disorders induced by high-fat diet (HFD). METHODS In this study, 6-week-old male mice were fed with HFD or chow diet for 13 weeks, and a dietary supplementation with ARPs was carried out. Glucose tolerance test and insulin tolerance test were performed to measure the glucose tolerance and insulin sensitivity. Adipose tissue and liver were isolated for analysis by qRT-PCR, Western blotting, hematoxylin-eosin staining and immunostaining. RESULTS At week 13, body weight and fat mass were significantly increased by HFD, but ARPs supplementation abolished these phenotypes. Compared with HFD group, thermogenic genes including Ucp-1, Pgc-1α, Prdm16 and Dio2 in adipose tissue were up-regulated in ARPs-treated mice. In addition, ARPs decreased liver lipid accumulation by reducing lipid synthesis and increasing oxidation. Meanwhile, dyslipidemia and insulin resistance induced by HFD were improved by ARPs. Mechanistically, ARPs can promote fat thermogenesis via AMPK/SIRT1/PGC-1α signaling pathway. CONCLUSION Dietary supplementation of ARPs can protect mice against diet-induced obesity, fatty liver and insulin resistance. Our study reveals a potential therapeutic effect for ARPs in regulating energy homeostasis.
Collapse
Affiliation(s)
- Dongmei Tian
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyan Zhong
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liya Fu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xin Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yue Li
- Department of Ophthalmic Optics, North Sichuan Medical College, Nanchong 637000, China
| | - Xue Li
- Institute of Cancer Research, Southwest Medical University, Luzhou 646000, China
| | - Xuesen Li
- Institute of Cancer Research, Southwest Medical University, Luzhou 646000, China
| | - Xuemei Tao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiming Wei
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
11
|
The Activation of AMPK/NRF2 Pathway in Lung Epithelial Cells Is Involved in the Protective Effects of Kinsenoside on Lipopolysaccharide-Induced Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3589277. [PMID: 35340214 PMCID: PMC8956386 DOI: 10.1155/2022/3589277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
The disorder of mitochondrial dynamic equilibrium of lung epithelial cell is one of the critical causes of acute lung injury (ALI). Kinsenoside (Kin) serves as an active small-molecule component derived from traditional medicinal herb displaying multiple pharmacological actions in cancers, hyperglycemia, and liver disease. The objective of this study was to investigate the effects of Kin on lipopolysaccharide- (LPS-) induced ALI and further explore possible molecular mechanisms. Kin was administered orally (100 mg/kg/day) for 7 consecutive days before LPS instillation (5 mg/kg). After 12 hours, pathological injury, inflammatory response, and oxidative stress were detected. The results demonstrated that Kin significantly alleviated lung pathological injury and decreased the infiltration of inflammatory cells and the release of inflammatory mediators in bronchoalveolar lavage fluid (BALF), apart from inhibiting the production of reactive oxygen species (ROS) and lipid peroxidation. Meanwhile, Kin also promoted mitochondrial fusion and restrained mitochondrial fission in mice with ALI. In terms of mechanism, Kin pretreatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and the protein level of nuclear factor erythroid 2-related factor 2 (NRF2). In Ampk-α knockout mice challenged with LPS, Kin lost its pulmonary protective effects, accompanied by lower NRF2 level. In vitro experiments further unveiled that either AMPK inhibition by Compound C or NRF2 knockdown by siRNA abolished the protective roles of Kin in LPS-treated A549 lung epithelial cells. And NRF2 activator TAT-14 could reverse the effects of Ampk-α deficiency. In conclusion, Kin possesses the ability to prevent LPS-induced ALI by modulating mitochondrial dynamic equilibrium in lung epithelial cell in an AMPK/NRF2-dependent manner.
Collapse
|
12
|
Xiang M, Liu T, Tian C, Ma K, Gou J, Huang R, Li S, Li Q, Xu C, Li L, Lee CH, Zhang Y. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol Res 2022; 177:106092. [PMID: 35066108 PMCID: PMC8776354 DOI: 10.1016/j.phrs.2022.106092] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Kinsenoside (KD) exhibits anti-inflammatory and immunosuppressive effects. Dendritic cells (DCs) are critical regulators of the pathologic inflammatory milieu in liver fibrosis (LF). Herein, we explored whether and how KD repressed development of LF via DC regulation and verified the pathway involved in the process. Given our analysis, both KD and adoptive transfer of KD-conditioned DCs conspicuously reduced hepatic histopathological damage, proinflammatory cytokine release and extracellular matrix deposition in CCl4-induced LF mice. Of note, KD restrained the LF-driven rise in CD86, MHC-II, and CCR7 levels and, simultaneously, upregulated PD-L1 expression on DCs specifically, which blocked CD8+T cell activation. Additionally, KD reduced DC glycolysis, maintained DCs immature, accompanied by IL-12 decrease in DCs. Inhibiting DC function by KD disturbed the communication of DCs and HSCs with the expression or secretion of α-SMA and Col-I declined in the liver. Mechanistically, KD suppressed the phosphorylation of PI3K-AKT driven by LF or PI3K agonist, followed by enhanced nuclear transport of FoxO1 and upregulated interaction of FoxO1 with the PD-L1 promoter in DCs. PI3K inhibitor or si-IL-12 acting on DC could relieve LF, HSC activation and diminish the effect of KD. In conclusion, KD suppressed DC maturation with promoted PD-L1 expression via PI3K-AKT-FoxO1 and decreased IL-12 secretion, which blocked activation of CD8+T cells and HSCs, thereby alleviating liver injury and fibro-inflammation in LF.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, the Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Ma
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Gou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanrui Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals (Basel) 2022; 15:ph15010101. [PMID: 35056157 PMCID: PMC8777838 DOI: 10.3390/ph15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease associated with anatomical changes in the inner retina. Despite tremendous advances in clinical care, there is currently no cure for AMD. This review aims to evaluate the published literature on the therapeutic roles of natural antioxidants in AMD. A literature search of PubMed, Web of Science and Google Scholar for peer-reviewed articles published between 1 January 2011 and 31 October 2021 was undertaken. A total of 82 preclinical and 18 clinical studies were eligible for inclusion in this review. We identified active compounds, carotenoids, extracts and polysaccharides, flavonoids, formulations, vitamins and whole foods with potential therapeutic roles in AMD. We evaluated the integral cellular signaling pathways including the activation of antioxidant pathways and angiogenesis pathways orchestrating their mode of action. In conclusion, we examined the therapeutic roles of natural antioxidants in AMD which warrant further study for application in clinical practice. Our current understanding is that natural antioxidants have the potential to improve or halt the progression of AMD, and tailoring therapeutics to the specific disease stages may be the key to preventing irreversible vision loss.
Collapse
|
14
|
Kuznetsova AV, Rzhanova LA, Aleksandrova MA. Small Noncoding RNA in Regulation of Differentiation of Retinal Pigment Epithelium. Russ J Dev Biol 2021. [DOI: 10.1134/s106236042103005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kinsenoside Alleviates 17α-Ethinylestradiol-Induced Cholestatic Liver Injury in Rats by Inhibiting Inflammatory Responses and Regulating FXR-Mediated Bile Acid Homeostasis. Pharmaceuticals (Basel) 2021; 14:ph14050452. [PMID: 34064649 PMCID: PMC8151897 DOI: 10.3390/ph14050452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cholestasis is an important predisposing factor of liver diseases, such as hepatocyte necrosis, liver fibrosis and primary biliary cirrhosis. In this study, we aimed to investigate the effects of Kinsenoside (KD), a natural active ingredient of Anoectochilus roxburghii, on estrogen-induced cholestatic liver injury in Sprague-Dawley rats and the underlying mechanism. The rats were randomly divided into six groups: control group, model group, low-dose KD group (50 mg/kg body weight, KD-L), medium-dose KD group (100 mg/kg body weight, KD-M), high-dose KD group (200 mg/kg body weight, KD-H) and ursodeoxycholic acid group (40 mg/kg body weight, UDCA). 17α-Ethinylestradiol (EE) was used to establish an experimental animal model of estrogen-induced cholestasis (EIC). The results demonstrated that KD alleviated liver pathologic damage, serum biochemical status and inhibited hepatocellular microstructure disorder and bile duct hyperplasia in EE-induced cholestatic rats. Mechanically, KD alleviated EE-induced cholestatic liver injury by inhibiting inflammatory responses and regulating bile acid homeostasis. Concretely, KD reduced the expression of IL-1β and IL-6 by inhibiting NF-κB p65 to suppress EE-mediated inflammation in rat liver. KD enhanced the expression of FXR and inhibited EE-mediated reduction of FXR in vitro and in vivo. It was the potential mechanism that KD mitigates cholestasis by increasing efflux and inhibiting uptake of bile acids via FXR-mediated induction of bile salt export pump (BSEP) and reduction of Na+-dependent taurocholate cotransport peptide (NTCP) to maintain bile acid homeostasis. Moreover, KD repressed the bile acid synthesis through reducing the expression of synthetic enzyme (CYP7A1), thereby normalizing the expression of metabolic enzyme (SULT2A1) of bile acid. In conclusion, our results revealed that KD may be an effective drug candidate for the treatment of cholestasis.
Collapse
|
16
|
Lee BJ, Byeon HE, Cho CS, Kim YH, Kim JH, Che JH, Seok SH, Kwon JW, Kim JH, Lee K. Histamine causes an imbalance between pro-angiogenic and anti-angiogenic factors in the retinal pigment epithelium of diabetic retina via H4 receptor/p38 MAPK axis. BMJ Open Diabetes Res Care 2020; 8:8/2/e001710. [PMID: 33328159 PMCID: PMC7745681 DOI: 10.1136/bmjdrc-2020-001710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Systemic histaminergic activity is elevated in patients with diabetes mellitus. There are a few studies suggesting that histamine is implicated in the pathogenesis of diabetes, but the exact role of histamine in the development of diabetic retinopathy is unclear. The aim of this study was to investigate the role of histamine receptor H4 (HRH4) in the regulation of retinal pigment epithelium (RPE)-derived pro-angiogenic and anti-angiogenic factors under diabetic conditions. RESEARCH DESIGN AND METHODS The levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), histamine and histidine decarboxylase (HDC) in the serum and vitreous samples of patients with diabetes were compared with those of patients without diabetes. The effect of hyperglycemia on expression levels of HRH4, VEGF, IL-6 and pigment epithelium-derived factor (PEDF) in the RPE was determined. The role of HRH4 in high glucose-induced regulation of VEGF, IL-6 and PEDF in ARPE-19 cells and the underlying regulatory mechanism were verified using an RNA interference-mediated knockdown study. RESULTS The serum and vitreous levels of VEGF, IL-6, histamine and HDC were more increased in patients with diabetic retinopathy than in patients without diabetes. HRH4 was overexpressed in RPE both in vitro and in vivo. Histamine treatment upregulated VEGF and IL-6 and downregulated PEDF expression in ARPE-19 cells cultivated under hyperglycemic conditions. Hyperglycemia-induced phosphorylation of p38 and subsequent upregulation of VEGF and IL-6 and downregulation of PEDF were dampened by small interfering RNA-mediated knockdown of HRH4 in ARPE-19 cells. CONCLUSIONS Taken together, HRH4 was a critical regulator of VEGF, IL-6 and PEDF in the RPE under hyperglycemic conditions and the p38 mitogen-activated protein kinase pathway mediated this regulatory mechanism.
Collapse
Affiliation(s)
- Byung Joo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hye Eun Byeon
- Institute of Medical Science, Ajou University School of Medicine and Graduate School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Chang Sik Cho
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Ho Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Republic of Korea
| | | | - Jeong-Hwan Che
- Biomedical Center for Animal Resource Development and Institute for Experimental Animals, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Kwon
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
- Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kihwang Lee
- Department of Ophthalmology, Ajou University School of Medicine and Graduate School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Tong Y, Wang S. Not All Stressors Are Equal: Mechanism of Stressors on RPE Cell Degeneration. Front Cell Dev Biol 2020; 8:591067. [PMID: 33330470 PMCID: PMC7710875 DOI: 10.3389/fcell.2020.591067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible blindness among the elderly population. Dysfunction and degeneration of the retinal pigment epithelial (RPE) layer in the retina underscore the pathogenesis of both dry and wet AMD. Advanced age, cigarette smoke and genetic factors have been found to be the prominent risk factors for AMD, which point to an important role for oxidative stress and aging in AMD pathogenesis. However, the mechanisms whereby oxidative stress and aging lead to RPE cell degeneration are still unclear. As cell senescence and cell death are the major outcomes from oxidative stress and aging, here we review the mechanisms of RPE cell senescence and different kinds of cell death, including apoptosis, necroptosis, pyroptosis, ferroptosis, with an aim to clarify how RPE cell degeneration could occur in response to AMD-related stresses, including H2O2, 4-Hydroxynonenal (4-HNE), N-retinylidene-N-retinyl-ethanolamine (A2E), Alu RNA and amyloid β (Aβ). Besides those, sodium iodate (NaIO3) induced RPE cell degeneration is also discussed in this review. Although NaIO3 itself is not related to AMD, this line of study would help understand the mechanism of RPE degeneration.
Collapse
Affiliation(s)
- Yao Tong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States.,Department of Ophthalmology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
18
|
Wei R, Zhong S, Qiao L, Guo M, Shao M, Wang S, Jiang B, Yang Y, Gu C. Steroid 5α-Reductase Type I Induces Cell Viability and Migration via Nuclear Factor-κB/Vascular Endothelial Growth Factor Signaling Pathway in Colorectal Cancer. Front Oncol 2020; 10:1501. [PMID: 32983992 PMCID: PMC7484213 DOI: 10.3389/fonc.2020.01501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system. Steroid 5α-reductase type I (SRD5A1), as an important part of the steroid metabolism, converts testosterone to dihydrotestosterone and regulates sex hormone levels, which accommodates tumor occurrence or development. However, the underlying molecular mechanism of SRD5A1 in CRC remains unclear. We compared SRD5A1 expression in CRC tissues with normal controls by immunohistochemistry and found that elevated SRD5A1 in CRC was relevant for poor patient prognosis. Furthermore, inducible downregulation of SRD5A1 by small hairpin RNA reduced cell viability, promoted cell cycle arrest, and induced cell apoptosis and cellular senescence of CRC cells, as well as attenuated cell migration ability. In the following experiments, we used dutasteride (an inhibitor of SRD5A1/2) to explore its inhibitory effect on the biological processes of CRC cells, as mentioned earlier. Further mechanism study demonstrated that the repression of SRD5A1 abolished the expression of p65 and vascular endothelial growth factor, suggesting that SRD5A1 might regulate cell viability and migration through nuclear factor-κB/vascular endothelial growth factor signaling pathway. Collectively, these findings implicate SRD5A1 acting as a novel biomarker for CRC diagnosis and prognosis and provide compelling evidence for the future evaluation of dutasteride as a promising candidate for CRC treatment.
Collapse
Affiliation(s)
- Rongfang Wei
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sixia Zhong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Qiao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miaomiao Shao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyu Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Jiang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Stepwise rapid tracking strategy to identify active molecules from Ixeris sonchifolia Hance based on "'affinity mass spectrometry-atomic force microscopy imaging'" technology. Talanta 2020; 217:121031. [PMID: 32498901 DOI: 10.1016/j.talanta.2020.121031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
In this study, a novel stepwise rapid tracking strategy was reported to identify the active molecules from Ixeris sonchifolia Hance (IsH) in the treatment of coronary heart disease (CHD) based on "affinity mass spectrometry (MS)-atomic force microscopy (AFM) imaging" technology. First, vascular endothelial growth factor receptor 2 (VEGFR2) of the vascular endothelial growth factor (VEGF) signal transduction pathway located on the cell membrane was revealed to be the core target protein in CHD treatment through network pharmacology and bioinformatics. In addition, affinity MS screening based on VEGFR2 identified isochlorogenic acid A and luteolin-7-O-glucuronide as having stronger affinity with VEGFR2. Then, the active molecule was elucidated based on the observation that its actions accompanied the molecular morphological changes by AFM imaging and it could act on the binding pocket of VEGFR2 through molecular docking which further demonstrated the analysis and inference of AFM imaging. The methyl thiazolyl tetrazolium (MTT) assay finally confirmed that the active molecules specifically combined with the potential core target protein to protect the viability of cardiomyocytes, which identified the main potential active molecules in IsH for the treatment of CHD and provided a possible mechanism for the protective role of the drug. The technology established in this study could facilitate the rapid tracing of potential active molecules in traditional Chinese medicine (TCM), which would provide further a reference for research on quality, molecular mechanisms and new drugs.
Collapse
|
20
|
Optimization of Ultrasound Assisted Extraction (UAE) of Kinsenoside Compound from Anoectochilus roxburghii (Wall.) Lindl by Response Surface Methodology (RSM). Molecules 2020; 25:molecules25010193. [PMID: 31906599 PMCID: PMC6983077 DOI: 10.3390/molecules25010193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to establish an extraction method for the kinsenoside compound from the whole plant Anoectochilus roxburghii. Ultrasound assisted extraction (UAE) and Ultra-high performance liquid chromatography (UPLC) method were used to extract and determine the content of kinsenoside, while response surface method (RSM) was used to optimize the extraction process. The best possible range for methanol concentration (0–100%), the liquid-solid ratio (5:1–30:1 mL/g), ultrasonic power (240–540 W), duration of ultrasound (10–50 min), ultrasonic temperature (10–60 °C), and the number of extractions (1–4) were obtained according to the single factor experiments. Then, using the Box-Behnken design (BBD) of response surface analysis, the optimum extraction conditions were obtained with 16.33% methanol concentration, the liquid-solid ratio of 10.83:1 mL/g and 35.00 °C ultrasonic temperature. Under these conditions, kinsenoside extraction yield reached 32.24% dry weight. The best conditions were applied to determine the kinsenoside content in seven different cultivation ages in Anoectochilus roxburghii.
Collapse
|
21
|
Ha XQ, Yang B, Hou HJ, Cai XL, Xiong WY, Wei XP. Protective effect of rhodioloside and bone marrow mesenchymal stem cells infected with HIF-1-expressing adenovirus on acute spinal cord injury. Neural Regen Res 2020; 15:690-696. [PMID: 31638093 PMCID: PMC6975151 DOI: 10.4103/1673-5374.266920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodioloside has been shown to protect cells from hypoxia injury, and bone marrow mesenchymal stem cells have a good effect on tissue repair. To study the effects of rhodioloside and bone marrow mesenchymal stem cells on spinal cord injury, a rat model of spinal cord injury was established using the Infinite Horizons method. After establishing the model, the rats were randomly divided into five groups. Rats in the control group were intragastrically injected with phosphate buffered saline (PBS) (5 μL). PBS was injected at 6 equidistant points around 5 mm from the injury site and at a depth of 5 mm. Rats in the rhodioloside group were intragastrically injected with rhodioloside (5 g/kg) and intramuscularly injected with PBS. Rats in the mesenchymal stem cell (MSC) group were intramuscularly injected with PBS and intramuscularly with MSCs (8 × 106/mL in a 50-μL cell suspension). Rats in the Ad-HIF-MSC group were intragastrically injected with PBS and intramuscularly injected with HIF-1 adenovirus-infected MSCs. Rats in the rhodioloside + Ad-HIF-MSC group were intramuscularly injected with MSCs infected with the HIF-1 adenovirus and intragastrically injected with rhodioloside. One week after treatment, exercise recovery was evaluated with a modified combined behavioral score scale. Hematoxylin-eosin staining and Pischingert’s methylene blue staining were used to detect any histological or pathological changes in spinal cord tissue. Levels of adenovirus IX and Sry mRNA were detected by real-time quantitative polymerase chain reaction and used to determine the number of adenovirus and mesenchymal stem cells that were transfected into the spinal cord. Immunohistochemical staining was applied to detect HIF-1 protein levels in the spinal cord. The results showed that: (1) compared with the other groups, the rhodioloside + Ad-HIF-MSC group exhibited the highest combined behavioral score (P < 0.05), the most recovered tissue, and the greatest number of neurons, as indicated by Pischingert’s methylene blue staining. (2) Compared with the PBS group, HIF-1 protein expression was greater in the rhodioloside group (P < 0.05). (3) Compared with the Ad-HIF-MSC group, Sry mRNA levels were higher in the rhodioloside + Ad-HIF-MSC group (P < 0.05). These results confirm that rhodioloside combined with bone marrow mesenchymal stem cells can promote the recovery of spinal cord injury and activate the HIF-1 pathway to promote the survival of bone marrow mesenchymal stem cells and repair damaged neurons within spinal cord tissue. This experiment was approved by the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine, China (approval No. 2015KYLL029) in June 2015.
Collapse
Affiliation(s)
- Xiao-Qin Ha
- Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Bo Yang
- Department of Clinical Laboratory, Lanzhou General Hospital of Lanzhou Military Area Command; School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Huai-Jing Hou
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xiao-Ling Cai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu Province, China
| | - Wan-Yuan Xiong
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xu-Pan Wei
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| |
Collapse
|
22
|
Wang Y, Zuo R, Wang Z, Luo L, Wu J, Zhang C, Liu M, Shi C, Zhou Y. Kinsenoside ameliorates intervertebral disc degeneration through the activation of AKT-ERK1/2-Nrf2 signaling pathway. Aging (Albany NY) 2019; 11:7961-7977. [PMID: 31546235 PMCID: PMC6781981 DOI: 10.18632/aging.102302] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration (IDD) is recognized as the major contributor to low back pain, which results in disability worldwide and heavy burdens on society and economy. Here we present evidence that the lower level of Nrf2 is closely associated with higher grade of IDD. The apoptosis and senescence of nucleus pulposus cells (NPCs) were exacerbated by Nrf2 knockdown, but suppressed by Nrf2 overexpression under oxidative stress. Based on findings that Kinsenoside could exert multiple pharmacological effects, we found that Kinsenoside rescued the NPC viability under oxidative stress and protected against apoptosis, senescence and mitochondrial dysfunction in a Nrf2-dependent way. Further experiments revealed that Kinsenoside activated a signaling pathway of AKT-ERK1/2-Nrf2 in NPCs. Moreover, in vivo study showed that Kinsenoside ameliorated IDD in a puncture-induced model. Together, the present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of Kinsenoside on Nrf2 activation in NPCs.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Liwen Luo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Junlong Wu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
23
|
Ouyang Z, Huang Q, Liu B, Wu H, Liu T, Liu Y. Rubidium Chloride Targets Jnk/p38-Mediated NF-κB Activation to Attenuate Osteoclastogenesis and Facilitate Osteoblastogenesis. Front Pharmacol 2019; 10:584. [PMID: 31191317 PMCID: PMC6539219 DOI: 10.3389/fphar.2019.00584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
The unbalanced crosstalk between osteoclasts and osteoblasts could lead to disruptive bone homeostasis. Herein, we investigated the therapeutic effects of rubidium chloride (RbCl) on ovariectomized (OVX) and titanium (Ti) particle-induced calvaria osteolysis mouse models, showing that non-toxic RbCl attenuated RANKL-stimulated osteoclast formation and functionality while significantly enhancing osteogenesis in vitro. The expressions of osteoclast-specific genes were downregulated considerably by RbCl. Despite the direct inhibition of RANKL-induced activation of MAPK signaling, RbCl was able to target NF-κB directly and indirectly. We found that after the co-stimulation of the c-Jun N-terminal kinase (Jnk)/p38 activator and RANKL, RbCl inhibited the elevated expression of p-IKKα and the degradation of IκBα in osteoclast precursors, indicating indirect NF-κB inhibition via MAPK suppression. Furthermore, the two animal models demonstrated that RbCl attenuated tartrate-resistant acid phosphate (TRAP)-positive osteoclastogenesis and rescued bone loss caused by the hormonal dysfunction and wear particle in vivo. Altogether, these findings suggest that RbCl can target Jnk/p38-mediated NF-κB activation to attenuate osteoclastogenesis, while facilitating osteoblastogenesis both in vivo and in vitro, suggesting the possible future use of RbCl for surface coating of orthopedic implant biomaterials to protect against osteoporosis.
Collapse
Affiliation(s)
- Zhengxiao Ouyang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Bin Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Tang Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| |
Collapse
|
24
|
ID2 protects retinal pigment epithelium cells from oxidative damage through p-ERK1/2/ID2/NRF2. Arch Biochem Biophys 2018; 650:1-13. [PMID: 29753724 DOI: 10.1016/j.abb.2018.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness during aging. The degeneration of retinal pigment epithelium (RPE) is the main pathologic characteristic of AMD. ID2 is a member of the Inhibitor of DNA binding proteins (ID) family and is involved in regulation of cell proliferation and differentiation. However, currently the role of ID2 in oxidative injury response in RPE cells remains unknown. Here we showed that oxidative stress increased ID2 expression in RPE cells. Knockdown of ID2 promoted cell apoptosis and increased ROS level in RPE cells that were subjected to oxidative damage. In addition, over-expression of ID2 attenuated the oxidative damage response in RPE cells. Mechanistically, ID2 protected RPE cells from oxidative damage through activating NRF2. Furthermore, phosphorylation of ERK1/2 positively regulated the protective function of ID2. Finally, we confirmed that the oxidative damage increased Id2 expression and over-expression of Id2 elevated Nrf2 expression in primary mouse RPE cells. Therefore, ID2 protects RPE cells from oxidative damage through the p-ERK1/2/ID2/NRF2 pathway. Our study contributes to a better understanding of the mechanisms underlying oxidative stress in AMD and may present a new strategy for AMD treatment.
Collapse
|
25
|
Qu X, Mei J, Yu Z, Zhai Z, Qiao H, Dai K. Lenalidomide regulates osteocytes fate and related osteoclastogenesis via IL-1β/NF-κB/RANKL signaling. Biochem Biophys Res Commun 2018; 501:547-555. [PMID: 29746861 DOI: 10.1016/j.bbrc.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/05/2018] [Indexed: 01/12/2023]
Abstract
Osteolytic diseases are closely associated with osteocyte fate, indicating a more efficient and crucial role of osteocyte-targeting strategy in inhibiting osteoclastogenesis. Here, we investigated the effects of lenalidomide (Lena) on osteocyte fate in order to regulate osteoclastogenesis via effective cascade-controlling response. Our data revealed that lenalidomide treatment notably rescued IL-1β induced loss of osteocyte viability by inhibiting osteocyte apoptosis with decreased osteoclast-related factors, RANKL and Sclerostin, as demonstrated by the restricted osteoclast formation and reduced bone resorption. Additionally, iTRAQ assay revealed that IL-1β induced activation of NF-κB inhibitor α/β were remarkably downregulated by lenalidomide, showing that lenalidomide impaired NF-κB signaling in osteocytes for inhibiting the expression of osteoclast specific genes in osteoclasts, which was further confirmed by KEGG pathway analysis and Western blot. More interestingly, the in vivo analysis of osteocyte apoptosis and osteoclastogenesis in osteoarthritis mice model indicated a role of lenalidomide in the regulation of osteocyte fate and the consequent inhibition of RANKL-induced osteoclastogenesis. Together, these results suggest that lenalidomide regulates osteocyte fate by attenuating IL-1β/NF-κB signaling, thereby inhibiting RANKL expression for the attenuated osteoclastogenesis both in vitro and vivo, indicating a more efficient remedy among future anti-osteoclastogenesis approaches.
Collapse
Affiliation(s)
- Xinhua Qu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jingtian Mei
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|