1
|
Wu A, Wang Y, Mao R, Tan Z, Xu S, Long J, Wang Q, Zhao Z, Xie H, Deng Z, Li J, Chen M. Naturally-occurring carnosic acid as a promising therapeutic agent for skin inflammation via targeting STAT1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156442. [PMID: 39919329 DOI: 10.1016/j.phymed.2025.156442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Psoriasis and rosacea are prevalent chronic inflammatory skin disorders driven by aberrant interactions between skin-resident keratinocytes and immune cells. Natural products represent a largely untapped source of novel therapeutic agents for various diseases. This study aimed to identify an effective natural product for treating psoriasis and rosacea and to elucidate its underlying mechanism of action. METHODS Bioinformatics and network pharmacology approaches were employed to identify potential drug candidates for these conditions. Psoriasis-like and rosacea-like inflammation models were established in mice to assess the in vivo therapeutic effects of carnosic acid. In vitro experiments were performed to investigate the molecular mechanisms underlying carnosic acid's anti-inflammatory activity. RESULTS Through bioinformatics and network pharmacology, carnosic acid, a plant-derived phenolic diterpene, was identified as a promising candidate for these skin disorders. Functional assays demonstrated that carnosic acid effectively inhibited skin inflammation in both imiquimod-induced psoriasis and LL37-induced rosacea mouse models. Mechanistically, carnosic acid bound directly to STAT1, inhibiting its phosphorylation and subsequent transcriptional activation, which led to a reduction in the production of STAT1-mediated inflammatory factors in keratinocytes. Topical application of carnosic acid significantly alleviated clinical symptoms in both psoriasis and rosacea models. CONCLUSION These findings suggest that carnosic acid holds potential as a therapeutic agent for STAT1-mediated skin inflammation.
Collapse
Affiliation(s)
- Aike Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Long
- Department of Dermatology, Hunan Children's Hospital, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Qian W, Zhang B, Gao M, Wang Y, Shen J, Liang D, Wang C, Wei W, Pan X, Yan Q, Sun D, Zhu D, Cheng H. Supramolecular prodrug inspiried by the Rhizoma Coptidis - Fructus Mume herbal pair alleviated inflammatory diseases by inhibiting pyroptosis. J Pharm Anal 2025; 15:101056. [PMID: 39974618 PMCID: PMC11835567 DOI: 10.1016/j.jpha.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 02/21/2025] Open
Abstract
Sustained inflammatory responses are closely related to various severe diseases, and inhibiting the excessive activation of inflammasomes and pyroptosis has significant implications for clinical treatment. Natural products have garnered considerable concern for the treatment of inflammation. Huanglian-Wumei decoction (HLWMD) is a classic prescription used for treating inflammatory diseases, but the necessity of their combination and the exact underlying anti-inflammatory mechanism have not yet been elucidated. Inspired by the supramolecular self-assembly strategy and natural drug compatibility theory, we successfully obtained berberine (BBR)-chlorogenic acid (CGA) supramolecular (BCS), which is an herbal pair from HLWMD. Using a series of characterization methods, we confirmed the self-assembly mechanism of BCS. BBR and CGA were self-assembled and stacked into amphiphilic spherical supramolecules in a 2:1 molar ratio, driven by electrostatic interactions, hydrophobic interactions, and π-π stacking; the hydrophilic fragments of CGA were outside, and the hydrophobic fragments of BBR were inside. This stacking pattern significantly improved the anti-inflammatory performance of BCS compared with that of single free molecules. Compared with free molecules, BCS significantly attenuated the release of multiple inflammatory mediators and lipopolysaccharide (LPS)-induced pyroptosis. Its anti-inflammatory mechanism is closely related to the inhibition of intracellular nuclear factor-kappaB (NF-κB) p65 phosphorylation and the noncanonical pyroptosis signalling pathway mediated by caspase-11.
Collapse
Affiliation(s)
- Wenhui Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Yuting Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiachen Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongbing Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiuying Yan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, China
| |
Collapse
|
3
|
Koyama S, Weber EL, Heinbockel T. Possible Combinatorial Utilization of Phytochemicals and Extracellular Vesicles for Wound Healing and Regeneration. Int J Mol Sci 2024; 25:10353. [PMID: 39408681 PMCID: PMC11476926 DOI: 10.3390/ijms251910353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Organ and tissue damage can result from injury and disease. How to facilitate regeneration from damage has been a topic for centuries, and still, we are trying to find agents to use for treatments. Two groups of biological substances are known to facilitate wound healing. Phytochemicals with bioactive properties form one group. Many phytochemicals have anti-inflammatory effects and enhance wound healing. Recent studies have described their effects at the gene and protein expression levels, highlighting the receptors and signaling pathways involved. The extremely large number of phytochemicals and the multiple types of receptors they activate suggest a broad range of applicability for their clinical use. The hydrophobic nature of many phytochemicals and the difficulty with chemical stabilization have been a problem. Recent developments in biotechnology and nanotechnology methods are enabling researchers to overcome these problems. The other group of biological substances is extracellular vesicles (EVs), which are now known to have important biological functions, including the improvement of wound healing. The proteins and nanoparticles contained in mammalian EVs as well as the specificity of the targets of microRNAs included in the EVs are becoming clear. Plant-derived EVs have been found to contain phytochemicals. The overlap in the wound-healing capabilities of both phytochemicals and EVs and the differences in their nature suggest the possibility of a combinatorial use of the two groups, which may enhance their effects.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erin L. Weber
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
4
|
Luo W, Zhang H, Zhang H, Xu Y, Liu X, Xu S, Wang P. Reposition: Focalizing β-Alanine Metabolism and the Anti-Inflammatory Effects of Its Metabolite Based on Multi-Omics Datasets. Int J Mol Sci 2024; 25:10252. [PMID: 39408583 PMCID: PMC11476852 DOI: 10.3390/ijms251910252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
The incorporation of multi-omics data methodologies facilitates the concurrent examination of proteins, metabolites, and genes associated with inflammation, thereby leveraging multi-dimensional biological data to achieve a comprehensive understanding of the complexities involved in the progression of inflammation. Inspired by ensemble learning principles, we implemented ID normalization preprocessing, categorical sampling homogenization, and pathway enrichment across each sample matrix derived from multi-omics datasets available in the literature, directing our focus on inflammation-related targets within lipopolysaccharide (LPS)-stimulated RAW264.7 cells towards β-alanine metabolism. Additionally, through the use of LPS-treated RAW264.7 cells, we tentatively validated the anti-inflammatory properties of the metabolite Ureidopropionic acid, originating from β-alanine metabolism, by evaluating cell viability, nitric oxide production levels, and mRNA expression of inflammatory biomarkers. In conclusion, our research represents the first instance of an integrated analysis of multi-omics datasets pertaining to LPS-stimulated RAW264.7 cells as documented in the literature, underscoring the pivotal role of β-alanine metabolism in cellular inflammation and successfully identifying Ureidopropionic acid as a novel anti-inflammatory compound. Moreover, the findings from database predictions and molecular docking studies indicated that the inflammatory-related pathways and proteins may serve as potential mechanistic targets for Ureidopropionic acid.
Collapse
Affiliation(s)
- Wenjun Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (W.L.); (H.Z.); (H.Z.); (Y.X.); (S.X.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (W.L.); (H.Z.); (H.Z.); (Y.X.); (S.X.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (W.L.); (H.Z.); (H.Z.); (Y.X.); (S.X.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yixi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (W.L.); (H.Z.); (H.Z.); (Y.X.); (S.X.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (W.L.); (H.Z.); (H.Z.); (Y.X.); (S.X.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (W.L.); (H.Z.); (H.Z.); (Y.X.); (S.X.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (W.L.); (H.Z.); (H.Z.); (Y.X.); (S.X.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
5
|
Wu W, Li Y, Wu X, Liang J, You W, He X, Feng Q, Li T, Jia X. Carnosic acid nanocluster-based framework combined with PD-1 inhibitors impeded tumorigenesis and enhanced immunotherapy in hepatocellular carcinoma. Funct Integr Genomics 2024; 24:5. [PMID: 38182693 DOI: 10.1007/s10142-024-01286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Clinically, the immune checkpoint inhibitor anti-PD-1 antibody has shown a certain effect in the treatment of hepatocellular carcinoma (HCC), which is limited to a small number of patients with HCC. This study aims to reveal whether carnosic acid nanocluster-based framework (CA-NBF) has a sensitization effect on anti-PD-1 antibody in the treatment of HCC at the cellular and animal levels. MHCC97H cells were treated with CA-NBF, anti-PD-1 and their combination. The effects of CA-NBF and anti-PD-1 on cell proliferation, cell cycle, apoptosis, invasion, and migration were evaluated by MTT assay, flow cytometry, and scratch test. The effects of CA-NBF and anti-PD-1 on Wnt/β-catenin signaling pathway in MHCC97H cells were detected. A BALB/C nude mouse model of hepatocellular carcinoma was established, and the tumor growth was observed at different time points. The expression of cytotoxic T lymphocyte and helper T lymphocyte markers CD8 and CD4 in tumor tissues was detected by immunohistochemistry. Western blotting was used to detect the Wnt/β-catenin signaling pathway proteins (Wnt-3a, β-catenin, and GSK-3β) level in tumor tissues after CA-NBF and anti-PD-1 treatment. CA-NBF activity was significantly higher than CA, which could prominently reduce the proliferation, migration and invasion of MHCC97H cells and enhance apoptosis by inactivating Wnt/β-catenin signaling pathway. CA-NBF combined with anti-PD-1 antibody further enhanced cell proliferation, migration, invasion and pro-apoptosis but had no significant effect on Wnt/β-catenin signaling pathway. CA-NBF in vivo improved the tumor response to PD1 immune checkpoint blockade in HCC, manifested by reducing tumor size and weight, promoting CD4 and CD8 expression. CA-NBF combined with anti-PD-1 have stronger immunomodulatory and anticancer effects without increasing biological toxicity.
Collapse
Affiliation(s)
- Wenhua Wu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China.
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Xiaokang Wu
- Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Junrong Liang
- Department of Gastroenterology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, Xi'an, 710004, Shaanxi, China
| | - Xinyuan He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Qinhui Feng
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Ting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
6
|
Aundhia C, Parmar G, Talele C, Sadhu P, Sen AK, Rana P. Potential of Natural Products as Therapeutic Agents for Inflammatory Diseases. Antiinflamm Antiallergy Agents Med Chem 2024; 23:149-163. [PMID: 38984571 DOI: 10.2174/0118715230307969240614102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the antiinflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Piyushkumar Sadhu
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ashim Kumar Sen
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Pramojeeta Rana
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| |
Collapse
|
7
|
Zhumaliyeva G, Zhussupova A, Zhusupova GE, Błońska-Sikora E, Cerreto A, Omirbekova N, Zhunusbayeva Z, Gemejiyeva N, Ramazanova M, Wrzosek M, Ross SA. Natural Compounds of Salvia L. Genus and Molecular Mechanism of Their Biological Activity. Biomedicines 2023; 11:3151. [PMID: 38137372 PMCID: PMC10740457 DOI: 10.3390/biomedicines11123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The study of medicinal plants is important, as they are the natural reserve of potent biologically active compounds. With wide use in traditional medicine and the inclusion of several species (as parts and as a whole plant) in pharmacopeia, species from the genus Salvia L. are known for the broad spectrum of their biological activities. Studies suggest that these plants possess antioxidant, anti-inflammatory, antinociceptive, anticancer, antimicrobial, antidiabetic, antiangiogenic, hepatoprotective, cognitive and memory-enhancing effects. Phenolic acids, terpenoids and flavonoids are important phytochemicals, which are primarily responsible for the medicinal activity of Salvia L. This review collects and summarizes currently available data on the pharmacological properties of sage, outlining its principal physiologically active components, and it explores the molecular mechanism of their biological activity. Particular attention was given to the species commonly found in Kazakhstan, especially to Salvia trautvetteri Regel, which is native to this country.
Collapse
Affiliation(s)
- Gaziza Zhumaliyeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Aizhan Zhussupova
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Galiya E. Zhusupova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.E.Z.)
| | - Ewelina Błońska-Sikora
- Department of Pharmaceutical Sciences, Collegium Medicum, Jan Kochanowski University, 25-406 Kielce, Poland; (E.B.-S.)
| | - Antonella Cerreto
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (A.C.)
| | - Nargul Omirbekova
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Zhazira Zhunusbayeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Nadezhda Gemejiyeva
- Institute of Botany and Phytointroduction, 36D/1 Timiryazev Str., Almaty 050040, Kazakhstan; (N.G.); (M.R.)
| | - Madina Ramazanova
- Institute of Botany and Phytointroduction, 36D/1 Timiryazev Str., Almaty 050040, Kazakhstan; (N.G.); (M.R.)
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy and Laboratory of Biochemistry and Clinical Chemistry at the Preclinical Research Center, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Samir A. Ross
- School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677, USA; (S.A.R.)
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
8
|
Liu L, Jiao Y, Yang M, Wu L, Long G, Hu W. Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler. Int J Mol Sci 2023; 24:10370. [PMID: 37373516 DOI: 10.3390/ijms241210370] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The use of deer antlers dates back thousands of years in Chinese history. Deer antlers have antitumor, anti-inflammatory, and immunomodulatory properties and can be used in treating neurological diseases. However, only a few studies have reported the immunomodulatory mechanism of deer antler active compounds. Using network pharmacology, molecular docking, and molecular dynamics simulation techniques, we analyzed the underlying mechanism by which deer antlers regulate the immune response. We identified 4 substances and 130 core targets that may play immunomodulatory roles, and the beneficial and non-beneficial effects in the process of immune regulation were analyzed. The targets were enriched in pathways related to cancer, human cytomegalovirus infection, the PI3K-Akt signaling pathway, human T cell leukemia virus 1 infection, and lipids and atherosclerosis. Molecular docking showed that AKT1, MAPK3, and SRC have good binding activity with 17 beta estradiol and estrone. Additionally, the molecular dynamics simulation of the molecular docking result using GROMACS software (version: 2021.2) was performed and we found that the AKT1-estrone complex, 17 beta estradiol-AKT1 complex, estrone-MAPK3 complex, and 17 beta estradiol-MAPK3 complex had relatively good binding stability. Our research sheds light on the immunomodulatory mechanism of deer antlers and provides a theoretical foundation for further exploration of their active compounds.
Collapse
Affiliation(s)
- Lingyu Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yu Jiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Mei Yang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Guohui Long
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Mirza FJ, Zahid S, Holsinger RMD. Neuroprotective Effects of Carnosic Acid: Insight into Its Mechanisms of Action. Molecules 2023; 28:molecules28052306. [PMID: 36903551 PMCID: PMC10005014 DOI: 10.3390/molecules28052306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Carnosic acid is a diterpenoid abundantly present in plants belonging to the genus Rosmarinus and Salvia of the family Lamiaceae, accounting for their application in traditional medicine. The diverse biological properties of carnosic acid that include antioxidant, anti-inflammatory, and anticarcinogenic activities have instigated studies on its mechanistic role, providing further insights into its potential as a therapeutic agent. Accumulating evidence has established the relevance of carnosic acid as a neuroprotective agent exhibiting therapeutic efficacy in combatting neuronal-injury-induced disorders. The physiological importance of carnosic acid in the mitigation of neurodegenerative disorders is just beginning to be understood. This review summarizes the current data on the mode of action through which carnosic acid exerts its neuroprotective role that may serve to strategize novel therapeutic approaches for these debilitating neurodegenerative disorders.
Collapse
Affiliation(s)
- Fatima Javed Mirza
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
10
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023; 11:biomedicines11020545. [PMID: 36831081 PMCID: PMC9953345 DOI: 10.3390/biomedicines11020545] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Carnosic acid (CA) and carnosol (CAR) are two major diterpenes of the rosemary plant (Rosmarinus officinalis). They possess a phenolic structural moiety and are endowed with the power to remove cellular reactive oxygen species (ROS) either through direct scavenging reaction or indirectly through upregulation of antioxidant defences. Hand in hand with these activities are their multiple biological effects and therapeutic potential orchestrated through modulating various signalling pathways of inflammation, including the NF-κB, MAPK, Nrf2, SIRT1, STAT3 and NLRP3 inflammasomes, among others. Consequently, they ameliorate the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1 and IL-6), adhesion molecules, chemokines and prostaglandins. These anti-inflammatory mechanisms of action as a therapeutic link to various effects of these compounds, as in many other natural products, are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
11
|
Crozier RWE, Yousef M, Coish JM, Fajardo VA, Tsiani E, MacNeil AJ. Carnosic acid inhibits secretion of allergic inflammatory mediators in IgE-activated mast cells via direct regulation of Syk activation. J Biol Chem 2023; 299:102867. [PMID: 36608933 PMCID: PMC10068559 DOI: 10.1016/j.jbc.2022.102867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Mast cells are essential regulators of inflammation most recognized for their central role in allergic inflammatory disorders. Signaling via the high-affinity immunoglobulin E (IgE) receptor, FcεRI, leads to rapid degranulation of preformed granules and the sustained release of newly-synthesized pro-inflammatory mediators. Our group recently established rosemary extract (RE) as a potent regulator of mast cell functions, attenuating MAPK and NF-κB signaling. Carnosic acid (CA)-a major polyphenolic constituent of RE-has been shown to exhibit anti-inflammatory effects in other immune cell models, but its role as a potential modulator of mast cell activation is undefined. Therefore, we sought here to determine the modulatory effects of CA in a mast cell model of allergic inflammation. We sensitized bone marrow-derived mast cells (BMMCs) with anti-trinitrophenyl (TNP) IgE and activated with allergen (TNP-BSA) under stem cell factor (SCF) potentiation, in addition to treatment with CA. Our results indicate that CA significantly inhibits allergen-induced early phase responses including Ca2+ mobilization, ROS production, and subsequent degranulation. We also show CA treatment reduced late phase responses, including the release of all cytokines and chemokines examined following IgE stimulation, and corresponding gene expression excepting that of CCL2. Importantly, we determined that CA mediates its inhibitory effects through modulation of tyrosine kinase Syk and downstream effectors TAK1 (Ser412) and Akt (Ser473) as well as NF-κB signaling, while phosphorylation of FcεRI (γ chain) and MAPK proteins remained unaltered. These novel findings establish CA as a potent modulator of mast cell activation, warranting further investigation as a putative anti-allergy therapeutic.
Collapse
Affiliation(s)
- Robert W E Crozier
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Michael Yousef
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Jeremia M Coish
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
12
|
Tsai YF, Yang SC, Hsu YH, Chen CY, Chen PJ, Syu YT, Lin CH, Hwang TL. Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome. Life Sci 2022; 321:121334. [PMID: 36587789 DOI: 10.1016/j.lfs.2022.121334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
AIMS Infiltration of activated neutrophils into the lungs is a hallmark of acute respiratory distress syndrome (ARDS). Neutrophilic inflammation, particularly neutrophil extracellular traps (NETs), is proposed as a useful target for treating ARDS. Carnosic acid (CA) is a food additive; however, its anti-neutrophilic activity in the treatment of ARDS has not been well established. The hypothesis of present study is to confirm that CA alleviates ARDS by suppressing neutrophilic inflammation and oxidative damage. MAIN METHODS Generation of superoxide anions and reactive oxygen species (ROS), induction of elastase degranulation, and formation of NETs by human neutrophils were assayed using spectrophotometry, flow cytometry, and immunofluorescent microscopy. Immunoblotting was performed to determine the cellular mechanisms involved. Cell-free radical systems were used to test antioxidant activities. The therapeutic effect of CA was evaluated in a lipopolysaccharide (LPS)-induced ARDS mouse model. KEY FINDINGS CA greatly reduced superoxide anion production, ROS production, elastase release, cluster of differentiation 11b expression, and cell adhesion in activated human neutrophils. Mechanistic studies have demonstrated that CA suppresses phosphorylation of extracellular regulated kinase and c-Jun N-terminal kinase in activated neutrophils. CA effectively scavenges reactive oxygen and nitrogen species, but not superoxide anions. This is consistent with the finding that CA is effective against ROS-dependent NET formation. CA treatment significantly improved pulmonary neutrophil infiltration, oxidative damage, NET formation, and alveolar damage in LPS-induced mice. SIGNIFICANCE Our data suggested the potential application of CA for neutrophil-associated ARDS therapy.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Yun-Hsuan Hsu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Po-Jen Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Recreation and Holistic Wellness, MingDao University, Changhua 523, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
13
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Exploring the anti-inflammatory bioactive metabolites of some marine algae through integration of metabolomics, network pharmacology and molecular docking analyses. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Paloukopoulou C, Karioti A. A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece. PLANTS (BASEL, SWITZERLAND) 2022; 11:3106. [PMID: 36432835 PMCID: PMC9697906 DOI: 10.3390/plants11223106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
In the framework of a project aiming at identifying genotypes of Greek rosemary and sage producing high amounts of carnosic acid, an HPLC-PDA method was developed for the determination of the main antioxidant in the fresh leaves. To this end, an effective and repeatable extraction process of the labile diterpene was developed to ensure a good extraction yield. A fast RP-HPLC protocol was developed and optimized to allow for a short and reliable analysis of the unstable target constituent. The HPLC-PDA method was validated for precision and accuracy according to ICH guidelines. Finally, the overall method was validated for precision and accuracy at three concentration levels. The precision was acceptable with % RSD values ranging between 1.42 and 4.35. The recovery ranged between 85.1% and 104.6% with RSD values < 5%, within the acceptable limits. The developed assay was fast and simple and allowed for the fast and accurate determination of carnosic acid and carnosol in the fresh herbs. The methodology was applied to the quantitative analysis of several cultivated samples of S. rosmarinus and S. officinalis, and some of them were revealed to be promising starting materials for the development of Greek genotypes rich in carnosic acid.
Collapse
|
16
|
Jeyasri R, Muthuramalingam P, Adarshan S, Shin H, Ramesh M. Assessing the Anti-inflammatory Effects of Bacopa-Derived Bioactive Compounds Using Network Pharmacology and In Vitro Studies. ACS OMEGA 2022; 7:40344-40354. [PMID: 36385888 PMCID: PMC9647831 DOI: 10.1021/acsomega.2c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Bacopa monnieri is reported as a potent Indian medicinal plant that possesses numerous pharmacological activities due to the presence of various bioactive compounds. These pharmacological activities were used in the ancient medicine system to cure inflammatory conditions. Bacopa has the ability to reduce acute pain and inflammation by inhibiting the enzyme cyclo-oxygenase-2 (COX-2) and reducing COX-2-arbitrated prostanoid mediators. Moreover, the anti-inflammatory property may also be associated with the neuroprotective activity of Bacopa. Considering this importance, the current pilot study focused on the anti-inflammatory potential of various phytocompounds of bacopa and their interaction with inflammation responsible genes such as COX2, iNOS, LOX, STAT3, CCR1, and MMP9 through pharmacology analysis of its systems. Docking results revealed that, quercetin (QR) showed significant binding energies with inflammatory genes. Hence, we selected QR as a potential phytocompound for further in vitro experiments. This existing study aimed to evaluate the efficacy of QR as a potent anti-inflammatory compound against lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The in vitro analysis concludes that QR effectively reduces the production of nitric oxide (NO) in LPS-induced RAW264.7 cells and downregulates the expression of COX-2 and iNOS genes due to the inhibitory potential of QR on LPS-stimulated NO production.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
- Division
of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, Korea
- Agri-Food
Bio Convergence Institute, Gyeongsang National
University, Jinju, 52725, Korea
| | - Sivakumar Adarshan
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| | - Hyunsuk Shin
- Division
of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, Korea
- Agri-Food
Bio Convergence Institute, Gyeongsang National
University, Jinju, 52725, Korea
| | - Manikandan Ramesh
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
17
|
Vieira C, Rebocho S, Craveiro R, Paiva A, Duarte ARC. Selective extraction and stabilization of bioactive compounds from rosemary leaves using a biphasic NADES. Front Chem 2022; 10:954835. [PMID: 36034659 PMCID: PMC9412766 DOI: 10.3389/fchem.2022.954835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Rosemary (Rosmarinus officinalis) is a natural source of bioactive compounds that have high antioxidant activity. It has been in use as a medicinal herb since ancient times, and it currently is in widespread use due to its inherent pharmacological and therapeutic potential, in the pharmaceutical, food, and cosmetic industries. Natural deep eutectic systems (NADESs) have recently been considered as suitable extraction solvents for bioactive compounds, with high solvent power, low toxicity, biodegradability, and low environmental impact. The present work concerns the extraction of compounds such as rosmarinic acid, carnosol, carnosic acid, and caffeic acid, from rosemary using NADESs. This extraction was carried out using heat and stirring (HS) and ultrasound-assisted extraction (UAE). A NADES composed of menthol and lauric acid at a molar ratio of 2:1 (Me:Lau) extracted carnosic acid and carnosol preferentially, showing that this NADES exhibits selectivity for nonpolar compounds. On the other hand, a system of lactic acid and glucose (LA:Glu (5:1)) extracted preferentially rosmaniric acid, which is a more polar compound. Taking advantage of the different polarities of these NADESs, a simultaneous extraction was carried out, where the two NADESs form a biphasic system. The system LA:Glu (5:1)/Men:Lau (2:1) presented the most promising results, reaching 1.00 ± 0.12 mg of rosmarinic acid/g rosemary and 0.26 ± 0.04 mg caffeic acid/g rosemary in the more polar phase and 2.30 ± 0.18 mg of carnosol/g of rosemary and 17.54 ± 1.88 mg carnosic acid/g rosemary in the nonpolar phase. This work reveals that is possible to use two different systems at the same time and extract different compounds in a single-step process under the same conditions. NADESs are also reported to stabilize bioactive compounds, due to their interactions established with NADES components. To determine the stability of the extracts over time, the compounds of interest were quantified by HPLC at different time points. This allows the conclusion that bioactive compounds from rosemary were stable in NADESs for long periods of time; in particular, carnosic acid presented a decrease of only 25% in its antioxidant activity after 3 months, whereas the carnosic acid extracted and kept in the methanol was no longer detected after 15 days. The stabilizing ability of NADESs to extract phenolic/bioactive compounds shows a great promise for future industrial applications.
Collapse
|
18
|
Ibrahim N, Abbas H, El-Sayed NS, Gad HA. Rosmarinus officinalis L. hexane extract: phytochemical analysis, nanoencapsulation, and in silico, in vitro, and in vivo anti-photoaging potential evaluation. Sci Rep 2022; 12:13102. [PMID: 35907916 PMCID: PMC9338973 DOI: 10.1038/s41598-022-16592-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55–66.13 nm), homogenous distribution (PDI of 0.207–0.249), and negatively charged Zeta potential (− 13.4 to − 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.
Collapse
Affiliation(s)
- Nehal Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine S El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba A Gad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt. .,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants (Basel) 2022; 11:antiox11061199. [PMID: 35740096 PMCID: PMC9220155 DOI: 10.3390/antiox11061199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant “phase 2” enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson’s disease and Alzheimer’s disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.
Collapse
|
20
|
Antimicrobial effects of carnosic acid, kaempferol and luteolin on biogenic amine production by spoilage and food-borne pathogenic bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
A Study of the Protective Effect of Bushen Huoxue Prescription on Cerebral Microvascular Endothelia Based on Proteomics and Bioinformatics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2545074. [PMID: 35035499 PMCID: PMC8758271 DOI: 10.1155/2022/2545074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Diabetic cognitive dysfunction is a serious complication of type 2 diabetes mellitus (T2DM), which can cause neurological and microvascular damage in the brain. At present, there is no effective treatment for this complication. Bushen Huoxue prescription (BSHX) is a newly formulated compound Chinese medicine containing 7 components. Previous research indicated that BSHX was neuroprotective against advanced glycosylation end product (AGE)-induced PC12 cell insult; however, the effect of BSHX on AGE-induced cerebral microvascular endothelia injury has not been studied. In the current research, we investigated the protective effects of BSHX on AGE-induced injury in bEnd.3 cells. Our findings revealed that BSHX could effectively protect bEnd.3 cells from apoptosis. Moreover, we analyzed the network regulation effect of BSHX on AGE-induced bEnd.3 cells injury at the proteomic level. The LC-MS/MS-based shotgun proteomics analysis showed BSHX negatively regulated multiple AGE-elicited proteins. Bioinformatics analysis revealed these differential proteins were involved in multiple processes, such as Foxo signaling pathway. Further molecular biology analysis confirmed that BSHX could downregulate the expression of FoxO1/3 protein and inhibit its nuclear transfer and inhibit the expression of downstream apoptotic protein Bim and the activation of caspase, so as to play a protective role in AGE-induced bEnd.3 injury. Taken together, these findings demonstrated the role of BSHX in the management of diabetic cerebral microangiopathy and provide some insights into the proteomics-guided pharmacological mechanism study of traditional Chinese Medicine.
Collapse
|
22
|
Schreiner T, Sauter D, Friz M, Heil J, Morlock GE. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front Pharmacol 2021; 12:755941. [PMID: 34955829 PMCID: PMC8696259 DOI: 10.3389/fphar.2021.755941] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Dorena Sauter
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Friz
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
23
|
Luo Y, Jiang Q, Zhu Z, Sattar H, Wu J, Huang W, Su S, Liang Y, Wang P, Meng X. Phosphoproteomics and Proteomics Reveal Metabolism as a Key Node in LPS-Induced Acute Inflammation in RAW264.7. Inflammation 2021; 43:1667-1679. [PMID: 32488682 DOI: 10.1007/s10753-020-01240-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To better understand the acute inflammatory mechanisms, the modulation, and to investigate the key node in predicting inflammatory diseases, high-sensitivity LC-MS/MS-based proteomics and phosphoproteomics approaches were used to identify differential proteins in RAW264.7 macrophages with lipopolysaccharide (LPS). Furthermore, differential proteins and their main biological process, as well as signaling pathways, were analyzed through bioinformatics techniques. The biological process comparison revealed 219 differential proteins and 405 differential phosphorylation proteins, including major regulatory factors of metabolism (PFKL, PGK1, GYS1, ACC, HSL, LDHA, RAB14, PRKAA1), inflammatory signaling transduction (IKKs, NF-κB, IRAK, IKBkb, PI3K, AKT), and apoptosis (MCL-1, BID, NOXA, SQSTM1). Label-free proteome demonstrated canonical inflammation signaling pathways such as the TNF signaling pathway, NF-κB signaling pathway, and NOD-like receptor signaling pathway. Meanwhile, phosphoproteome revealed new areas of acute inflammation. Phosphoproteomics profiled that glycolysis was enhanced and lipid synthesis was increased. Overall, the AMPK signaling pathway is the key regulatory part in macrophages. These revealed that the early initiation phase of acute inflammation primarily regulated the phosphoproteins of glucose metabolic pathway and lipid synthesis to generate energy and molecules, along with the enhancement of pro-inflammatory factors, and further induced apoptosis. Phosphoproteomics provides new evidence for a complex network of specific but synergistically acting mechanisms confirming that metabolism has a key role in acute inflammation.
Collapse
Affiliation(s)
- Yu Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Qing Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Zhengwen Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Haseeb Sattar
- International School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jiasi Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Wenge Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Siyu Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yusheng Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| |
Collapse
|
24
|
Yang H, Liu Y, Zhao MM, Guo Q, Zheng XK, Liu D, Zeng KW, Tu PF. Therapeutic potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma. Cell Death Dis 2021; 12:492. [PMID: 33990545 PMCID: PMC8121893 DOI: 10.1038/s41419-021-03780-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Syndecan-4 (SDC4) functions as a major endogenous membrane-associated receptor and widely regulates cytoskeleton, cell adhesion, and cell migration in human tumorigenesis and development, which represents a charming anti-cancer therapeutic target. Here, SDC4 was identified as a direct cellular target of small-molecule bufalin with anti-hepatocellular carcinoma (HCC) activity. Mechanism studies revealed that bufalin directly bond to SDC4 and selectively increased SDC4 interaction with substrate protein DEAD-box helicase 23 (DDX23) to induce HCC genomic instability. Meanwhile, pharmacological promotion of SDC4/DDX23 complex formation also inactivated matrix metalloproteinases (MMPs) and augmented p38/JNK MAPKs phosphorylation, which are highly associated with HCC proliferation and migration. Notably, specific knockdown of SDC4 or DDX23 markedly abolished bufalin-dependent inhibition of HCC proliferation and migration, indicating SDC4/DDX23 signaling axis is highly involved in the HCC process. Our results indicate that membrane-spanning proteoglycan SDC4 is a promising druggable target for HCC, and pharmacological regulation of SDC4/DDX23 signaling axis with small-molecule holds great potential to benefit HCC patients.
Collapse
Affiliation(s)
- Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xi-Kang Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
25
|
Wan YJ, Wang YH, Guo Q, Jiang Y, Tu PF, Zeng KW. Protocatechualdehyde protects oxygen-glucose deprivation/reoxygenation-induced myocardial injury via inhibiting PERK/ATF6α/IRE1α pathway. Eur J Pharmacol 2021; 891:173723. [PMID: 33159933 DOI: 10.1016/j.ejphar.2020.173723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/31/2023]
Abstract
Endoplasmic reticulum (ER) stress has been considered as a promising strategy in developing novel therapeutic agents for cardiovascular diseases through inhibiting cardiomyocyte apoptosis. Protocatechualdehyde (PCA) is a natural phenolic compound from medicinal plant Salvia miltiorrhiza with cardiomyocyte protection. However, the potential mechanism of PCA on cardiovascular ischemic injury is largely unexplored. Here, we found that PCA exerted markedly anti-apoptotic effect in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced H9c2 cells (Rat embryonic ventricular H9c2 cardiomyocytes), which was detected by 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH), Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) assays. PCA also obviously protected cardiomyocytes in myocardial fibrosis model of mice, which was determined by hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. Transcriptomics coupled with bioinformatics analysis revealed a complex pharmacological signaling network especially for PCA-mediated ER stress on cardiomyocytes. Further mechanism study suggested that PCA suppressed ER stress via inhibiting protein kinase R-like ER kinase (PERK), inositol-requiring enzyme1α (IRE1α), and transcription factor 6α (ATF6α) signaling pathway through Western blot, DIOC6 and ER-Tracker Red staining, leading to a protective effect against ER stress-mediated cardiomyocyte apoptosis. Taken together, our observations suggest that PCA is a major component from Salvia miltiorrhiza against cardiovascular ischemic injury by suppressing ER stress-associated PERK, IRE1α and ATF6α signaling pathways.
Collapse
Affiliation(s)
- Yan-Jun Wan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
26
|
Wang YH, Lv HN, Cui QH, Tu PF, Jiang Y, Zeng KW. Isosibiricin inhibits microglial activation by targeting the dopamine D1/D2 receptor-dependent NLRP3/caspase-1 inflammasome pathway. Acta Pharmacol Sin 2020; 41:173-180. [PMID: 31506572 PMCID: PMC7471458 DOI: 10.1038/s41401-019-0296-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia-mediated neuroinflammation is a crucial risk factor for neurological disorders. Recently, dopamine receptors have been found to be involved in multiple immunopathological processes and considered as valuable therapeutic targets for inflammation-associated neurologic diseases. In this study we investigated the anti-neuroinflammation effect of isosibiricin, a natural coumarin compound isolated from medicinal plant Murraya exotica. We showed that isosibiricin (10-50 μM) dose-dependently inhibited lipopolysaccharide (LPS)-induced BV-2 microglia activation, evidenced by the decreased expression of inflammatory mediators, including nitrite oxide (NO), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and interleukin-18 (IL-18). By using transcriptomics coupled with bioinformatics analysis, we revealed that isosibiricin treatment mainly affect dopamine receptor signalling pathway. We further demonstrated that isosibiricin upregulated the expression of dopamine D1/2 receptors in LPS-treated BV-2 cells, resulting in inhibitory effect on nucleotide binding domain-like receptor protein 3 (NLRP3)/caspase-1 inflammasome pathway. Treatment with dopamine D1/2 receptor antagonists SCH 23390 (1 μM) or sultopride (1 μM) could reverse the inhibitory effects of isosibiricin on NLRP3 expression as well as the cleavages of caspase-1 and IL-1β. Collectively, this study demonstrates a promising therapeutic strategy for neuroinflammation by targeting dopamine D1/2 receptors.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hai-Ning Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qing-Hua Cui
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
27
|
de Oliveira JR, Camargo SEA, de Oliveira LD. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 2019; 26:5. [PMID: 30621719 PMCID: PMC6325740 DOI: 10.1186/s12929-019-0499-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Rosmarinus officinalis L. (rosemary) is a medicinal plant native to the Mediterranean region and cultivated around the world. Besides the therapeutic purpose, it is commonly used as a condiment and food preservative. R. officinalis L. is constituted by bioactive molecules, the phytocompounds, responsible for implement several pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, antiproliferative, antitumor and protective, inhibitory and attenuating activities. Thus, in vivo and in vitro studies were presented in this Review, approaching the therapeutic and prophylactic effects of R. officinalis L. on some physiological disorders caused by biochemical, chemical or biological agents. In this way, methodology, mechanisms, results, and conclusions were described. The main objective of this study was showing that plant products could be equivalent to the available medicines.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | | | - Luciane Dias de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|