1
|
Vekhova KA, Namiot ED, Jonsson J, Schiöth HB. Ketamine and Esketamine in Clinical Trials: FDA-Approved and Emerging Indications, Trial Trends With Putative Mechanistic Explanations. Clin Pharmacol Ther 2024. [PMID: 39428602 DOI: 10.1002/cpt.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
Ketamine has a long and very eventful pharmacological history. Its enantiomer, esketamine ((S)-ketamine), was approved by the US Food and Drug Administration (FDA) and EMA for patients with treatment-resistant depression (TRD) in 2019. The number of approved indications for ketamine and esketamine continues to increase, as well as the number of clinical trials. This analysis provides a quantitative overview of the use of ketamine and its enantiomers in clinical trials during 2014-2024. A total of 363 trials were manually assessed from clinicaltrial.gov with the search term "Ketamine." The highest number of trials were found for the FDA-approved indications: anesthesia (~22%) and pain management (~28%) for ketamine and TRD for esketamine (~29%). Clinical trials on TRD for both ketamine and esketamine also comprised a large proportion of these trials, and interestingly, have reached phase III and phase IV status. Combinatorial treatment of psychiatric disorders and non-psychiatric conditions with pharmacological and non-pharmacological combinations (electroconvulsive therapy, psychotherapeutic techniques, virtual reality, and transcranial magnetic stimulation) is prevalent. Sub-anesthetic doses of ketamine may represent novel therapeutic avenues in neuropsychiatric conditions, that is, major depression, schizophrenia, and bipolar disorder, where glutamate excitotoxicity and oxidative stress are likely to be involved. The study suggests that the number of ketamine studies will continue to grow and possible ketamine variants can be approved for treatment of additional indications.
Collapse
Affiliation(s)
- Ksenia A Vekhova
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Eugenia D Namiot
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Zhou H, Liu H, Yu Y, Yuan X, Xiao L. Informatics on Drug Repurposing for Breast Cancer. Drug Des Devel Ther 2023; 17:1933-1943. [PMID: 37405253 PMCID: PMC10315146 DOI: 10.2147/dddt.s417563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023] Open
Abstract
Moving a new drug from bench to bedside is a long and arduous process. The tactic of drug repurposing, which solves "new" diseases with "old" existing drugs, is more efficient and economical than conventional ab-initio way for drug development. Information technology has dramatically changed the paradigm of biomedical research in the new century, and drug repurposing studies have been significantly accelerated by implementing informatics techniques related to genomics, systems biology and biophysics during the past few years. A series of remarkable achievements in this field comes with the practical applications of in silico approaches including transcriptomic signature matching, gene-connection-based scanning, and simulated structure docking in repositioning drug therapies against breast cancer. In this review, we systematically curated these impressive accomplishments with summarization of the main findings on potentially repurposable drugs, and provide our insights into the current issues as well as future directions of the field. With the prospective improvement in reliability, the computer-assisted repurposing strategy will play a more critical role in drug research and development.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, Changsha, Hunan, People’s Republic of China
| | - Hongdou Liu
- Department of Laboratory Diagnosis, Changsha Kingmed Center for Clinical Laboratory, Changsha, Hunan, People’s Republic of China
| | - Yan Yu
- Department of Laboratory Diagnosis, Changsha Kingmed Center for Clinical Laboratory, Changsha, Hunan, People’s Republic of China
| | - Xiao Yuan
- Department of Laboratory Diagnosis, Changsha Kingmed Center for Clinical Laboratory, Changsha, Hunan, People’s Republic of China
- Department of Laboratory Diagnosis, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, Guangdong, People’s Republic of China
| | - Ling Xiao
- Department of Histology and Embryology of Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
4
|
Zafirlukast inhibits the growth of lung adenocarcinoma via inhibiting TMEM16A channel activity. J Biol Chem 2022; 298:101731. [PMID: 35176281 PMCID: PMC8931426 DOI: 10.1016/j.jbc.2022.101731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/05/2023] Open
Abstract
Lung cancer has the highest mortality among cancers worldwide due to its high incidence and lack of the effective cures. We have previously demonstrated that the membrane ion channel TMEM16A is a potential drug target for the treatment of lung adenocarcinoma and have identified a pocket of inhibitor binding that provides the basis for screening promising new inhibitors. However, conventional drug discovery strategies are lengthy and costly, and the unpredictable side effects lead to a high failure rate in drug development. Therefore, finding new therapeutic directions for already marketed drugs may be a feasible strategy to obtain safe and effective therapeutic drugs. Here, we screened a library of over 1400 Food and Drug Administration-approved drugs through virtual screening and activity testing. We identified a drug candidate, Zafirlukast (ZAF), clinically approved for the treatment of asthma, that could inhibit the TMEM16A channel in a concentration-dependent manner. Molecular dynamics simulations and site-directed mutagenesis experiments showed that ZAF can bind to S387/N533/R535 in the nonselective inhibitor binding pocket, thereby blocking the channel pore. Furthermore, we demonstrate ZAF can target TMEM16A channel to inhibit the proliferation and migration of lung adenocarcinoma LA795 cells. In vivo experiments showed that ZAF can significantly inhibit lung adenocarcinoma tumor growth in mice. Taken together, we identified ZAF as a novel TMEM16A channel inhibitor with excellent anticancer activity, and as such, it represents a promising candidate for future preclinical and clinical studies.
Collapse
|
5
|
Schuler J, Falls Z, Mangione W, Hudson ML, Bruggemann L, Samudrala R. Evaluating the performance of drug-repurposing technologies. Drug Discov Today 2022; 27:49-64. [PMID: 34400352 PMCID: PMC10014214 DOI: 10.1016/j.drudis.2021.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/20/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
Drug-repurposing technologies are growing in number and maturing. However, comparisons to each other and to reality are hindered because of a lack of consensus with respect to performance evaluation. Such comparability is necessary to determine scientific merit and to ensure that only meaningful predictions from repurposing technologies carry through to further validation and eventual patient use. Here, we review and compare performance evaluation measures for these technologies using version 2 of our shotgun repurposing Computational Analysis of Novel Drug Opportunities (CANDO) platform to illustrate their benefits, drawbacks, and limitations. Understanding and using different performance evaluation metrics ensures robust cross-platform comparability, enabling us to continue to strive toward optimal repurposing by decreasing the time and cost of drug discovery and development.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Matthew L Hudson
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
6
|
Muhammad SA, Qousain Naqvi ST, Nguyen T, Wu X, Munir F, Jamshed MB, Zhang Q. Cisplatin's potential for type 2 diabetes repositioning by inhibiting CDKN1A, FAS, and SESN1. Comput Biol Med 2021; 135:104640. [PMID: 34261004 DOI: 10.1016/j.compbiomed.2021.104640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022]
Abstract
Cisplatin is a DNA-damaging chemotherapeutic agent used for treating cancer. Based on cDNA dataset analysis, we investigated how cisplatin modified gene expression and observed cisplatin-induced dysregulation and system-level variations relating to insulin resistance and type 2 diabetes mellitus (T2DM). T2DM is a multifactorial disease affecting 462 million people in the world, and drug-induced T2DM is a serious issue. To understand this etiology, we designed an integrative, system-level study to identify associations between cisplatin-induced differentially expressed genes (DEGs) and T2DM. From a list of differential expressed genes, cisplatin downregulated the cyclin-dependent kinase inhibitor 1 (CDKN1A), tumor necrosis factor (FAS), and sestrin-1 (SESN1) genes responsible for modifying signaling pathways, including the p53, JAK-STAT, FOXO, MAPK, mTOR, P13-AKT, Toll-like receptor (TLR), adipocytokine, and insulin signaling pathways. These enriched pathways were expressively associated with the disease. We observed significant gene signatures, including SMAD3, IRS, PDK1, PRKAA1, AKT, SOS, RAS, GRB2, MEK1/2, and ERK, interacting with source genes. This study revealed the value of system genetics for identifying the cisplatin-induced genetic variants responsible for the progression of T2DM. Also, by cross-validating gene expression data for T2DM islets, we found that downregulating IRS and PRK families is critical in insulin and T2DM signaling pathways. Cisplatin, by inhibiting CDKN1A, FAS, and SESN1, promotes IRS and PRK activity in a similar way to rosiglitazone (a popular drug used for T2DM treatment). Our integrative, network-based approach can help in understanding the drug-induced pathophysiological mechanisms of diabetes.
Collapse
Affiliation(s)
- Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.
| | | | - Thanh Nguyen
- Informatics Institute, School of Medicine, The University of Alabama, Birmingham, AL, USA
| | - Xiaogang Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Muhammad Babar Jamshed
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - QiYu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
Holbrook L, Keeton SJ, Sasikumar P, Nock S, Gelzinis J, Brunt E, Ryan S, Pantos MM, Verbetsky CA, Gibbins JM, Kennedy DR. Zafirlukast is a broad-spectrum thiol isomerase inhibitor that inhibits thrombosis without altering bleeding times. Br J Pharmacol 2021; 178:550-563. [PMID: 33080041 PMCID: PMC9328650 DOI: 10.1111/bph.15291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Multiple members of the thiol isomerase (TI) family of enzymes are present in and released by platelets. Inhibition of these enzymes results in diminished platelet responses, aggregation, adhesion and thrombus formation. Recently, the therapeutic potential of TI inhibition has been recognised and drug-development technologies were used to identify selective small molecule inhibitors. To date, few pan-TI inhibitors have been characterised and the most studied, bacitracin, is known to be nephrotoxic, which prohibits its systemic therapeutic usage. EXPERIMENTAL APPROACH We therefore sought to identify novel broad-spectrum inhibitors of these enzymes and test their effects in vivo. A total of 3,641 compounds were screened for inhibitory effects on the redox activity of ERp5, protein disulphide isomerase (PDI), ERp57, ERp72 and thioredoxin in an insulin turbidity assay. Of the lead compounds identified, zafirlukast was selected for further investigation. KEY RESULTS When applied to platelets, zafirlukast diminished platelet responses in vitro. Zafirlukast was antithrombotic in murine models of thrombosis but did not impair responses in a model of haemostasis. Since TIs are known to modulate adhesion receptor function, we explored the effects of zafirlukast on cell migration. This was inhibited independently of cysteinyl LT receptor expression and was associated with modulation of cell-surface free thiol levels consistent with alterations in redox activity on the cell surface. CONCLUSION AND IMPLICATIONS We identify zafirlukast to be a novel, potent, broad-spectrum TI inhibitor, with wide-ranging effects on platelet function, thrombosis and integrin-mediated cell migration. Zafirlukast is antithrombotic but does not cause bleeding.
Collapse
Affiliation(s)
- Lisa‐Marie Holbrook
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
- School of Cardiovascular Medicine and SciencesKing's College LondonLondonUK
| | - Shirley J. Keeton
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
| | - Parvathy Sasikumar
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
- Centre for HaematologyImperial College LondonLondonUK
| | - Sophie Nock
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
| | - Justine Gelzinis
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| | - Elizabeth Brunt
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| | - Sarah Ryan
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
| | - Megan M. Pantos
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| | - Christina A. Verbetsky
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
| | - Daniel R. Kennedy
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| |
Collapse
|
8
|
Juárez-López D, Schcolnik-Cabrera A. Drug Repurposing: Considerations to Surpass While Re-directing Old Compounds for New Treatments. Arch Med Res 2020; 52:243-251. [PMID: 33190955 DOI: 10.1016/j.arcmed.2020.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
Drug repurposing has increased in recent years as an attractive option for treating a number of diseases. Compared to those brought forward via traditional chemical development, drugs intended for repurposing can enter the market faster and with lower investment from pharmaceutical companies. However, a common trend is to focus on diseases that yield higher returns to the industry, such as cancer and common metabolic and inflammatory conditions, resulting in orphan illnesses and neglected tropical diseases having fewer repurposing options for affected patients. In addition, certain legal concerns, including limited patent coverage for the repurposed drugs and pharmacological challenges in performing clinical trials, reduce the likelihood of success. In this review, we discuss the most important concerns that affect the pathway of drug repurposing, with special emphasis on the economic revenues, government-industry associations, and legal considerations that together impact the pharmaceutical industry's decision-making on which compounds may be eligible for repurposing.
Collapse
Affiliation(s)
- Daniel Juárez-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada; Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada.
| |
Collapse
|
9
|
Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin Cancer Biol 2019; 68:8-20. [PMID: 31550502 PMCID: PMC7128772 DOI: 10.1016/j.semcancer.2019.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022]
Abstract
Despite tremendous resources being invested in prevention and treatment, breast cancer remains a leading cause of cancer deaths in women globally. The available treatment modalities are very costly and produces severe side effects. Drug repurposing that relate to new uses for old drugs has emerged as a novel approach for drug development. Repositioning of old, clinically approved, off patent non-cancer drugs with known targets, into newer indication is like using old weapons for new battle. The advances in genomics, proteomics and information computational biology has facilitated the process of drug repurposing. Repositioning approach not only fastens the process of drug development but also offers more effective, cheaper, safer drugs with lesser/known side effects. During the last decade, drugs such as alkylating agents, anthracyclins, antimetabolite, CDK4/6 inhibitor, aromatase inhibitor, mTOR inhibitor and mitotic inhibitors has been repositioned for breast cancer treatment. The repositioned drugs have been successfully used for the treatment of most aggressive triple negative breast cancer. The literature review suggest that serendipity plays a major role in the drug development. This article describes the comprehensive overview of the current scenario of drug repurposing for the breast cancer treatment. The strategies as well as several examples of repurposed drugs are provided. The challenges associated with drug repurposing are discussed.
Collapse
|