1
|
Verhoog NJD, Spies LML. The anti-aromatase and anti-estrogenic activity of plant products in the treatment of estrogen receptor-positive breast cancer. J Steroid Biochem Mol Biol 2024; 243:106581. [PMID: 38997071 DOI: 10.1016/j.jsbmb.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Despite being the focal point of decades of research, female breast cancer (BC) continues to be one of the most lethal cancers in the world. Given that 80 % of all diagnosed BC cases are estrogen receptor-positive (ER+) with carcinogenesis driven by estrogen-ERα signalling, current standard of care (SOC) hormone therapies are geared towards modulating the function and expression levels of estrogen and its receptors, ERα and ERβ. Currently, aromatase inhibitors (AIs), selective ER modulators (SERMs) and selective ER degraders (SERDs) are clinically prescribed for the management and treatment of ER+ BC, with the anti-aromatase activity of AIs abrogating estrogen biosynthesis, while the anti-estrogenic SERMs and SERDs antagonise and degrade the ER, respectively. The use of SOC hormone therapies is, however, significantly hampered by the onset of severe side-effects and the development of resistance. Given that numerous studies have reported on the beneficial effects of plant compounds and/or extracts and the multiple pathways through which they target ER+ breast carcinogenesis, recent research has focused on the use of dietary chemopreventive agents for BC management. When combined with SOC treatments, several of these plant components and/or extracts have demonstrated improved efficacy and/or synergistic impact. Moreover, despite a lack of in vivo investigations, plant products are generally reported to have a lower side-effect profile than SOC therapies and are therefore thought to be a safer therapeutic choice. Thus, the current review summarizes the findings from the last five years regarding the anti-aromatase and anti-estrogenic activity of plant products, as well as their synergistic anti-ER+ BC effects in combination with SOC therapies.
Collapse
Affiliation(s)
| | - Lee-Maine Lorin Spies
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch, 7601, South Africa
| |
Collapse
|
2
|
Fan X, Krzyzanski W, Wong RSM, Liu D, Yan X. Novel Combination of Erythropoietin and Romiplostim to Treat Chemotherapy-Induced Anemia and Thrombocytopenia via Pharmacodynamic Interaction on Hematopoietic Stem and Progenitor Cells. ACS Pharmacol Transl Sci 2023; 6:1884-1897. [PMID: 38093847 PMCID: PMC10714423 DOI: 10.1021/acsptsci.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2024]
Abstract
Chemotherapy-induced anemia and thrombocytopenia (CIAT) in cancer patients are often caused by the damage of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. We have previously shown that romiplostim, a thrombopoietin receptor agonist that could stimulate the expansion of HSPCs, could synergize with recombinant human erythropoietin (rHuEPO) to promote erythropoiesis in addition to stimulating platelet production, whereas rHuEPO could influence the platelet count through stem cell competition. Therefore, we hypothesize that a combination of romiplostim with rHuEPO can alleviate CIAT simultaneously, while minimizing the risk of thrombosis. In this study, we demonstrated that rHuEPO and romiplostim exhibit no stimulatory effects on the growth and invasion of LA-7 cancer cells both in vitro and in vivo. Using a rat model with carboplatin-induced anemia and thrombocytopenia, we showed that the red blood cells and hemoglobin concentration recovered faster, and the secondary thrombocytopenia was alleviated in the rHuEPO and romiplostim combination therapy groups compared with the corresponding rHuEPO monotherapy groups. The rebound phenomenon of platelets was inhibited compared with the romiplostim monotherapy group. In vitro study further demonstrated that romiplostim expands HSPCs and synergizes with rHuEPO to promote erythropoiesis, while rHuEPO inhibited megakaryopoiesis. Furthermore, we developed a mechanism-based pharmacokinetic-pharmacodynamic model to quantify the effects of the two drugs. This study suggests that rHuEPO and romiplostim combination therapy can treat CIAT simultaneously in rats while minimizing the risk of thrombosis, indicating that combination therapy might be superior to monotherapy in the supportive therapy of cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Xiaoqing Fan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, Hong Kong 999077, China SAR
| | - Wojciech Krzyzanski
- Department
of Pharmaceutical Sciences, The State University
of New York at Buffalo, Buffalo, New York 14068, United States
| | - Raymond S. M. Wong
- Division
of Hematology, Department of Medicine and Therapeutics, Faculty of
Medicine, The Chinese University of Hong
Kong, Shatin, Hong Kong 999077, China SAR
| | - Dongyang Liu
- Drug
Clinical Trial Center, Peking University
Third Hospital, Beijing 100191, China
| | - Xiaoyu Yan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, Hong Kong 999077, China SAR
| |
Collapse
|
3
|
Olayoku FR, Verhoog NJD, Louw A. Cyclopia extracts act as selective estrogen receptor subtype downregulators in estrogen receptor positive breast cancer cell lines: Comparison to standard of care breast cancer endocrine therapies and a selective estrogen receptor agonist and antagonist. Front Pharmacol 2023; 14:1122031. [PMID: 36992834 PMCID: PMC10040842 DOI: 10.3389/fphar.2023.1122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Breast cancer is the most diagnosed type of cancer amongst women in economically developing countries and globally. Most breast cancers express estrogen receptor alpha (ERα) and are categorized as positive (ER+) breast cancer. Endocrine therapies such as, selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs), and selective estrogen receptor downregulators (SERDs) are used to treat ER+ breast cancer. However, despite their effectiveness, severe side-effects and resistance are associated with these endocrine therapies. Thus, it would be highly beneficial to develop breast cancer drugs that are as effective as current therapies, but less toxic with fewer side effects, and less likely to induce resistance. Extracts of Cyclopia species, an indigenous South African fynbos plant, have been shown to possess phenolic compounds that exhibit phytoestrogenic and chemopreventive activities against breast cancer development and progression. In the current study, three well characterized Cyclopia extracts, SM6Met, cup of tea (CoT) and P104, were examined for their abilities to modulate the levels of the estrogen receptor subtypes, estrogen receptor alpha and estrogen receptor beta (ERβ), which have been recognized as crucial to breast cancer prognosis and treatment. We showed that the Cyclopia subternata Vogel (C. subternata Vogel) extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, reduced estrogen receptor alpha protein levels while elevating estrogen receptor beta protein levels, thereby reducing the ERα:ERβ ratio in a similar manner as standard of care breast cancer endocrine therapies such as fulvestrant (selective estrogen receptor downregulator) and 4-hydroxytamoxifen (elective estrogen receptor modulator). Estrogen receptor alpha expression enhances the proliferation of breast cancer cells while estrogen receptor beta inhibits the proliferative activities of estrogen receptor alpha. We also showed that in terms of the molecular mechanisms involved all the Cyclopia extracts regulated estrogen receptor alpha and estrogen receptor beta protein levels through both transcriptional and translational, and proteasomal degradation mechanisms. Therefore, from our findings, we proffer that the C. subternata Vogel extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, selectively modulate estrogen receptor subtypes levels in a manner that generally supports inhibition of breast cancer proliferation, thereby demonstrating attributes that could be explored as potential therapeutic agents for breast cancer.
Collapse
|
4
|
van Dyk L, Verhoog NJD, Louw A. Combinatorial treatments of tamoxifen and SM6Met, an extract from Cyclopia subternata Vogel, are superior to either treatment alone in MCF-7 cells. Front Pharmacol 2022; 13:1017690. [PMID: 36210845 PMCID: PMC9535530 DOI: 10.3389/fphar.2022.1017690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Synergistic drug combinations are not only popular in antibiotic, anti-microbial, immune disease (i.e., AIDS) and viral infection studies, but has also gained traction in the field of cancer research as a multi-targeted approach. It has the potential to lower the doses needed of standard of care (SOC) therapeutic agents, whilst maintaining an effective therapeutic level. Lower dosages could ameliorate the fundamental problems such as drug resistance and metastasis associated with current SOC therapies. In the current study, we show that the combination of SM6Met with (2)-4-hydroxytamoxifen (4-OH-Tam, the active metabolite of tamoxifen) produces a strong synergistic effect in terms of inhibiting MCF7 ER-positive (ER+) breast cancer cell proliferation and that a 20 times lower dose of 4-OH-Tam in combination with SM6Met is required to produce the same inhibitory effect on cell proliferation as 4-OH-Tam on its own. Cell cycle analyses of the best combination ratios of SM6Met and 4-OH-Tam also suggests that the combination results in increased accumulation of cells in the S-phase and in the apoptotic phase. Moreover, the best combination ratio (20:1) of SM6Met with 4-OH-Tam displayed greater anti-metastatic potential in terms of inhibiting ER+ breast cancer cell migration, invasion, and colony formation than the SOC therapy alone, suggesting that SM6Met together with 4-OH-Tam could be a viable drug combination for not only delaying resistance and ameliorating the negative side-effects associated with current SOC therapies, like tamoxifen, but could also provide a novel, more affordable therapeutic alternative for treating or preventing ER+ breast cancer metastasis.
Collapse
|
5
|
López V, Cásedas G, Petersen-Ross K, Powrie Y, Smith C. Neuroprotective and anxiolytic potential of green rooibos ( Aspalathus linearis) polyphenolic extract. Food Funct 2022; 13:91-101. [PMID: 34877951 DOI: 10.1039/d1fo03178c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
South African rooibos (Aspalathus linearis) tea is globally consumed for its health benefits and caffeine free nature, but no information is available on the neuroprotective capacity of (unfermented) green rooibos. Our aim was to investigate the cytoprotective activity of green rooibos in neuronal cells, including probing antioxidant and enzyme inhibitory properties that could explain observed effects in these cells. We also investigated the anxiolytic potential of green rooibos using zebrafish larval models. Green rooibos extract (Green oxithin™) was assessed for its neuroprotective potential in Neuro-2a cells treated with different concentrations of the extract (12.5-25-50-100 μg mL-1) and different concentrations of hydrogen peroxide (250 or 125 μM) as oxidizing agent. Cell viability (MTT) and redox status (intracellular ROS) were also quantified in these cells. Antioxidant properties of the extract were quantified using cell-free systems (DPPH, ORAC and xanthine/xanthine oxidase), and potential neuroprotection evaluated in terms of its potential to inhibit key enzymes of the CNS (monoamine oxidase A (MOA-A), acetylcholinesterase (AChE) and tyrosinase (TYR)). Results demonstrated that green rooibos extract exerted significant cytoprotective properties in Neuro-2a cells, particularly when exposed to lethal 250 μM hydrogen peroxide, increasing cell survival by more than 100%. This may be ascribed (at least partially) to its capacity to limit intracellular ROS accumulation in these cells. Data from cell-free systems confirmed that green rooibos was able to scavenge free radicals (synthetic and physiological) in a dose dependent manner with a similar profile activity to vitamins C and E. Green rooibos also acted as a moderate MAO-A inhibitor, but had no significant effect on AChE or TYR. Finally, zebrafish larvae treated with lower doses of green rooibos demonstrated a significant anxiolytic effect in the light-dark anxiety model. Using the PTZ excitotoxicity model, green rooibos was shown to rescue GABA receptor signalling, which together with its demonstrated inhibition of MAO-A, may account for the anxiolytic outcome. Current data confirms that green rooibos could be considered a "functional brain food" and may be a good option as starting ingredient in the development of new nutraceuticals.
Collapse
Affiliation(s)
- Víctor López
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.,Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Kelly Petersen-Ross
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Yigael Powrie
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Carine Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| |
Collapse
|
6
|
Sharma M, Mittapelly N, Banala VT, Urandur S, Gautam S, Marwaha D, Rai N, Singh N, Gupta A, Mitra K, Mishra PR. Amalgamated Microneedle Array Bearing Ribociclib-Loaded Transfersomes Eradicates Breast Cancer via CD44 Targeting. Biomacromolecules 2022; 23:661-675. [PMID: 34978424 DOI: 10.1021/acs.biomac.1c01076] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HR+/HER2- metastatic breast cancer (MBC) is one of the most common and life-threatening conditions diagnosed in women. The endocrine therapy using an orally active CDK4/6 inhibitor, ribociclib (RB), is the most intriguing approach for treating HR+/HER2- MBC. However, the repeated three to six cycles of multiple dosing and non-targeted distribution of RB led to severe neutropenia; hepatobiliary, gastrointestinal, and renal toxicities, and QT interval prolongation. Here, a novel organic solvent-free HA-PVA-PVP (hyaluronic acid-polyvinyl alcohol-polyvinyl pyrrolidone) composed of a microneedle (MN) array is formulated to deliver RB, integrated with amphiphilic conjugated polymer (HA-GMS)-anchored ultradeformable transfersomes. This unique MN array efficiently crafts microchannels in the skin, allowing HA-RB-Ts to internalize into the tumor cells through lymphatic and systemic absorption and interact with CD44 both spatially and temporally with an amplification of drug release time up to 6-folds. The pharmacokinetic and tissue distribution studies portray drug concentrations within the therapeutic window as long as 48 h, facilitating thrice-a-week frequency with the lower dose, and rule out severe toxicities, with a significant reduction in 8.3-fold RB concentration in vital organs that ultimately enhances the survival rate. Thus, the novel MN system pursues a unique embeddable feature and offers an effective, self-administrable, biodegradable, and chronic treatment option for patients requiring long-term cancer treatments.
Collapse
Affiliation(s)
- Madhu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mehri M, Gheitasi R, Pourbagher R, Ranaee M, Nayeri K, Rahimi SM, Khorasani HR, Hossein-Nattaj H, Sabour D, Akhavan-Niaki H, Fattahi S, Kalali B, Mostafazadeh A. Ninety-six-hour starved peripheral blood mononuclear cell supernatant inhibited LA7 breast cancer stem cells induced tumor via reduction in angiogenesis and alternations in Gch1 and Spr expressions. Front Immunol 2022; 13:1025933. [PMID: 36908807 PMCID: PMC9996193 DOI: 10.3389/fimmu.2022.1025933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 02/25/2023] Open
Abstract
Introduction The microenvironment of solid tumors such as breast cancer is heterogeneous and complex, containing different types of cell, namely, cancer stem cells and immune cells. We previously reported the immunoregulatory behavior of the human immune cell in a solid tumor microenvironment-like culture under serum starvation stress for 96 h. Here, we examined the effect of this culture-derived solution on breast cancer development in rats. Method Ninety-six-hour starved PBMCs supernatant (96 h-SPS) was collected after culturing human PBMCs for 96 h under serum starvation condition. Breast cancer stem cells, LA7 cell line, was used for in vitro study by analyzing gene expression status and performing cytotoxicity, proliferation, scratch wound healing assays, followed by in vivo tumor induction in three groups of mature female Sprague Dawley rats. Animals were treated with 96 h-SPS or RPMI and normal saline as control, n = 6 for each group. After biochemical analysis of iron, lactate, and pH levels in the dissected tumors, Ki67 antigen expression, angiogenesis, and necrosis evaluation were carried out. Metabolic-related gene expression was assessed using RT-qPCR. Moreover, 96 h-SPS composition was discovered by Nano-LC-ESI-MS/MS. Results 96 h-SPS solution reduced the LA7 cell viability, proliferation, and migration and Gch1 and Spr genes expression in vitro (p< 0.05), whereas stemness gene Oct4 was upregulated (p< 0.01). The intracellular lactate was significantly decreased in the 96 h-SPS treated group (p = 0.007). In this group, Gch1 and Spr were significantly downregulated (p< 0.05), whereas the Sox2 and Oct4 expression was not changed significantly. The number of vessels and mitosis (Ki67+ cells) in the 96 h-SPS-treated group was significantly reduced (p = 0.024). The increased rate of necrosis in this group was statistically significant (p = 0.04). Last, proteomics analysis revealed candidate effectors' components of 96 h-SPS solution. Conclusion 96 h-SPS solution may help to prevent cancer stem cell mediated tumor development. This phenomenon could be mediated through direct cytotoxic effects, inhibition of cell proliferation and migration in association with reduction in Gch1 and Spr genes expression, angiogenesis and mitosis rate, and necrosis augmentation. The preliminary data obtained from the present study need to be investigated on a larger scale and can be used as a pilot for further studies on the biology of cancer development.
Collapse
Affiliation(s)
- Maryam Mehri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Reza Gheitasi
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich Schiller University, Jena, Germany
| | - Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ranaee
- Department of Pathology, School of Medicine, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kosar Nayeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mostafa Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Khorasani
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hadi Hossein-Nattaj
- Immunology Department, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadegh Fattahi
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Behnam Kalali
- Department of Medicine II, Klinikum Grosshadern, Ludwig Maximilian University (LMU) University, Munich, Germany
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Pourbagher R, Ghorbani H, Akhavan-Niaki H, Jorsaraei SGA, Fattahi S, Ghooran S, Abedian Z, Ghasemi M, Saeedi F, Jafari N, Kalali B, Mostafazadeh A. Downregulation of Stemness Genes and Induction of Necrosis in Rat LA7 Cancer Stem Cells Induced Tumors Treated with Starved Fibroblasts Culture Supernatant. Rep Biochem Mol Biol 2021; 10:105-118. [PMID: 34277874 PMCID: PMC8279721 DOI: 10.52547/rbmb.10.1.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 04/11/2023]
Abstract
BACKGROUND Stem cell differentiation therapy is a promising strategy in cancer treatment. we show that protein cocktail prepared from serum starved fibroblasts has therapeutic potential based on this strategy. METHODS The condition medium was prepared from foreskin isolated fibroblasts and analyzed by Liquid chromatography electrospray ionization mass spectrometry-mass spectrometry (LC-ESI-MS/MS). LA7 mammary gland cancer stem cells originated tumors were induced in Sprague Dawley rats. The rats treated subcutaneously with DMEM (group A), condition medium (group B), or normal saline (group C) once daily for 7 days. Then the tumors were removed and divided into the two parts, one part was used to quantify gene expression by stem-loop RT-qPCR assay and the other part was used for Hematoxylin & Eosin (H & E), Giemsa, and immunohistochemistry (IHC) staining. RESULTS All induced tumors appeared as sarcomatoid carcinoma (SC). Immunohistochemistry staining confirmed this conclusion by recognizing the tumor as Ki67+, cytokeratin+, vimentine+, and estrogen receptor negative SC. RT-qPCR analysis revealed that Oct4-, Sox-2, Nanog- gene expression was much reduced in the condition medium treated tumors versus proper controls (p< 0.05). Tissue necrosis was more prevalent in this group while tumors volume was diminished almost by 40%. The LC-ESI-MS/MS analysis unrevealed the stemness reducing and the cell death inducing proteins such as, pigment epithelium-derived factor (PEDF), insulin like growth factor binding protein-5 (IGFBP-5) and -7 (IGFBP-7) in the condition medium. CONCLUSION This study showed that the substances released from starved human fibroblasts were able to down-regulate the stemness-related genes and induce necrosis in LA7 derived tumors.
Collapse
Affiliation(s)
- Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Hossein Ghorbani
- Department of Pathology, Rohani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Seyed Gholam Ali Jorsaraei
- Fatemeh Zahra Infertility and Reproductive Health Research Centre, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Sahar Ghooran
- Department of Pathology, Rohani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Zeinab Abedian
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Dental Materials Research Center, Dental Faculty, Babol University of Medical Sciences, Babol, Iran.
| | - Masoumeh Ghasemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Fatemeh Saeedi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Negar Jafari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Behnam Kalali
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
9
|
Vekaria M, Tirgar P. Promising Anticancer Potential of Herbal Compounds against Breast Cancer: A Systemic Review. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2020. [DOI: 10.18311/ajprhc/2021/26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|