1
|
Han C, Bao H. Therapeutic effects and mechanisms of Inonotus hispidus extract and active monomer compounds in a rat mammary gland hyperplasia model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117274. [PMID: 37797875 DOI: 10.1016/j.jep.2023.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inonotus hispidus is the traditional Chinese medicine Sanghuang. Since ancient times, Sanghuang has been documented to be used in the treatment of female breast diseases. However, the pharmacological mechanism of Sanghuang in the treatment of mammary gland hyperplasia (HMG) remains unclear. AIM OF THE STUDY The ethyl acetate extract of the aging fruiting body of I. hispidus (IEAE) was used to study the pharmacological mechanism of IEAE in the treatment of HMG using non-targeted metabolomics. MATERIALS AND METHODS The HMG rat model was established, and serum metabolomics was used to study the potential therapeutic mechanism of IEAE for HMG. RESULTS IEAE has obvious therapeutic effect on HMG model rats, and no obvious adverse reactions were observed. Non-targeted metabolomics showed that after IEAE intervention, the upstream metabolite D-erythrose 4-phosphate was significantly downregulated, aromatic amino acids such as tryptophan, tyrosine, and phenylalanine were downregulated, and the downstream metabolites N-acetyl-L-glutamate and L-proline were significantly upregulated. After an intervention with yakuchinone A, non-targeted metabolomics analyses demonstrated that yakuchinone A restored tetrahydrocorticosterone, cortisol, and etiocholanolone to normal levels, estriol was significantly upregulated, and steroid hormone biosynthesis was significantly activated. CONCLUSION IEAE was shown to have a good therapeutic effect on HMG in a rat model without adverse reactions. The mechanism of action was mainly based on the biosynthesis of amino acids. Small molecule metabolites such as D-erythrose 4-phosphate, N-acetyl-L-glutamate, and L-proline may be potential targets for IEAE in the treatment of HMG. Yakuchinone A is one of the main active components of IEAE, and plays a role by promoting the steroid hormone biosynthesis pathway. Estriol may be a potential target for the treatment of HMG with yakuchinone A, providing a new concept for clinical treatment of HMG.
Collapse
Affiliation(s)
- Chen Han
- Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, No.2888 Xincheng Street, Nanguan District, Changchun, Jilin, 130118, China; College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Haiying Bao
- Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, No.2888 Xincheng Street, Nanguan District, Changchun, Jilin, 130118, China; College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Meimei C, Jingru Z, Huijuan G, Candong L. Investigation of Ginseng-Ophiopogon Injection on Enhancing Physical Function by Pharmacogenomics and Metabolomics Evaluation. Comb Chem High Throughput Screen 2024; 27:2838-2849. [PMID: 37957852 DOI: 10.2174/0113862073244102231020050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Ginseng-ophiopogon injection (GOI) is a clinically commonly used drug for Qi deficiency syndrome characterized by decreased physical function in China. This study aimed to clarify common pharmacological mechanisms of GOI in enhancing physical function. METHODS We performed an integrative strategy of weight-loaded swimming tests in cold water (5.5°C), hepatic glycogen and superoxide dismutase (SOD) detections, GC-TOF/MS-based metabolomics, multivariate statistical techniques, network pharmacology of known targets and constituents, and KEGG pathway analysis of GOI. RESULTS Compared with the control group, GOI showed significant increases in the weightloaded swimming time, hepatic levels of glycogen and SOD. Additionally, 34 significantly differential serum metabolites referred to glycolysis, gluconeogenesis and arginine biosynthesis were affected by GOI. The target collection revealed 98 metabolic targets and 50 experimentreported drug targets of ingredients in GOI involved in enhancing physical function. Further, the PPI network analysis revealed that 8 ingredients of GOI, such as ginsenoside Re, ginsenoside Rf, ginsenoside Rg1, and notoginsenoside R1, were well-associated with 48 hub targets, which had good ability in enhancing physical function. Meanwhile, nine hub proteins, such as SOD, mechanistic target of Rapamycin (mTOR), and nitric oxide synthases, were confirmed to be affected by GOI. Finally, 98 enriched KEGG pathways (P<0.01 and FDR<0.001) of GOI were obtained from 48 hub targets of the PPI network. Among them, pathways in cancer, Chagas disease, lipid and atherosclerosis, and PI3K-Akt signaling pathway ranked top four. CONCLUSION This study provided an integrative and efficient approach to understand the molecular mechanism of GOI in enhancing physical function.
Collapse
Affiliation(s)
- Chen Meimei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Zhu Jingru
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Gan Huijuan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Li Candong
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| |
Collapse
|
3
|
Wei S, He T, Zhao X, Jing M, Li H, Chen L, Zheng R, Zhao Y. Alterations in the gut microbiota and serum metabolomics of spontaneous cholestasis caused by loss of FXR signal in mice. Front Pharmacol 2023; 14:1197847. [PMID: 37284301 PMCID: PMC10239812 DOI: 10.3389/fphar.2023.1197847] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Farnesoid X receptor (FXR) is a key metabolic target of bile acids (BAs) and is also a target for drugs against several liver diseases. However, the contribution of FXR in the pathogenesis of cholestasis is still not fully understood. The purpose of this study is to provide a comprehensive insight into the metabolic properties of FXR-involved cholestasis in mice. Materials and methods: In this study, an alpha-naphthylisothiocyanate (ANIT)-induced cholestasis mouse model and FXR-/- mice were established to investigate the effect of FXR on cholestasis. The effect of FXR on liver and ileal pathology was evaluated. Simultaneously, Untargeted metabolomics combined with 16s rRNA gene sequencing analysis was applied to reveal the involvement of FXR in the pathogenesis of cholestasis. Results: The results showed that ANIT (75 mg/kg) induced marked cholestasis in WT and FXR -/- mice. It is noteworthy that FXR-/- mice developed spontaneous cholestasis. Compared with WT mice, significant liver and ileal tissue damage were found. In addition, 16s rRNA gene sequencing analysis revealed gut microbiota dysbiosis in FXR-/- mice and ANIT-induced cholestasis mice. Differential biomarkers associated with the pathogenesis of cholestasis caused by FXR knockout were screened using untargeted metabolomics. Notably, Lactobacillus_ johnsonii_FI9785 has a high correlation with the differential biomarkers associated with the pathogenesis and progression of cholestasis caused by FXR knockout. Conclusion: Our results implied that the disorder of the intestinal flora caused by FXR knockout can also interfere with the metabolism. This study provides novel insights into the FXR-related mechanisms of cholestasis.
Collapse
Affiliation(s)
- Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Division of Integrative Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Division of Integrative Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Lisheng Chen
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Chen X, Chen Y, Xie S, Wang X, Wu Y, Zhang H, Zhao Y, Jia J, Wang B, Li W, Tang J, Xiao X. The mechanism of Renshen-Fuzi herb pair for treating heart failure-Integrating a cardiovascular pharmacological assessment with serum metabolomics. Front Pharmacol 2022; 13:995796. [PMID: 36545315 PMCID: PMC9760753 DOI: 10.3389/fphar.2022.995796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Renshen-Fuzi herb pair (RS-FZ) is often used in the clinical treatment of heart failure (HF) and has a remarkable therapeutic effect. However, the mechanism of RS-FZ for treating HF remains unclear. In our study, we explored the mechanism of RS-FZ for treating HF. Methods: Evaluation of RS-FZ efficacy by cardiovascular pharmacology. Moreover, Global metabolomics profiling of the serum was detected by UPLC-QTOF/MS. Multivariate statistics analyzed the specific serum metabolites and corresponding metabolic pathways. Combining serum metabolomics with network pharmacology, animal experiments screened and validated the critical targets of RS-FZ intervention in HF. Results: RS-FZ significantly ameliorated myocardial fibrosis, enhanced cardiac function, and reduced the serum HF marker (brain natriuretic peptide) level in rats with HF. Through topological analysis of the "Metabolite-Target-Component" interaction network, we found that 79 compounds of RS-FZ directly regulated the downstream specific serum metabolites by acting on four critical target proteins (CYP2D6, EPHX2, MAOB, and ENPP2). The immunohistochemistry results showed that RS-FZ observably improved the expression of CYP2D6 and ENPP2 proteins while decreasing the expression of EPHX2 and MAOB proteins dramatically. Conclusion: The integrated cardiovascular pharmacological assessment with serum metabolomics revealed that RS-FZ plays a crucial role in the treatment of HF by intervening in CYP2D6, EPHX2, MAOB, and ENPP2 target proteins. It provides a theoretical basis for RS-FZ for treating HF.
Collapse
Affiliation(s)
- Xiaofei Chen
- College of Medicine, Chengdu University of Chinese Medicine, Chengdu, China,Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yulong Chen
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiyang Xie
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya Zhao
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinhao Jia
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bin Wang
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Jinfa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| |
Collapse
|
5
|
Liu Y, Wu D, Wang K, Chen H, Xu H, Zong W, Zhang N, Zhao L, Lin Z, Ji T. Dose-Dependent Effects of Royal Jelly on Estrogen- and Progesterone-Induced Mammary Gland Hyperplasia in Rats. Mol Nutr Food Res 2021; 66:e2100355. [PMID: 34914178 DOI: 10.1002/mnfr.202100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/28/2021] [Indexed: 11/11/2022]
Abstract
SCOPE Royal jelly (RJ) has a wide range of biological functions, its effect on hyperplasia of the mammary gland (HMG) in mammals is unclear. This study aims to investigate the effect of RJ on HMG and the dose-response relationship of RJ in the treatment of HMG. METHODS AND RESULTS HMG rats are induced by intramuscular injection of estrogen (E2) and progesterone, and are treated with different doses of RJ (100, 200, 400, and 800 mg kg-1 d-1 ). As a result, RJ improves the expansion of acinar and breast tissue ducts, particularly at 100 and 800 mg kg-1 d-1 . These two doses also inhibit serum E2 and prolactin (PRL) secretion and increase serum progesterone secretion and the expression of estrogen receptor (ER)-β in the breast tissue. In addition, 800 mg kg-1 d-1 decrease and increase the mRNA expression of, respectively, hypothalamic gonadotropin-releasing hormone (GnRH) and pituitary GnRH receptors (GnRH-R). The lowest dosage (100 mg kg-1 d-1 ) increases GnRH-R mRNA expression as well. However, the effects of 200 and 400 mg kg-1 d-1 RJ on the reproductive parameters of HMG are not significant, implying a dose-dependent effect. CONCLUSION RJ regulates endocrine dyscrasia in HMG rats and improves the breast tissue structure, indicating its potential in the prevention and treatment on HMG.
Collapse
Affiliation(s)
- Yibing Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dequn Wu
- Department of Clinical Laboratory, Yangzhou Maternal and Child Health Hospital, Yangzhou, 225002, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Heng Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Hao Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wencheng Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Nan Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Luan Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
6
|
Xu R, Liang J, Cheng M, Wu H, Wu H, Cao S, Zhao W, Xu R, Zhou A. Liver and urine metabolomics reveal the protective effect of Gandou decoction in copper-laden Hepatolenticular degeneration model rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122844. [PMID: 34246170 DOI: 10.1016/j.jchromb.2021.122844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Hepatolenticular degeneration (HLD) is an inherited disorder associated with human copper metabolism. Gandou decoction (GDD), a traditional Chinese medicinal formula, has been used as a therapeutic agent for the treatment of HLD in China for decades. Recent pharmacological evaluation in our laboratory has demonstrated that GDD exerts positive and beneficial effects on HLD model rats. However, its underlying therapeutic mechanisms are not yet well understood. To explore the potential therapeutic effects of GDD against HLD, liver and urine metabolomics approach combined with histopathological examination were performed to reveal the underlying mechanisms. Changes in metabolic profiles were estimated by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) coupled with multivariate statistical analyses. The results indicated that GDD could significantly improve liver pathological variations. Moreover, 19 and 11 significantly altered metabolites were found in the liver and urine between the normal and model groups, respectively. After GDD treatment, the levels of all these disordered metabolites showed different degrees of improvement compared with the model group, including lysoPC(18:2), lysoPE(20:2/0:0), PC(18:1/14:1), alpha-linolenic acid, sphinganine, taurochenodesoxycholic acid, tetracosahexaenoic acid, 13-OxoODE, and 13-L-hydroperoxyl inoleic acid. Metabolic pathway enrichment suggested that lipid and oxidative stress metabolism were the two main pathways that participated in copper-laden rat models with GDD administration. This work indicates that GDD could achieve a therapeutic effect on HLD by ameliorating the associated metabolic disturbances.
Collapse
Affiliation(s)
- Rujing Xu
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Juan Liang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Meimei Cheng
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hongfei Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Huan Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230026, China
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Ruichao Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| |
Collapse
|
7
|
Kong X, Liu C, Lu P, Guo Y, Zhao C, Yang Y, Bo Z, Wang F, Peng Y, Meng J. Combination of UPLC-Q-TOF/MS and Network Pharmacology to Reveal the Mechanism of Qizhen Decoction in the Treatment of Colon Cancer. ACS OMEGA 2021; 6:14341-14360. [PMID: 34124457 PMCID: PMC8190929 DOI: 10.1021/acsomega.1c01183] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/29/2023]
Abstract
Traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. Qizhen decoction (QZD), a potential compound prescription of TCM, possesses multiple biological activities. It has been proven clinically effective in the treatment of colon cancer. However, the molecular mechanism of anticolon cancer activity is still not clear. This study aimed to identify the chemical composition of QZD. Furthermore, a collaborative analysis strategy of network pharmacology and cell biology was used to further explore the critical signaling pathway of QZD anticancer activity. First, ultraperformance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) was performed to identify the chemical composition of QZD. Then, the chemical composition database of QZD was constructed based on a systematic literature search and review of chemical constituents. Moreover, the common and indirect targets of chemical components of QZD and colon cancer were searched by multiple databases. A protein-protein interaction (PPI) network was constructed using the String database (https://www.string-db.org/). All of the targets were analyzed by Gene Oncology (GO) bioanalysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the visual network topology diagram of "Prescription-TCM-Chemical composition-Direct target-Indirect target-Pathway" was constructed by Cytoscape software (v3.7.1). The top molecular pathway ranked by statistical significance was further verified by molecular biology methods. The results of UPLC-Q-TOF/MS showed that QZD had 111 kinds of chemical components, of which 103 were unique components and 8 were common components. Ten pivotal targets of QZD in the treatment of colon cancer were screened by the PPI network. Targets of QZD involve many biological processes, such as the signaling pathway, immune system, gene expression, and so on. QZD may interfere with biological pathways such as cell replication, oxygen-containing compounds, or organic matter by protein binding, regulation of signal receptors or enzyme binding, and affect cytoplasm and membrane-bound organelles. The main antitumor core pathways were the apoptosis metabolic pathway, the PI3K-Akt signal pathway, and so on. Expression of the PI3K-Akt signal pathway was significantly downregulated after the intervention of QZD, which was closely related to the inhibition of proliferation and migration of colon cancer cells by cell biology methods. The present work may facilitate a better understanding of the effective components, therapeutic targets, biological processes, and signaling pathways of QZD in the treatment of colon cancer and provide useful information about the utilization of QZD.
Collapse
Affiliation(s)
- Xianbin Kong
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Chuanxin Liu
- School
of Chinese Materia Medical, Beijing University
of Chinese Medicine, Beijing 102488, China
| | - Peng Lu
- State
Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhu Guo
- Department
of Radiotherapy, Tianjin Hospital, Tianjin 300211, China
| | - Chenchen Zhao
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Yuying Yang
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Zhichao Bo
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Fangyuan Wang
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Yingying Peng
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Jingyan Meng
- College
of Traditional Chinese Medicine, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
8
|
Wu S, Chen X, Liu H, Wang R, Li J, Wen J, Yang T, Wei Y, Ren S, Wei S, Jing M, Li H, Wang M, Xia H, Zhao Y. Study of Zuojin Pill in Treating Chronic Atrophic Gastritis by UPLC-Q-TOF/MS Based on Serum and Urine Metabolomics Combined with Network Pharmacology. Int J Anal Chem 2021; 2021:1-15. [DOI: 10.1155/2021/6649600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Zuojin Pill (ZJP) is widely used for the treatment of gastrointestinal diseases, while its specific mechanism has not been systematically investigated. The aim of this study was to explore the therapeutic effects and potential mechanism of ZJP in chronic atrophic gastritis (CAG) through UPLC-Q-TOF/MS-based metabolomics combined with network pharmacology. ZJP and omeprazole significantly reduce contents of IL-1β, IL-6, IL-10, and iNOS and improve pathological characteristics. Metabolomic results indicated that the therapeutic effects of ZJP were mainly related to ten metabolites, namely, choline, L-threonine, hydroxypyruvic acid, creatine, taurine, succinic acid, cis-aconitic acid, citric acid, succinic acid semialdehyde, and uric acid. Pathway analysis showed that the treatment of CAG by ZJP was associated with taurine and hypotaurine metabolism; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; glycerophospholipid metabolism; citrate cycle (TCA cycle), alanine, aspartate, and glutamate metabolism; butanoate metabolism; and purine metabolism. Validation of metabolic markers and key targets of network pharmacology through RT-PCR analysis showed that ZJP significantly downregulated a series of inflammatory markers, such as MAPK1, PKIA, RB1, SCN5A, RXRA, E2F1, PTGS1, IGF2, ADRB1, ADRA1B, PTGS2, and GABRA1. This study was the first to use a combination of metabolomics and network pharmacology to clarify the therapeutic effects of ZJP on CAG and the regulation of multiple metabolic pathways.
Collapse
Affiliation(s)
- Shihua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xing Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Honghong Liu
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianyu Li
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tao Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ying Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Sichen Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Houlin Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Metabolomics coupled with integrated approaches reveal the therapeutic effects of higenamine combined with [6]-gingerol on doxorubicin-induced chronic heart failure in rats. Chin Med 2020; 15:120. [PMID: 33292391 PMCID: PMC7670783 DOI: 10.1186/s13020-020-00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background This study was aimed to investigate the therapeutic effects and potential mechanism of higenamine combined with [6]-gingerol (HG/[6]-GR) against doxorubicin (DOX)—induced chronic heart failure (CHF) in rats. Materials and methods Therapeutic effects of HG/[6]-GR on hemodynamics indices, serum biochemical indicators, histopathology and TUNEL staining of rats were assessed. Moreover, a UHPLC-Q-TOF/MS-based serum metabolic approach was performed to identify the metabolites and possible pathways of HG/[6]-GR on DOX-induced CHF. Results HG/[6]-GR had effects on regulating hemodynamic indices, alleviating serum biochemical indicators, improving the pathological characteristics of heart tissue and reducing the apoptosis of myocardial cells. Serum metabolisms analyses indicated that the therapeutic effects of HG and [6]-GR were mainly associated with the regulation of eight metabolites, including acetylphosphate, 3-Carboxy-1-hydroxypropylthiamine diphosphate, coenzyme A, palmitic acid, PE(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)), oleic acid, lysoPC(18:1(9Z)), and PC(16:0/16:0). Pathway analysis showed that HG/[6]-GR on CHF treatment was related to twelve pathways, including glycerophospholipid metabolism, fatty acid metabolism, pantothenate and CoA biosynthesis, citrate cycle (TCA cycle), pyruvate metabolism, and arachidonic acid metabolism. Serum metabolites and metabolic pathways regulated by HG/[6]-GR appear to be related to energy metabolism. Conclusion Multivariate statistical analysis has provided new insights for understanding CHF and investigating the therapeutic effects and mechanisms of HG/[6]-GR, which influencing the metabolites and pathways related to energy metabolism pathway.
Collapse
|
10
|
Wei S, Ma X, Niu M, Wang R, Yang T, Wang D, Wen J, Li H, Zhao Y. Mechanism of Paeoniflorin in the Treatment of Bile Duct Ligation-Induced Cholestatic Liver Injury Using Integrated Metabolomics and Network Pharmacology. Front Pharmacol 2020; 11:586806. [PMID: 33192530 PMCID: PMC7641625 DOI: 10.3389/fphar.2020.586806] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Paeoniflorin (PF) is the main active component of Paeonia lactiflora Pall., which is used in the treatment of severe cholestatic hepatitis. However, its biological mechanism in regulating bile acid metabolism and cholestatic liver injury has not been fully revealed. Our study aimed to reveal the mechanism of PF in the treatment of cholestatic liver injury in an in vivo metabolic environment using bioinformatics analysis. The serum of rats with bile duct ligation (BDL)-induced cholestatic liver injury treated with PF was analyzed by UHPLC-Q-TOF, and specific metabolites were screened using a metabolomics method. These specific metabolites were further analyzed by network pharmacology to identify the upstream signaling pathways and key protein targets. Finally, the key target proteins were verified by immunohistochemistry using cholestatic rat liver tissue. The serum ALT, AST, TBA, and TBIL levels, as well as the pathological state of the liver tissues, were significantly improved by PF. Twenty-five specific metabolites and 157 corresponding target proteins were screened for the treatment of cholestatic liver injury by PF. The “PF-target-metabolite” interaction network was constructed, and five protein targets (MAP2K1, MAPK1, ILBP, ABCB1, and LTA4H) that may regulate specific metabolites were obtained. The results of immunohistochemistry showed that PF improved the expression of these proteins. The integrated application of multiple bioinformatics methods revealed that PF plays a key role in the treatment of cholestatic liver injury by intervening in important targets related to bile acid metabolism and inflammation.
Collapse
Affiliation(s)
- Shizhang Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Department of Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tao Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Dan Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Wang X, Wang Z, Wang K, Gao M, Zhang H, Xu X. Metabolomics analysis of multidrug resistance in colorectal cancer cell and multidrug resistance reversal effect of verapamil. Biomed Chromatogr 2020; 35:e4976. [PMID: 32852057 DOI: 10.1002/bmc.4976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/19/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022]
Abstract
Multidrug resistance remains a huge challenge in the chemotherapy of cancer and numerous studies have reported that P-glycoprotein is the most common mechanism of multidrug resistance. Verapamil has been shown to be able to reverse development of multidrug resistance mediated by P-glycoprotein. However, the mechanism of action for verapamil in reversing multidrug resistance at the metabolic level has been rarely reported. In this research, we report the reversal effect of verapamil on multidrug resistance and its mechanisms of action using metabolomics. The results show that the P-glycoprotein-mediated chemotherapy drug resistance was significantly reversed by verapamil in resistant SW620/Ad300 cells. In-depth studies demonstrated that verapamil at reversal concentration had no effect on the P-glycoprotein expression level, but increased intramolecular accumulation of paclitaxel in SW620/Ad300 cells. Metabolomics revealed that the multidrug resistance of SW620/Ad300 cells was related to changes in glycerophospholipid metabolism, sphingolipid metabolism and citric acid cycle, and verapamil could antagonize the multidrug resistance by reversing the above-mentioned glycerophospholipid metabolism and sphingolipid metabolism. This research shows the multidrug resistance reversal mechanism of verapamil at the metabolic level, which helps in understanding the exact multidrug resistance mechanism of verapamil and might be potentially useful to find new multidrug resistance reversal agents. The combination of verapamil (VRP) and paclitaxel (PTX) yielded synergistic effects. VRP had no effect on the expression of P-gp, but increased intramolecular accumulation of PTX. VRP antagonized the MDR by regulating glycerophospholipid metabolism and sphingolipid metabolism.
Collapse
Affiliation(s)
- Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zihan Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Kaili Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Wen JX, Li RS, Wang J, Hao JJ, Qin WH, Yang T, Wang RL, Wei SZ, Liu XY, Li HT, Wang JB, Liu HH, Zhao YL. Therapeutic effects of Aconiti Lateralis Radix Praeparata combined with Zingiberis Rhizoma on doxorubicin-induced chronic heart failure in rats based on an integrated approach. J Pharm Pharmacol 2020; 72:279-293. [PMID: 31743450 DOI: 10.1111/jphp.13191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study was aimed to explore the mechanism of Aconiti Lateralis Radix Praeparata (ALRP) and Zingiberis Rhizoma (ZR) on doxorubicin (DOX)-induced chronic heart failure (CHF) in rats by integrated approaches. METHODS Effects of ALRP and ZR on cardiac function, serum biochemical indicators and histopathology in rats were analysed. Moreover, UHPLC-Q-TOF/MS was performed to identify the potential metabolites affecting the pathological process of CHF. Metabolomics and network pharmacology analyses were conducted to illustrate the possible pathways and network in CHF treatment. The predicted gene expression levels in heart tissue were verified and assessed by RT-PCR. KEY FINDINGS ALRP-ZR demonstrated remarkable promotion of hemodynamic indices and alleviated histological damage of heart tissue. Metabolomics analyses showed that the therapeutic effect of ALRP and ZR is mainly associated with the regulation of eight metabolites and ten pathways, which may be responsible for the therapeutic efficacy of ALRP-ZR. Moreover, the results of RT-PCR showed that ALRP-ZR could substantially increase the expression level of energy metabolism-related genes, including PPARδ, PPARγ, Lpl, Scd, Fasn and Pla2g2e. CONCLUSIONS The results highlighted the role of ALRP-ZR in the treatment of CHF by influencing the metabolites related to energy metabolism pathway via metabolomics and network pharmacology analyses.
Collapse
Affiliation(s)
- Jian-Xia Wen
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Jian Wang
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Jie Hao
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Wei-Han Qin
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Tao Yang
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Rui-Lin Wang
- Department of Traditional Chinese Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Shi-Zhang Wei
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Xiao-Yi Liu
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Hao-Tian Li
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Jia-Bo Wang
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Hong-Hong Liu
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yan-Ling Zhao
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
13
|
Wang D, Li R, Wei S, Gao S, Xu Z, Liu H, Wang R, Li H, Cai H, Wang J, Zhao Y. Metabolomics combined with network pharmacology exploration reveals the modulatory properties of Astragali Radix extract in the treatment of liver fibrosis. Chin Med 2019; 14:30. [PMID: 31467589 PMCID: PMC6712842 DOI: 10.1186/s13020-019-0251-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Astragali Radix (AR) is widely-used for improving liver fibrosis, but, the mechanism of action has not been systematically explained. This study aims to investigate the mechanism of AR intervention in liver fibrosis based on comprehensive metabolomics combined with network pharmacology approach. Materials and methods UPLC–Q-TOF/MS based metabolomics technique was used to explore the specific metabolites and possible pathways of AR affecting the pathological process of liver fibrosis. Network pharmacology analysis was introduced to explore the key targets of AR regarding the mechanisms on liver fibrosis. Results AR significantly reduced the levels of ALT, AST and AKP in serum, and improved pathological characteristics. Metabolomics analysis showed that the therapeutic effect of AR was mainly related to the regulation of nine metabolites, including sphingosine, 6-keto-prostaglandin F1a, LysoPC (O-18:0), 3-dehydrosphinganine, 5,6-epoxy-8,11,14-eicosatrienoic acid, leukotriene C4, taurochenodesoxycholic acid, LysoPC (18:1 (9Z)) and 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine. Pathway analysis indicated that the treatment of AR on liver fibrosis was related to arachidonic acid metabolism, ether lipid metabolism, sphingolipid metabolism, glycerophospholipid metabolism and primary bile acid biosynthesis. Validation of the key targets by network pharmacology analysis of potential metabolic markers showed that AR significantly down-regulated the expression of CYP1B1 and up-regulated the expression of CYP1A2 and PCYT1A. Conclusion Metabolomics combined with network pharmacology was used for the first time to clarify that the treatment of AR on liver fibrosis, which is related to the regulation of arachidonic acid metabolism and ether lipid metabolism by modulating the expression of CYP1A2, CYP1B1 and PCYT1A. And the integrated approach can provide new strategies and ideas for the study of molecular mechanisms of traditional Chinese medicines in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Dan Wang
- 1Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China.,2Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Ruisheng Li
- 3Research Center for Clinical and Translational Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Shizhang Wei
- 1Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China.,2Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Sijia Gao
- 1Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China.,2Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Zhuo Xu
- 1Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China.,2Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Honghong Liu
- 4Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Ruilin Wang
- 5Department of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Haotian Li
- 2Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Huadan Cai
- 2Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Jian Wang
- 1Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Yanling Zhao
- 2Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| |
Collapse
|
14
|
Yang Y, Li F, Wei S, Liu X, Wang Y, Liu H, Wang J, Li H, Cai H, Zhao Y. Metabolomics profiling in a mouse model reveals protective effect of Sancao granule on Con A-Induced liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111838. [PMID: 30930257 DOI: 10.1016/j.jep.2019.111838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sancao granule (SCG) is a traditional Chinese herb formula, which has been used for autoimmune liver disease for decades. Previous study demonstrated that there was an exactly therapeutic effect of SCG on autoimmune hepatitis (AIH) by improving liver function and alleviating the clinical symptoms. However, studies of the mechanism by which SCG alleviates Con A-induced liver injury (CILI) should be complemented. MATERIALS AND METHODS An ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS)-based metabolomics approach combined with principle component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA) were integrated applied to obtain metabolites for clarifying mechanisms of disease. RESULTS In accordance with previously study, the present study demonstrated that SCG could obviously improve the liver injury in mouse induced by Con A via downregulating serum biochemical indexes, alleviating the histological damage and inhibiting the neutrophil infiltration in liver tissues. Different expression of 9 metabolites related to 8 pathways, including fatty acid biosynthesis, arachidonic acid metabolisms, linoleic acid metabolisms, sphingolipid metabolisms, fatty acid elongation in mitochondria, glycerophospholipid metabolism, fatty acid metabolism, pyrimidine metabolism were demonstrated responsible for the efficacy of SCG in treating CILI. CONCLUSION In sum up, SCG has been indicated favorable therapeutic effect on Con A induced liver injury. And metabolomics could be a promising approach, which provide insights into mechanisms of SCG in treating CILI.
Collapse
Affiliation(s)
- Yuxue Yang
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengyi Li
- Center for Diagnosis, Treatment and Research of Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Xiaoyi Liu
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Yingying Wang
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honghong Liu
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Jiabo Wang
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Haotian Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Huadan Cai
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China.
| |
Collapse
|
15
|
Wang Y, Wei S, Gao T, Yang Y, Lu X, Zhou X, Li H, Wang T, Qian L, Zhao Y, Zou W. Anti-Inflammatory Effect of a TCM Formula Li-Ru-Kang in Rats With Hyperplasia of Mammary Gland and the Underlying Biological Mechanisms. Front Pharmacol 2018; 9:1318. [PMID: 30524280 PMCID: PMC6262177 DOI: 10.3389/fphar.2018.01318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Li-Ru-Kang (LRK), a formula of eight traditional Chinese medicines (TCM), has been used to treat hyperplasia of mammary gland (HMG) in TCM clinics. However, how LRK works in HMG patients is unclear. To explore the possible mechanisms of LRK against HMG, the network pharmacology was used to screen the potential targets and possible pathways that involved in LRK treated HMG. Rat HMG model induced by estrogen and progesterone was used to further verify the effects of the key molecules of LRK selected from the enriched pathways on HMG. Nipple heights and diameters were measured and uterus index was calculated. The histopathological changes of mammary gland tissue were detected by hematoxylin-eosin (H&E) staining. Western blot was used to detect the phosphorylation of ERK, JNK, and P38. And immunohistochemistry staining was performed to evaluate the levels of estrogen receptor α (ERα), progesterone receptor (PR), nuclear factor-(NF-)κB (p65), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), cyclooxygenases 2 (COX-2), inducible nitric oxide synthase (iNOS), 8-hydroxy-2′deoxyguanosine (8-OHdG), and nitrotyrosine (NT). Our results indicate that LRK treatment rescues significantly nipples height and diameter, decreases uterus index and ameliorates HMG. LRK treatment also markedly attenuates the over-expression of IL-1β, TNF-α, COX-2, and iNOS, and suppressed the formation of 8-OHdG and NT. Furthermore, LRK treatment significantly inhibits the phosphorylation of JNK, ERK, and p38 and expression of NF-κB (p65), interestingly, LRK treatment has no effect on the expression of ERα and PR. Our data suggest that the LRK treatment protects the mammary glands from the damage of oxidative stress and inflammation induced by estrogen and progesterone, via suppresses of MAPK/NF-κB signaling pathways without affecting on the expression of ERα and PR.
Collapse
Affiliation(s)
- Yingying Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Tian Gao
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxue Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Xiaohua Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Haotian Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Tao Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Liqi Qian
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|