1
|
Yang Y, Qiao X, Yu S, Zhao X, Jin Y, Liu R, Li J, Wang L, Song L. A trace amine associated receptor mediates antimicrobial immune response in the oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105171. [PMID: 38537729 DOI: 10.1016/j.dci.2024.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.
Collapse
Affiliation(s)
- Yuehong Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Xinyu Zhao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Rui Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Jie Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
2
|
Moiseenko VI, Apryatina VA, Gainetdinov RR, Apryatin SA. Trace Amine-Associated Receptors' Role in Immune System Functions. Biomedicines 2024; 12:893. [PMID: 38672247 PMCID: PMC11047934 DOI: 10.3390/biomedicines12040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Trace amines are a separate, independent group of biogenic amines, close in structure to classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of G protein-coupled trace amine-associated receptors (in humans, TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) that senses trace amines was discovered relatively recently. They are mostly investigated for their involvement in the olfaction of volatile amines encoding innate behaviors and their potential contribution to the pathogenesis of neuropsychiatric disorders, but the expression of the TAAR family of receptors is also observed in various populations of cells in the immune system. This review is focused on the basic information of the interaction of trace amines and their receptors with cells of the general immune systems of humans and other mammals. We also overview the available data on TAARs' role in the function of individual populations of myeloid and lymphoid cells. With further research on the regulatory role of the trace amine system in immune functions and on uncovering the contribution of these processes to the pathogenesis of the immune response, a significant advance in the field could be expected. Furthermore, the determination of the molecular mechanisms of TAARs' involvement in immune system regulation and the further investigation of their potential chemotactic role could bring about the development of new approaches for the treatment of disorders related to immune system dysfunctions.
Collapse
Affiliation(s)
| | | | | | - Sergey A. Apryatin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
3
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
4
|
Vaganova AN, Maslennikova DD, Konstantinova VV, Kanov EV, Gainetdinov RR. The Expression of Trace Amine-Associated Receptors (TAARs) in Breast Cancer Is Coincident with the Expression of Neuroactive Ligand-Receptor Systems and Depends on Tumor Intrinsic Subtype. Biomolecules 2023; 13:1361. [PMID: 37759760 PMCID: PMC10526748 DOI: 10.3390/biom13091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the contribution of trace amine-associated receptors (TAARs) to breast cancer (BC) is recognized, but their associations with various pathological characteristics are not yet understood. There is accumulated transcriptomic data for BC tumors, which are represented in publicly accessible databases. We estimated TAARs' (including TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) associations with BC stage, grade, and molecular subtypes in these data and identified that the expression of all TAARs was associated with more unfavorable cancer subtypes, including basal-like and HER2-positive tumors. Also, the significant upregulation of all TAARs was demonstrated in circulating tumor cells compared to the metastatic lesions. Considering that co-expressed genes are more likely to be involved in the same biologic processes, we analyzed genes that are co-expressed with TAARs in BC. These gene sets were enriched with the genes of the olfactory transduction pathway and neuroactive ligand-receptor interaction participants. TAARs are co-expressed with G-protein-coupled receptors of monoamine neurotransmitters including dopamine, norepinephrine, and serotonin as well as with other neuroactive ligand-specific receptors. Since TAAR1 is able to modulate the activity of monoamine receptors that are involved in the regulation of BC growth, TAAR1 and potentially other TAARs may be regarded as prospective therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (E.V.K.)
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Daria D. Maslennikova
- Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Valeria V. Konstantinova
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Evgeny V. Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (E.V.K.)
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (E.V.K.)
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| |
Collapse
|
5
|
Polini B, Ricardi C, Bertolini A, Carnicelli V, Rutigliano G, Saponaro F, Zucchi R, Chiellini G. T1AM/TAAR1 System Reduces Inflammatory Response and β-Amyloid Toxicity in Human Microglial HMC3 Cell Line. Int J Mol Sci 2023; 24:11569. [PMID: 37511328 PMCID: PMC10380917 DOI: 10.3390/ijms241411569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Microglial dysfunction is one of the hallmarks and leading causes of common neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD). All these pathologies are characterized by aberrant aggregation of disease-causing proteins in the brain, which can directly activate microglia, trigger microglia-mediated neuroinflammation, and increase oxidative stress. Inhibition of glial activation may represent a therapeutic target to alleviate neurodegeneration. Recently, 3-iodothyronamine (T1AM), an endogenous derivative of thyroid hormone (TH) able to interact directly with a specific GPCR known as trace amine-associated receptor 1 (TAAR1), gained interest for its ability to promote neuroprotection in several models. Nevertheless, T1AM's effects on microglial disfunction remain still elusive. In the present work we investigated whether T1AM could inhibit the inflammatory response of human HMC3 microglial cells to LPS/TNFα or β-amyloid peptide 25-35 (Aβ25-35) stimuli. The results of ELISA and qPCR assays revealed that T1AM was able to reduce microglia-mediated inflammatory response by inhibiting the release of proinflammatory factors, including IL-6, TNFα, NF-kB, MCP1, and MIP1, while promoting the release of anti-inflammatory mediators, such as IL-10. Notably, T1AM anti-inflammatory action in HMC3 cells turned out to be a TAAR1-mediated response, further increasing the relevance of the T1AM/TAAR1 system in the management of NDDs.
Collapse
Affiliation(s)
- Beatrice Polini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Caterina Ricardi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Andrea Bertolini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Vittoria Carnicelli
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Grazia Rutigliano
- Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Federica Saponaro
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Riccardo Zucchi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| |
Collapse
|
6
|
Barnes DA, Hoener MC, Moore CS, Berry MD. TAAR1 Regulates Purinergic-induced TNF Secretion from Peripheral, But Not CNS-resident, Macrophages. J Neuroimmune Pharmacol 2023; 18:100-111. [PMID: 36380156 DOI: 10.1007/s11481-022-10053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is an established neuroregulatory G protein-coupled receptor with recent studies suggesting additional functions related to immunomodulation. Our lab has previously investigated TAAR1 expression within cells of the innate immune system and herein we aim to further elucidate TAAR1 function in both peripherally-derived and CNS-resident macrophages. The selective TAAR1 agonist RO5256390 was used in combination with common damage associated molecular patterns (ATP and ADP) to observe the effect of TAAR1 agonism on modulating cytokine secretion and metabolic profiles. In mouse bone-marrow derived macrophages, TAAR1 agonism inhibited TNF secretion following ATP stimulation, which appeared to be downstream of an associated pro-inflammatory shift in metabolic profile and transcriptional regulation of TNF synthesis. In contrast, TAAR1 agonism had no effect on ADP-induced TNF and IL-6 secretion in mouse microglia in either the presence or absence of astrocytes. In summary, we report a novel interaction between TAAR1 and purinergic signaling in peripherally-derived, but not CNS-resident, macrophages. These findings provide the first evidence of trace aminergic and purinergic crosstalk, and support the potential for TAAR1 as a novel therapeutic target in inflammatory disorders.
Collapse
Affiliation(s)
- David A Barnes
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, NL, A1B 3X9, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Marius C Hoener
- Neuroscience and Rare Diseases Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070, Basel, Switzerland
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Mark D Berry
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
7
|
Sarkar S, Saika-Voivod I, Berry MD. Modelling of p-tyramine transport across human intestinal epithelial cells predicts the presence of additional transporters. Front Physiol 2022; 13:1009320. [PMID: 36505075 PMCID: PMC9733674 DOI: 10.3389/fphys.2022.1009320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
p-Tyramine (TYR) is an endogenous trace amine, which can also be synthesized by intestinal microbiota, and is present in commonly consumed diets. TYR is an agonist for the intracellular trace amine-associated receptor 1, which has been implicated in psychiatric, metabolic, and immune-related disorders. We have previously demonstrated TYR readily diffuses across lipid bilayers, while transport across Caco-2 cell membranes involves Organic Cation Transporter 2 (OCT2) and a Na+-dependent active transporter. Here we developed mathematical models to determine whether known kinetics for these processes are sufficient to explain observed transcellular TYR passage. Ordinary differential equations were developed for known TYR transport processes to predict concentration-time relationships. Michaelis-Menten kinetics were assumed for all transporter-mediated processes and a one phase exponential function used for simple diffusion. Modelled concentration-time plots were compared to published experimental results. Additional transporter functions were sequentially added to models to improve consistency, and a least squares error minimization approach utilized to determine added transporter kinetics. Finally, possible TYR compartmentalization was also modelled. Following apical loading, transport across the apical, but not the basolateral, membrane was modelled without additional transporters, suggesting a basolateral transporter was missing. Consistent with this, models of basolateral compartment loading did not match experimental observations, indicating missing basolateral transporters were bidirectional. Addition of a transporter with the kinetic characteristics of OCT2 did not improve models. Varying the kinetic parameters of the added transporter improved models of basolateral, but worsened apical, loading models, suggesting the need for either a directional preference in transporters, or intracellular TYR compartmentalization. Experimental parameters were recapitulated by introducing asymmetry into the apical OCT2 (Kt_OCT2_apicaltocell = 110.4 nM, Kt_OCT2_celltoapical = 1,227.9 nM), and a symmetric basolateral facilitated diffusion transporter (Vmax = 6.0 nM/s, Kt = 628.3 nM). The apparent directionality of OCT2 may reflect altered TYR ionization due to known pH differences between compartments. Models for asymmetry and compartmentalization were compared by root mean square deviation from experimental data, and it was found that TYR compartmentalization could only partially replace the need for asymmetry of OCT2. In conclusion, modelling indicates that known TYR transport processes are insufficient to explain experimental concentration-time profiles and that asymmetry of the apical membrane OCT2 combined with additional, low affinity, basolateral membrane facilitated diffusion transporters are required.
Collapse
Affiliation(s)
- Shreyasi Sarkar
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada,*Correspondence: Shreyasi Sarkar,
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mark D. Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
8
|
Pardella E, Ippolito L, Giannoni E, Chiarugi P. Nutritional and metabolic signalling through GPCRs. FEBS Lett 2022; 596:2364-2381. [PMID: 35776088 DOI: 10.1002/1873-3468.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
Deregulated metabolism is a well-known feature of several challenging diseases, including diabetes, obesity and cancer. Besides their important role as intracellular bioenergetic molecules, dietary nutrients and metabolic intermediates are released in the extracellular environment. As such, they may achieve unconventional roles as hormone-like molecules by activating cell-surface G-protein-coupled receptors (GPCRs) that regulate several pathophysiological processes. In this review, we provide an insight into the role of lactate, succinate, fatty acids, amino acids, ketogenesis-derived and β-oxidation-derived intermediates as extracellular signalling molecules. Moreover, the mechanisms by which their cognate metabolite-sensing GPCRs integrate nutritional and metabolic signals with specific intracellular pathways will be described. A better comprehension of these aspects is of fundamental importance to identify GPCRs as novel druggable targets.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
9
|
Barnes DA, Galloway DA, Hoener MC, Berry MD, Moore CS. TAAR1 Expression in Human Macrophages and Brain Tissue: A Potential Novel Facet of MS Neuroinflammation. Int J Mol Sci 2021; 22:ijms222111576. [PMID: 34769007 PMCID: PMC8584001 DOI: 10.3390/ijms222111576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
TAAR1 is a neuroregulator with emerging evidence suggesting a role in immunomodulation. Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Here, we investigate TAAR1 expression in human primary monocytes, peripherally-derived macrophages, and MS brain tissue. RT-qPCR was used to assess TAAR1 levels in MS monocytes. Using a previously validated anti-human TAAR1 antibody and fluorescence microscopy, TAAR1 protein was visualized in lipopolysaccharide-stimulated or basal human macrophages, as well as macrophage/microglia populations surrounding, bordering, and within a mixed active/inactive MS lesion. In vivo, TAAR1 mRNA expression was significantly lower in MS monocytes compared to age- and sex-matched healthy controls. In vitro, TAAR1 protein showed a predominant nuclear localization in quiescent/control macrophages with a shift to a diffuse intracellular distribution following lipopolysaccharide-induced activation. In brain tissue, TAAR1 protein was predominantly expressed in macrophages/microglia within the border region of mixed active/inactive MS lesions. Considering that TAAR1-mediated anti-inflammatory effects have been previously reported, decreased mRNA in MS patients suggests possible pathophysiologic relevance. A shift in TAAR1 localization following pro-inflammatory activation suggests its function is altered in pro-inflammatory states, while TAAR1-expressing macrophages/microglia bordering an MS lesion supports TAAR1 as a novel pharmacological target in cells directly implicated in MS neuroinflammation.
Collapse
Affiliation(s)
- David A. Barnes
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, NL A1B 3X9, Canada; (D.A.B.); (M.D.B.)
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
| | - Dylan A. Galloway
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
| | - Marius C. Hoener
- Neuroscience, Ophthalmology and Rare Diseases DTA, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland;
| | - Mark D. Berry
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, NL A1B 3X9, Canada; (D.A.B.); (M.D.B.)
| | - Craig S. Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
- Correspondence: ; Tel.: +1-709-864-4955
| |
Collapse
|
10
|
Alessio N, Squillaro T, Lettiero I, Galano G, De Rosa R, Peluso G, Galderisi U, Di Bernardo G. Biomolecular Evaluation of Piceatannol's Effects in Counteracting the Senescence of Mesenchymal Stromal Cells: A New Candidate for Senotherapeutics? Int J Mol Sci 2021; 22:ijms222111619. [PMID: 34769049 PMCID: PMC8583715 DOI: 10.3390/ijms222111619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Several investigations on senescence and its causative role in aging have underscored the importance of developing senotherapeutics, a field focused on killing senescent cells and/or preventing their accumulation within tissues. Using polyphenols in counteracting senescence may facilitate the development of senotherapeutics given their presence in the human diet, their confirmed tolerability and absence of severe side effects, and their role in preventing senescence and inducing the death of senescent cells. Against that background, we evaluated the effect of piceatannol, a natural polyphenol, on the senescence of mesenchymal stromal cells (MSCs), which play a key role in the body's homeostasis. Among our results, piceatannol reduced the number of senescent cells both after genotoxic stress that induced acute senescence and in senescent replicative cultures. Such senotherapeutics activity, moreover, promoted the recovery of cell proliferation and the stemness properties of MSCs. Altogether, our findings demonstrate piceatannol's effectiveness in counteracting senescence by targeting its associated pathways and detecting and affecting P53-dependent and P53-independent senescence. Our study thus suggests that, given piceatannol's various mechanisms to accomplish its pleiotropic activities, it may be able to counteract any senescent phenotypes.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
| | - Ida Lettiero
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
| | - Giovanni Galano
- ASL Napoli 1 Centro P.S.I. Napoli Est-Barra, 80147 Naples, Italy; (G.G.); (R.D.R.)
| | - Roberto De Rosa
- ASL Napoli 1 Centro P.S.I. Napoli Est-Barra, 80147 Naples, Italy; (G.G.); (R.D.R.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems, CNR, 80131 Naples, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (U.G.); (G.D.B.)
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (U.G.); (G.D.B.)
| |
Collapse
|
11
|
Li C, Wang Z, Chen W, Cao B, Zhang M, Gu Q, Qi S, Fei X, Shi Y, Li X, Li R, Wang J, Li G. An Integrative Metabolomic and Network Pharmacology Study Revealing the Regulating Properties of Xihuang Pill That Improves Anlotinib Effects in Lung Cancer. Front Oncol 2021; 11:697247. [PMID: 34434895 PMCID: PMC8381607 DOI: 10.3389/fonc.2021.697247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Lung cancer ranks as a leading cause of death. Although targeted therapies usually trigger profound initial patient responses, these effects are transient due to drug resistance and severe side effects. Xihuang Pill (XHW) is a popular Chinese medicine formula that might benefit cancer patients when used as a complementary therapy. However, its underlying mechanism when combined with anticancer drugs is not clearly understood. Here, we used an integrated strategy to reveal the regulatory properties of XHW in increasing the antitumor activity of anlotinib in lung cancer. We evaluated the anti-lung cancer effect of XHW combined with anlotinib in mice bearing Lewis lung carcinoma (LLC). We applied untargeted metabolomics to identify the differences metabolism and found that XHW improved the effects of anlotinib on lung cancer. The components and targets related to the effects of XHW treatment on lung cancer were obtained through network pharmacology. Then, by integrating the biologically active components of XHW and anlotinib as well as the treatment-responsive metabolites and their related targets, an interaction network was constructed to evaluate the combination therapy. Finally, important protein candidates for this response were verified by immunohistochemistry of tumor tissues. The results showed that XHW significantly improved the inhibitory effect of anlotinib on tumor growth in LLC-bearing mice. Additionally, 12 differentially-abundant metabolites were identified by untargeted metabolomics in the XHW/anlotinib group compared with the XHW or anlotinib groups, and they were mainly enriched in fatty acid metabolism, lipid metabolism and amino acid metabolism pathways. Anlotinib, 23 components in Shexiang, 2 components in Niuhuang, 30 components in Ruxiang and 60 components in Moyao work together to act on 30 targets to regulate hexadecanoic acid (also named palmitic acid), linoleic acid, lactosylceramide, adrenaline, arachidonic acid and lysoPC(18:1(9Z)). The results of immunohistochemistry showed that XHW combined with anlotinib reduced the expression of PDGFRA in tumors. Overall, the key metabolites of XHW that enhances the efficacy of anlotinib were regulated by a multicomponent and multitarget interaction network. Our results suggested that anlotinib combined with XHW may be a promising strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Chunyu Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Cao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyu Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Gu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuya Qi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofei Fei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yafei Shi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingjie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - RuiSheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guohui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Role of trace amine‑associated receptor 1 in the medial prefrontal cortex in chronic social stress-induced cognitive deficits in mice. Pharmacol Res 2021; 167:105571. [PMID: 33753244 DOI: 10.1016/j.phrs.2021.105571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence supports an essential role of trace amine-associated receptor 1 (TAAR1) in neuropsychiatric disorders such as depression and schizophrenia. Stressful events are critical contributors to various neuropsychiatric disorders. This study examined the role of TAAR1 in mediating the negative outcomes of stressful events. In mice that experienced chronic social defeat stress but not acute stress, a significant reduction in the TAAR1 mRNA level was found in the medial prefrontal cortex (mPFC), a brain region that is known to be vulnerable to stress experience. Conditional TAAR1 knockout in the mPFC mimicked the cognitive deficits induced by chronic stress. In addition, chronic treatment with the selective TAAR1 partial agonist RO5263397 ameliorated chronic stress-induced changes in cognitive function, dendritic arborization, and the synapse number of pyramidal neurons in the mPFC but did not affect chronic stress-induced anxiety-like behaviors. Biochemically, chronic stress reduced the ratio of vesicular transporters of glutamate-1 (VGluT1) / vesicular GABA transporter (VGAT) in the mPFC,most prominently in the prelimbic cortex, and RO5263397 restored the excitatory-inhibitory (E/I) imbalance. Together, the results of this study reveal an essential role of TAAR1 in mediating chronic stress-induced cognitive impairments and suggest that TAAR1 agonists may be uniquely useful to treat MDD-related cognitive impairments.
Collapse
|
13
|
Cisneros IE, Ghorpade A, Borgmann K. Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders. Front Neurol 2020; 11:593146. [PMID: 33324330 PMCID: PMC7724046 DOI: 10.3389/fneur.2020.593146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Methamphetamine (METH) use, referred to as methamphetamine use disorder (MUD), results in neurocognitive decline, a characteristic shared with HIV-associated neurocognitive disorders (HAND). MUD exacerbates HAND partly through glutamate dysregulation. Astrocyte excitatory amino acid transporter (EAAT)-2 is responsible for >90% of glutamate uptake from the synaptic environment and is significantly decreased with METH and HIV-1. Our previous work demonstrated astrocyte trace amine associated receptor (TAAR) 1 to be involved in EAAT-2 regulation. Astrocyte EAAT-2 is regulated at the transcriptional level by cAMP responsive element binding (CREB) protein and NF-κB, transcription factors activated by cAMP, calcium and IL-1β. Second messengers, cAMP and calcium, are triggered by TAAR1 activation, which is upregulated by IL-1β METH-mediated increases in these second messengers and signal transduction pathways have not been shown to directly decrease astrocyte EAAT-2. We propose CREB activation serves as a master regulator of EAAT-2 transcription, downstream of METH-induced TAAR1 activation. To investigate the temporal order of events culminating in CREB activation, genetically encoded calcium indicators, GCaMP6s, were used to visualize METH-induced calcium signaling in primary human astrocytes. RNA interference and pharmacological inhibitors targeting or blocking cAMP-dependent protein kinase A and calcium/calmodulin kinase II confirmed METH-induced regulation of EAAT-2 and resultant glutamate clearance. Furthermore, we investigated METH-mediated CREB phosphorylation at both serine 133 and 142, the co-activator and co-repressor forms, respectively. Overall, this work revealed METH-induced differential CREB phosphorylation is a critical regulator for EAAT-2 function and may thus serve as a mechanistic target for the attenuation of METH-induced excitotoxicity in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
14
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|
15
|
Dodd S, F Carvalho A, Puri BK, Maes M, Bortolasci CC, Morris G, Berk M. Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci Biobehav Rev 2020; 120:537-541. [PMID: 33031817 DOI: 10.1016/j.neubiorev.2020.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
There are nine subfamilies of TAARs. They are predominantly intracellular, located in the central nervous system and peripherally. They have a role in homeostasis and rheostasis, and also in olfaction. They demonstrate significant cross-talk with the monoamine system and are involved in the regulation of cAMP signalling and K+ channels. There is evidence to suggest that TAAR1 may be a promising therapeutic target for the treatment of schizophrenia, psychosis in Parkinson's disease, substance use disorders, and the metabolic syndrome and obesity. TAAR1 expression may also be a prognostic biomarker for cancers. A number of TAAR modulators have been identified, including endogenous ligands and new chemical entities. Some of these agents have shown efficacy in animal models of addiction behaviours, depression and anxiety. Only one agent, SEP-363856, has progressed to randomised clinical trials in humans; however further, larger studies with SEP-363856 are required to clarify its suitability as a new treatment for schizophrenia spectrum disorders. SEP-363856 is an agonist of TAAR1 and 5HT1A and it is not clear to what extent its efficacy can be attributed to TAAR1 rather than to other drug targets. However, current research suggests that TAAR1 has an important role in human physiology and pathophysiology. TAAR1 modulators may become an important new drug class for the management of a wide array of mental disorders in the future.
Collapse
Affiliation(s)
- Seetal Dodd
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; University Hospital Geelong, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.
| | - André F Carvalho
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, Toronto, ON, Canada
| | | | - Michael Maes
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Chiara C Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; University Hospital Geelong, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|
16
|
Bugda Gwilt K, Olliffe N, Hoffing RA, Miller GM. Trace amine associated receptor 1 (TAAR1) expression and modulation of inflammatory cytokine production in mouse bone marrow-derived macrophages: a novel mechanism for inflammation in ulcerative colitis. Immunopharmacol Immunotoxicol 2019; 41:577-585. [DOI: 10.1080/08923973.2019.1672178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Katlynn Bugda Gwilt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Neva Olliffe
- Department of Biology, Northeastern University, Boston, MA, USA
- Honors Program, Northeastern University, Boston, MA, USA
| | | | - Gregory M. Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
TAAR1 levels and sub-cellular distribution are cell line but not breast cancer subtype specific. Histochem Cell Biol 2019; 152:155-166. [PMID: 31111198 DOI: 10.1007/s00418-019-01791-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Trace amine-associated receptors are G protein-coupled receptors of which TAAR1 is the most well-studied. Recently, Vattai et al. (J Cancer Res Clin Oncol 143:1637-1647 https://doi.org/10.1007/s00432-017-2420-8 , 2017) reported that expression of TAAR1 may be a marker of breast cancer (BC) survival, with a positive correlation also suggested between TAAR1 expression and HER2 positivity. Neither a role for TAAR1 in breast tissue, nor in cancer, had previously been suspected. We, therefore, sought to provide independent validation and to further examine these putative relationships. First, a bioinformatic analysis on 58 total samples including normal breast tissue, BC-related cell lines, and tumour samples representing different BC sub-types found no clear correlation between TAAR1 mRNA levels and any BC subtype, including HER2 + . We next confirmed the bioinformatics data correlated to protein expression using a well validated anti-human TAAR1 antibody. TAAR1 mRNA levels correlated with the relative intensity of immunofluorescence staining in six BC cell lines (MCF-7, T47D, MDA-MB-231, SKBR3, MDA-MB-468, BT-474), but not in the MCF-10A immortalized mammary gland line, which had high mRNA but low protein levels. As expected, TAAR1 protein was intracellular in all cell lines. Surprisingly MCF-7, SKBR3, and MDA-MB-468 showed pronounced nuclear localization. The relative protein expression in MCF-7, MDA-MB-231, and MCF-10A lines was further confirmed by semi-quantitative flow cytometry. Finally, we demonstrate that the commercially available anti-TAAR1 antibody has poor selectivity, which likely explains the lack of correlation with the previous study. Therefore, while we clearly demonstrate variable expression and sub-cellular localization of TAAR1 across BC cell lines, we find no evidence for association with BC subtype.
Collapse
|