1
|
Zhu S, Chen X, Chen W, Ma Q, Li M, Fan W, Zhang J, Guo L. Multicomponent synthesis of novel β-carboline-fused imidazolium derivatives via the Mannich reaction: cytotoxicity, molecular docking, and mechanistic studies as angiogenesis inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d1nj05471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we report novel multicomponent reactions for the synthesis of β-carboline-fused imidazolium derivatives via the Mannich-type reaction.
Collapse
Affiliation(s)
- Siyu Zhu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University, Shihezi, China
| | - Xiaofei Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University, Shihezi, China
| | - Wei Chen
- XinJiang Huashidan Pharmaceutical Research Co. Ltd., Urumqi, China
| | - Qin Ma
- XinJiang Huashidan Pharmaceutical Research Co. Ltd., Urumqi, China
| | - Meng Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University, Shihezi, China
| | - Wenxi Fan
- XinJiang Huashidan Pharmaceutical Research Co. Ltd., Urumqi, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University, Shihezi, China
| | - Liang Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
A comprehensive overview of β-carbolines and its derivatives as anticancer agents. Eur J Med Chem 2021; 224:113688. [PMID: 34332400 DOI: 10.1016/j.ejmech.2021.113688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/05/2021] [Accepted: 07/04/2021] [Indexed: 01/13/2023]
Abstract
β-Carboline alkaloids are a family of natural and synthetic products with structural diversity and outstanding antitumor activities. This review summarizes research developments of β-carboline and its derivatives as anticancer agents, which focused on both natural and synthetic monomers as well as dimers. In addition, the structure-activity relationship (SAR) analysis of β-carboline monomers and dimers are summarized and mechanism of action of β-carboline and its derivatives are also presented. A few possible research directions, suggestions and clues for future work on the development of novel β-carboline-based anticancer agents with improved expected activities and lesser toxicity are also provided.
Collapse
|
3
|
Alzain AA, Brisson L, Delaye PO, Pénichon M, Chadet S, Besson P, Chevalier S, Allouchi H, Mohamed MA, Roger S, Enguehard-Gueiffier C. Bioinspired imidazo[1,2-a:4,5-c']dipyridines with dual antiproliferative and anti-migrative properties in human cancer cells: The SAR investigation. Eur J Med Chem 2021; 218:113258. [PMID: 33813152 DOI: 10.1016/j.ejmech.2021.113258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/24/2022]
Abstract
Herein, we report the design, synthesis and evaluation of novel bioinspired imidazo[1,2-a:4,5c']dipyridines. The structural optimization identified four anti-proliferative compounds. Compounds 11, 18, 19 and 20 exhibited excellent anticancer activities in vitro with IC50 of 0.4-5 μM against three human cancer cell lines (MDA-MB-468, MDA-MB-435s and MDA-MB-231). These four compounds induced apoptosis in MDA-MB-231 cells in a dose-dependent manner, targeting different apoptotic proteins expression: 11 increased the expression of pro-apoptotic Bax protein while 18-20 reduced the level of anti-apoptotic Bcl-2 protein. Compounds 18 and 19 also reduced MDA-MB-231 cells proliferation as measured by Ki-67 staining. Furthermore, compounds were also tested for the ability to inhibit cell migration in the highly aggressive human MDA-MB-435s cell line. Six compounds of this series (8, 15, 18, 22, 23, 24) inhibited cell migration by 41-50% while four compounds (20, 25, 27, 30) inhibited the migration by 53-62% in wound-healing experiments. Interestingly, compound 20 presented both antiproliferative and anti-migration activities and might be a promising anti-metastatic agent for cancer treatment.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France; University of Gezira, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, P.O box 20, Gezira, Sudan
| | - Lucie Brisson
- University of Tours, INSERM, UMR 1069 N2C, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Pierre-Olivier Delaye
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Mélanie Pénichon
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Stéphanie Chadet
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Pierre Besson
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Stéphan Chevalier
- University of Tours, INSERM, UMR 1069 N2C, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Hassan Allouchi
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Magdi A Mohamed
- University of Khartoum, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Khartoum, Sudan; Jouf University, College of Pharmacy, Department of Pharmaceutical Chemistry, Saudi Arabia
| | - Sébastien Roger
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France; Institut Universitaire de France, 75006, Paris, France.
| | | |
Collapse
|
4
|
Molecular hybrid design, synthesis, in vitro and in vivo anticancer evaluation, and mechanism of action of N-acylhydrazone linked, heterobivalent β-carbolines. Bioorg Chem 2020; 96:103612. [PMID: 32007724 DOI: 10.1016/j.bioorg.2020.103612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/25/2019] [Accepted: 01/20/2020] [Indexed: 02/05/2023]
Abstract
A series of N-acylhydrazone-linked, heterobivalent β-carboline derivatives was designed and synthesized from l-tryptophan in a nine-step reaction sequence. The effort resulted in the heterobivalent β-carbolines 10a-t in good yields. The target compounds were characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry (HRMS). The in vitro cytotoxic activity of the synthesized compounds was evaluated against normal EA.HY926 cells and five cancer cell lines: LLC (Lewis lung carcinoma), BGC-823 (gastric carcinoma), CT-26 (murine colon carcinoma), Bel-7402 (liver carcinoma), and MCF-7 (breast carcinoma). Compound 10e, with an IC50 value of 2.41 μM against EA.HY926 cells, was the most potent inhibitor. It showed cytotoxicity against all five cancer cell lines of different origin - murine and human, with IC50 values ranging from 4.2 ± 0.7 to 18.5 ± 3.1 μM. A study of structure-activity relationships indicated that the influence on cytotoxic activities of the substituent in the R9'-position followed the tendency, 2,3,4,5,6-perfluorophenylmethyl > 4-fluorobenzyl > 3-phenylpropyl group. The antitumor efficacies of the selected compounds were also evaluated in mice. Compound 10e exhibited potent antitumor activity, with tumor inhibition of more than 40% for Sarcoma 180 and 36.7% for Lewis lung cancer. Furthermore, the pharmacological mechanisms showed that compound 10e has a certain impairment in the motility of LLC cells, which suggests the anti-metastatic potential. And compound 10e inhibited angiogenesis in chicken chorioallantoic membrane assay, and the anti-angiogenetic potency was more potent than the reference drug combretastatin A4-phosphate (CA4P) at a concentration 50 μM.
Collapse
|
5
|
Chen X, Guo L, Ma Q, Chen W, Fan W, Zhang J. Design, Synthesis, and Biological Evaluation of Novel N-Acylhydrazone Bond Linked Heterobivalent β-Carbolines as Potential Anticancer Agents. Molecules 2019; 24:molecules24162950. [PMID: 31416271 PMCID: PMC6720801 DOI: 10.3390/molecules24162950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Utilizing a pharmacophore hybridization approach, we have designed and synthesized a novel series of 28 new heterobivalent β-carbolines. The in vitro cytotoxic potential of each compound was evaluated against the five cancer cell lines (LLC, BGC-823, CT-26, Bel-7402, and MCF-7) of different origin—murine and human, with the aim of determining the potency and selectivity of the compounds. Compound 8z showed antitumor activities with half-maximal inhibitory concentration (IC50) values of 9.9 ± 0.9, 8.6 ± 1.4, 6.2 ± 2.5, 9.9 ± 0.5, and 5.7 ± 1.2 µM against the tested five cancer cell lines. Moreover, the effect of compound 8z on the angiogenesis process was investigated using a chicken chorioallantoic membrane (CAM) in vivo model. At a concentration of 5 μM, compound 8z showed a positive effect on angiogenesis. The results of this study contribute to the further elucidation of the biological regulatory role of heterobivalent β-carbolines and provide helpful information on the development of vascular targeting antitumor drugs.
Collapse
Affiliation(s)
- Xiaofei Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Liang Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Qin Ma
- Xinjiang Huashidan Pharmaceutical Research Co. Ltd., 175 He Nan East Road, Urumqi 830011, China
| | - Wei Chen
- Xinjiang Huashidan Pharmaceutical Research Co. Ltd., 175 He Nan East Road, Urumqi 830011, China
| | - Wenxi Fan
- Xinjiang Huashidan Pharmaceutical Research Co. Ltd., 175 He Nan East Road, Urumqi 830011, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| |
Collapse
|